ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/cvsroot/libecb/ecb.pod
(Generate patch)

Comparing cvsroot/libecb/ecb.pod (file contents):
Revision 1.59 by sf-exg, Mon Jan 26 12:04:56 2015 UTC vs.
Revision 1.84 by root, Mon Jan 20 21:10:16 2020 UTC

58 58
59=head2 TYPES / TYPE SUPPORT 59=head2 TYPES / TYPE SUPPORT
60 60
61ecb.h makes sure that the following types are defined (in the expected way): 61ecb.h makes sure that the following types are defined (in the expected way):
62 62
63 int8_t uint8_t int16_t uint16_t 63 int8_t uint8_
64 int32_t uint32_t int64_t uint64_t 64 int16_t uint16_t
65 int32_t uint32_
66 int64_t uint64_t
67 int_fast8_t uint_fast8_t
68 int_fast16_t uint_fast16_t
69 int_fast32_t uint_fast32_t
70 int_fast64_t uint_fast64_t
65 intptr_t uintptr_t 71 intptr_t uintptr_t
66 72
67The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this 73The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this
68platform (currently C<4> or C<8>) and can be used in preprocessor 74platform (currently C<4> or C<8>) and can be used in preprocessor
69expressions. 75expressions.
70 76
71For C<ptrdiff_t> and C<size_t> use C<stddef.h>. 77For C<ptrdiff_t> and C<size_t> use C<stddef.h>/C<cstddef>.
72 78
73=head2 LANGUAGE/COMPILER VERSIONS 79=head2 LANGUAGE/ENVIRONMENT/COMPILER VERSIONS
74 80
75All the following symbols expand to an expression that can be tested in 81All the following symbols expand to an expression that can be tested in
76preprocessor instructions as well as treated as a boolean (use C<!!> to 82preprocessor instructions as well as treated as a boolean (use C<!!> to
77ensure it's either C<0> or C<1> if you need that). 83ensure it's either C<0> or C<1> if you need that).
78 84
79=over 4 85=over 4
80 86
81=item ECB_C 87=item ECB_C
82 88
83True if the implementation defines the C<__STDC__> macro to a true value, 89True if the implementation defines the C<__STDC__> macro to a true value,
84while not claiming to be C++. 90while not claiming to be C++, i..e C, but not C++.
85 91
86=item ECB_C99 92=item ECB_C99
87 93
88True if the implementation claims to be compliant to C99 (ISO/IEC 94True if the implementation claims to be compliant to C99 (ISO/IEC
899899:1999) or any later version, while not claiming to be C++. 959899:1999) or any later version, while not claiming to be C++.
90 96
91Note that later versions (ECB_C11) remove core features again (for 97Note that later versions (ECB_C11) remove core features again (for
92example, variable length arrays). 98example, variable length arrays).
93 99
94=item ECB_C11 100=item ECB_C11, ECB_C17
95 101
96True if the implementation claims to be compliant to C11 (ISO/IEC 102True if the implementation claims to be compliant to C11/C17 (ISO/IEC
979899:2011) or any later version, while not claiming to be C++. 1039899:2011, :20187) or any later version, while not claiming to be C++.
98 104
99=item ECB_CPP 105=item ECB_CPP
100 106
101True if the implementation defines the C<__cplusplus__> macro to a true 107True if the implementation defines the C<__cplusplus__> macro to a true
102value, which is typically true for C++ compilers. 108value, which is typically true for C++ compilers.
103 109
104=item ECB_CPP11 110=item ECB_CPP11, ECB_CPP14, ECB_CPP17
105 111
106True if the implementation claims to be compliant to ISO/IEC 14882:2011 112True if the implementation claims to be compliant to C++11/C++14/C++17
107(C++11) or any later version. 113(ISO/IEC 14882:2011, :2014, :2017) or any later version.
114
115Note that many C++20 features will likely have their own feature test
116macros (see e.g. L<http://eel.is/c++draft/cpp.predefined#1.8>).
117
118=item ECB_OPTIMIZE_SIZE
119
120Is C<1> when the compiler optimizes for size, C<0> otherwise. This symbol
121can also be defined before including F<ecb.h>, in which case it will be
122unchanged.
108 123
109=item ECB_GCC_VERSION (major, minor) 124=item ECB_GCC_VERSION (major, minor)
110 125
111Expands to a true value (suitable for testing in by the preprocessor) 126Expands to a true value (suitable for testing by the preprocessor) if the
112if the compiler used is GNU C and the version is the given version, or 127compiler used is GNU C and the version is the given version, or higher.
113higher.
114 128
115This macro tries to return false on compilers that claim to be GCC 129This macro tries to return false on compilers that claim to be GCC
116compatible but aren't. 130compatible but aren't.
117 131
118=item ECB_EXTERN_C 132=item ECB_EXTERN_C
137 151
138 ECB_EXTERN_C_END 152 ECB_EXTERN_C_END
139 153
140=item ECB_STDFP 154=item ECB_STDFP
141 155
142If this evaluates to a true value (suitable for testing in by the 156If this evaluates to a true value (suitable for testing by the
143preprocessor), then C<float> and C<double> use IEEE 754 single/binary32 157preprocessor), then C<float> and C<double> use IEEE 754 single/binary32
144and double/binary64 representations internally I<and> the endianness of 158and double/binary64 representations internally I<and> the endianness of
145both types match the endianness of C<uint32_t> and C<uint64_t>. 159both types match the endianness of C<uint32_t> and C<uint64_t>.
146 160
147This means you can just copy the bits of a C<float> (or C<double>) to an 161This means you can just copy the bits of a C<float> (or C<double>) to an
163C<__x86_64> stands for, well, the x86-64 ABI, making these macros 177C<__x86_64> stands for, well, the x86-64 ABI, making these macros
164necessary. 178necessary.
165 179
166=back 180=back
167 181
182=head2 MACRO TRICKERY
183
184=over 4
185
186=item ECB_CONCAT (a, b)
187
188Expands any macros in C<a> and C<b>, then concatenates the result to form
189a single token. This is mainly useful to form identifiers from components,
190e.g.:
191
192 #define S1 str
193 #define S2 cpy
194
195 ECB_CONCAT (S1, S2)(dst, src); // == strcpy (dst, src);
196
197=item ECB_STRINGIFY (arg)
198
199Expands any macros in C<arg> and returns the stringified version of
200it. This is mainly useful to get the contents of a macro in string form,
201e.g.:
202
203 #define SQL_LIMIT 100
204 sql_exec ("select * from table limit " ECB_STRINGIFY (SQL_LIMIT));
205
206=item ECB_STRINGIFY_EXPR (expr)
207
208Like C<ECB_STRINGIFY>, but additionally evaluates C<expr> to make sure it
209is a valid expression. This is useful to catch typos or cases where the
210macro isn't available:
211
212 #include <errno.h>
213
214 ECB_STRINGIFY (EDOM); // "33" (on my system at least)
215 ECB_STRINGIFY_EXPR (EDOM); // "33"
216
217 // now imagine we had a typo:
218
219 ECB_STRINGIFY (EDAM); // "EDAM"
220 ECB_STRINGIFY_EXPR (EDAM); // error: EDAM undefined
221
222=back
223
168=head2 GCC ATTRIBUTES 224=head2 ATTRIBUTES
169 225
170A major part of libecb deals with GCC attributes. These are additional 226A major part of libecb deals with additional attributes that can be
171attributes that you can assign to functions, variables and sometimes even 227assigned to functions, variables and sometimes even types - much like
172types - much like C<const> or C<volatile> in C. 228C<const> or C<volatile> in C. They are implemented using either GCC
173 229attributes or other compiler/language specific features. Attributes
174While GCC allows declarations to show up in many surprising places,
175but not in many expected places, the safest way is to put attribute
176declarations before the whole declaration: 230declarations must be put before the whole declaration:
177 231
178 ecb_const int mysqrt (int a); 232 ecb_const int mysqrt (int a);
179 ecb_unused int i; 233 ecb_unused int i;
180 234
181For variables, it is often nicer to put the attribute after the name, and
182avoid multiple declarations using commas:
183
184 int i ecb_unused;
185
186=over 4 235=over 4
187
188=item ecb_attribute ((attrs...))
189
190A simple wrapper that expands to C<__attribute__((attrs))> on GCC 3.1+ and
191Clang 2.8+, and to nothing on other compilers, so the effect is that only
192GCC and Clang see these.
193
194Example: use the C<deprecated> attribute on a function.
195
196 ecb_attribute((__deprecated__)) void
197 do_not_use_me_anymore (void);
198 236
199=item ecb_unused 237=item ecb_unused
200 238
201Marks a function or a variable as "unused", which simply suppresses a 239Marks a function or a variable as "unused", which simply suppresses a
202warning by GCC when it detects it as unused. This is useful when you e.g. 240warning by GCC when it detects it as unused. This is useful when you e.g.
203declare a variable but do not always use it: 241declare a variable but do not always use it:
204 242
205 { 243 {
206 int var ecb_unused; 244 ecb_unused int var;
207 245
208 #ifdef SOMECONDITION 246 #ifdef SOMECONDITION
209 var = ...; 247 var = ...;
210 return var; 248 return var;
211 #else 249 #else
216=item ecb_deprecated 254=item ecb_deprecated
217 255
218Similar to C<ecb_unused>, but marks a function, variable or type as 256Similar to C<ecb_unused>, but marks a function, variable or type as
219deprecated. This makes some compilers warn when the type is used. 257deprecated. This makes some compilers warn when the type is used.
220 258
259=item ecb_deprecated_message (message)
260
261Same as C<ecb_deprecated>, but if possible, the specified diagnostic is
262used instead of a generic depreciation message when the object is being
263used.
264
221=item ecb_inline 265=item ecb_inline
222 266
223This is not actually an attribute, but you use it like one. It expands 267Expands either to (a compiler-specific equivalent of) C<static inline> or
224either to C<static inline> or to just C<static>, if inline isn't 268to just C<static>, if inline isn't supported. It should be used to declare
225supported. It should be used to declare functions that should be inlined, 269functions that should be inlined, for code size or speed reasons.
226for code size or speed reasons.
227 270
228Example: inline this function, it surely will reduce codesize. 271Example: inline this function, it surely will reduce codesize.
229 272
230 ecb_inline int 273 ecb_inline int
231 negmul (int a, int b) 274 negmul (int a, int b)
233 return - (a * b); 276 return - (a * b);
234 } 277 }
235 278
236=item ecb_noinline 279=item ecb_noinline
237 280
238Prevent a function from being inlined - it might be optimised away, but 281Prevents a function from being inlined - it might be optimised away, but
239not inlined into other functions. This is useful if you know your function 282not inlined into other functions. This is useful if you know your function
240is rarely called and large enough for inlining not to be helpful. 283is rarely called and large enough for inlining not to be helpful.
241 284
242=item ecb_noreturn 285=item ecb_noreturn
243 286
264 307
265Example: multiply a vector, and allow the compiler to parallelise the 308Example: multiply a vector, and allow the compiler to parallelise the
266loop, because it knows it doesn't overwrite input values. 309loop, because it knows it doesn't overwrite input values.
267 310
268 void 311 void
269 multiply (float *ecb_restrict src, 312 multiply (ecb_restrict float *src,
270 float *ecb_restrict dst, 313 ecb_restrict float *dst,
271 int len, float factor) 314 int len, float factor)
272 { 315 {
273 int i; 316 int i;
274 317
275 for (i = 0; i < len; ++i) 318 for (i = 0; i < len; ++i)
401 return is_constant (n) && !(n & (n - 1)) 444 return is_constant (n) && !(n & (n - 1))
402 ? rndm16 () & (num - 1) 445 ? rndm16 () & (num - 1)
403 : (n * (uint32_t)rndm16 ()) >> 16; 446 : (n * (uint32_t)rndm16 ()) >> 16;
404 } 447 }
405 448
406=item bool ecb_expect (expr, value) 449=item ecb_expect (expr, value)
407 450
408Evaluates C<expr> and returns it. In addition, it tells the compiler that 451Evaluates C<expr> and returns it. In addition, it tells the compiler that
409the C<expr> evaluates to C<value> a lot, which can be used for static 452the C<expr> evaluates to C<value> a lot, which can be used for static
410branch optimisations. 453branch optimisations.
411 454
458 { 501 {
459 if (ecb_expect_false (current + size > end)) 502 if (ecb_expect_false (current + size > end))
460 real_reserve_method (size); /* presumably noinline */ 503 real_reserve_method (size); /* presumably noinline */
461 } 504 }
462 505
463=item bool ecb_assume (cond) 506=item ecb_assume (cond)
464 507
465Try to tell the compiler that some condition is true, even if it's not 508Tries to tell the compiler that some condition is true, even if it's not
466obvious. 509obvious. This is not a function, but a statement: it cannot be used in
510another expression.
467 511
468This can be used to teach the compiler about invariants or other 512This can be used to teach the compiler about invariants or other
469conditions that might improve code generation, but which are impossible to 513conditions that might improve code generation, but which are impossible to
470deduce form the code itself. 514deduce form the code itself.
471 515
488 532
489Then the compiler I<might> be able to optimise out the second call 533Then the compiler I<might> be able to optimise out the second call
490completely, as it knows that C<< current + 1 > end >> is false and the 534completely, as it knows that C<< current + 1 > end >> is false and the
491call will never be executed. 535call will never be executed.
492 536
493=item bool ecb_unreachable () 537=item ecb_unreachable ()
494 538
495This function does nothing itself, except tell the compiler that it will 539This function does nothing itself, except tell the compiler that it will
496never be executed. Apart from suppressing a warning in some cases, this 540never be executed. Apart from suppressing a warning in some cases, this
497function can be used to implement C<ecb_assume> or similar functions. 541function can be used to implement C<ecb_assume> or similar functionality.
498 542
499=item bool ecb_prefetch (addr, rw, locality) 543=item ecb_prefetch (addr, rw, locality)
500 544
501Tells the compiler to try to prefetch memory at the given C<addr>ess 545Tells the compiler to try to prefetch memory at the given C<addr>ess
502for either reading (C<rw> = 0) or writing (C<rw> = 1). A C<locality> of 546for either reading (C<rw> = 0) or writing (C<rw> = 1). A C<locality> of
503C<0> means that there will only be one access later, C<3> means that 547C<0> means that there will only be one access later, C<3> means that
504the data will likely be accessed very often, and values in between mean 548the data will likely be accessed very often, and values in between mean
505something... in between. The memory pointed to by the address does not 549something... in between. The memory pointed to by the address does not
506need to be accessible (it could be a null pointer for example), but C<rw> 550need to be accessible (it could be a null pointer for example), but C<rw>
507and C<locality> must be compile-time constants. 551and C<locality> must be compile-time constants.
508 552
553This is a statement, not a function: you cannot use it as part of an
554expression.
555
509An obvious way to use this is to prefetch some data far away, in a big 556An obvious way to use this is to prefetch some data far away, in a big
510array you loop over. This prefetches memory some 128 array elements later, 557array you loop over. This prefetches memory some 128 array elements later,
511in the hope that it will be ready when the CPU arrives at that location. 558in the hope that it will be ready when the CPU arrives at that location.
512 559
513 int sum = 0; 560 int sum = 0;
550 597
551=item int ecb_ctz32 (uint32_t x) 598=item int ecb_ctz32 (uint32_t x)
552 599
553=item int ecb_ctz64 (uint64_t x) 600=item int ecb_ctz64 (uint64_t x)
554 601
602=item int ecb_ctz (T x) [C++]
603
555Returns the index of the least significant bit set in C<x> (or 604Returns the index of the least significant bit set in C<x> (or
556equivalently the number of bits set to 0 before the least significant bit 605equivalently the number of bits set to 0 before the least significant bit
557set), starting from 0. If C<x> is 0 the result is undefined. 606set), starting from 0. If C<x> is 0 the result is undefined.
558 607
559For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>. 608For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>.
560 609
610The overloaded C++ C<ecb_ctz> function supports C<uint8_t>, C<uint16_t>,
611C<uint32_t> and C<uint64_t> types.
612
561For example: 613For example:
562 614
563 ecb_ctz32 (3) = 0 615 ecb_ctz32 (3) = 0
564 ecb_ctz32 (6) = 1 616 ecb_ctz32 (6) = 1
565 617
566=item bool ecb_is_pot32 (uint32_t x) 618=item bool ecb_is_pot32 (uint32_t x)
567 619
568=item bool ecb_is_pot64 (uint32_t x) 620=item bool ecb_is_pot64 (uint32_t x)
569 621
622=item bool ecb_is_pot (T x) [C++]
623
570Return true iff C<x> is a power of two or C<x == 0>. 624Returns true iff C<x> is a power of two or C<x == 0>.
571 625
572For smaller types then C<uint32_t> you can safely use C<ecb_is_pot32>. 626For smaller types than C<uint32_t> you can safely use C<ecb_is_pot32>.
627
628The overloaded C++ C<ecb_is_pot> function supports C<uint8_t>, C<uint16_t>,
629C<uint32_t> and C<uint64_t> types.
573 630
574=item int ecb_ld32 (uint32_t x) 631=item int ecb_ld32 (uint32_t x)
575 632
576=item int ecb_ld64 (uint64_t x) 633=item int ecb_ld64 (uint64_t x)
634
635=item int ecb_ld64 (T x) [C++]
577 636
578Returns the index of the most significant bit set in C<x>, or the number 637Returns the index of the most significant bit set in C<x>, or the number
579of digits the number requires in binary (so that C<< 2**ld <= x < 638of digits the number requires in binary (so that C<< 2**ld <= x <
5802**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is 6392**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is
581to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for 640to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for
586the given data type), while C<ecb_ld> returns how many bits the number 645the given data type), while C<ecb_ld> returns how many bits the number
587itself requires. 646itself requires.
588 647
589For smaller types than C<uint32_t> you can safely use C<ecb_ld32>. 648For smaller types than C<uint32_t> you can safely use C<ecb_ld32>.
590 649
650The overloaded C++ C<ecb_ld> function supports C<uint8_t>, C<uint16_t>,
651C<uint32_t> and C<uint64_t> types.
652
591=item int ecb_popcount32 (uint32_t x) 653=item int ecb_popcount32 (uint32_t x)
592 654
593=item int ecb_popcount64 (uint64_t x) 655=item int ecb_popcount64 (uint64_t x)
594 656
657=item int ecb_popcount (T x) [C++]
658
595Returns the number of bits set to 1 in C<x>. 659Returns the number of bits set to 1 in C<x>.
596 660
597For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>. 661For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>.
662
663The overloaded C++ C<ecb_popcount> function supports C<uint8_t>, C<uint16_t>,
664C<uint32_t> and C<uint64_t> types.
598 665
599For example: 666For example:
600 667
601 ecb_popcount32 (7) = 3 668 ecb_popcount32 (7) = 3
602 ecb_popcount32 (255) = 8 669 ecb_popcount32 (255) = 8
605 672
606=item uint16_t ecb_bitrev16 (uint16_t x) 673=item uint16_t ecb_bitrev16 (uint16_t x)
607 674
608=item uint32_t ecb_bitrev32 (uint32_t x) 675=item uint32_t ecb_bitrev32 (uint32_t x)
609 676
677=item T ecb_bitrev (T x) [C++]
678
610Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1 679Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1
611and so on. 680and so on.
612 681
682The overloaded C++ C<ecb_bitrev> function supports C<uint8_t>, C<uint16_t> and C<uint32_t> types.
683
613Example: 684Example:
614 685
615 ecb_bitrev8 (0xa7) = 0xea 686 ecb_bitrev8 (0xa7) = 0xea
616 ecb_bitrev32 (0xffcc4411) = 0x882233ff 687 ecb_bitrev32 (0xffcc4411) = 0x882233ff
617 688
689=item T ecb_bitrev (T x) [C++]
690
691Overloaded C++ bitrev function.
692
693C<T> must be one of C<uint8_t>, C<uint16_t> or C<uint32_t>.
694
618=item uint32_t ecb_bswap16 (uint32_t x) 695=item uint32_t ecb_bswap16 (uint32_t x)
619 696
620=item uint32_t ecb_bswap32 (uint32_t x) 697=item uint32_t ecb_bswap32 (uint32_t x)
621 698
622=item uint64_t ecb_bswap64 (uint64_t x) 699=item uint64_t ecb_bswap64 (uint64_t x)
700
701=item T ecb_bswap (T x)
623 702
624These functions return the value of the 16-bit (32-bit, 64-bit) value 703These functions return the value of the 16-bit (32-bit, 64-bit) value
625C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in 704C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in
626C<ecb_bswap32>). 705C<ecb_bswap32>).
627 706
707The overloaded C++ C<ecb_bswap> function supports C<uint8_t>, C<uint16_t>,
708C<uint32_t> and C<uint64_t> types.
709
628=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count) 710=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count)
629 711
630=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count) 712=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count)
631 713
632=item uint32_t ecb_rotl32 (uint32_t x, unsigned int count) 714=item uint32_t ecb_rotl32 (uint32_t x, unsigned int count)
647 729
648Current GCC versions understand these functions and usually compile them 730Current GCC versions understand these functions and usually compile them
649to "optimal" code (e.g. a single C<rol> or a combination of C<shld> on 731to "optimal" code (e.g. a single C<rol> or a combination of C<shld> on
650x86). 732x86).
651 733
734=item T ecb_rotl (T x, unsigned int count) [C++]
735
736=item T ecb_rotr (T x, unsigned int count) [C++]
737
738Overloaded C++ rotl/rotr functions.
739
740C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
741
652=back 742=back
653 743
744=head2 HOST ENDIANNESS CONVERSION
745
746=over 4
747
748=item uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v)
749
750=item uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v)
751
752=item uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v)
753
754=item uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v)
755
756=item uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v)
757
758=item uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v)
759
760Convert an unsigned 16, 32 or 64 bit value from big or little endian to host byte order.
761
762The naming convention is C<ecb_>(C<be>|C<le>)C<_u>C<16|32|64>C<_to_host>,
763where C<be> and C<le> stand for big endian and little endian, respectively.
764
765=item uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v)
766
767=item uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v)
768
769=item uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v)
770
771=item uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v)
772
773=item uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v)
774
775=item uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v)
776
777Like above, but converts I<from> host byte order to the specified
778endianness.
779
780=back
781
782In C++ the following additional template functions are supported:
783
784=over 4
785
786=item T ecb_be_to_host (T v)
787
788=item T ecb_le_to_host (T v)
789
790=item T ecb_host_to_be (T v)
791
792=item T ecb_host_to_le (T v)
793
794These functions work like their C counterparts, above, but use templates,
795which make them useful in generic code.
796
797C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>
798(so unlike their C counterparts, there is a version for C<uint8_t>, which
799again can be useful in generic code).
800
801=head2 UNALIGNED LOAD/STORE
802
803These function load or store unaligned multi-byte values.
804
805=over 4
806
807=item uint_fast16_t ecb_peek_u16_u (const void *ptr)
808
809=item uint_fast32_t ecb_peek_u32_u (const void *ptr)
810
811=item uint_fast64_t ecb_peek_u64_u (const void *ptr)
812
813These functions load an unaligned, unsigned 16, 32 or 64 bit value from
814memory.
815
816=item uint_fast16_t ecb_peek_be_u16_u (const void *ptr)
817
818=item uint_fast32_t ecb_peek_be_u32_u (const void *ptr)
819
820=item uint_fast64_t ecb_peek_be_u64_u (const void *ptr)
821
822=item uint_fast16_t ecb_peek_le_u16_u (const void *ptr)
823
824=item uint_fast32_t ecb_peek_le_u32_u (const void *ptr)
825
826=item uint_fast64_t ecb_peek_le_u64_u (const void *ptr)
827
828Like above, but additionally convert from big endian (C<be>) or little
829endian (C<le>) byte order to host byte order while doing so.
830
831=item ecb_poke_u16_u (void *ptr, uint16_t v)
832
833=item ecb_poke_u32_u (void *ptr, uint32_t v)
834
835=item ecb_poke_u64_u (void *ptr, uint64_t v)
836
837These functions store an unaligned, unsigned 16, 32 or 64 bit value to
838memory.
839
840=item ecb_poke_be_u16_u (void *ptr, uint_fast16_t v)
841
842=item ecb_poke_be_u32_u (void *ptr, uint_fast32_t v)
843
844=item ecb_poke_be_u64_u (void *ptr, uint_fast64_t v)
845
846=item ecb_poke_le_u16_u (void *ptr, uint_fast16_t v)
847
848=item ecb_poke_le_u32_u (void *ptr, uint_fast32_t v)
849
850=item ecb_poke_le_u64_u (void *ptr, uint_fast64_t v)
851
852Like above, but additionally convert from host byte order to big endian
853(C<be>) or little endian (C<le>) byte order while doing so.
854
855=back
856
857In C++ the following additional template functions are supported:
858
859=over 4
860
861=item T ecb_peek<T> (const void *ptr)
862
863=item T ecb_peek_be<T> (const void *ptr)
864
865=item T ecb_peek_le<T> (const void *ptr)
866
867=item T ecb_peek_u<T> (const void *ptr)
868
869=item T ecb_peek_be_u<T> (const void *ptr)
870
871=item T ecb_peek_le_u<T> (const void *ptr)
872
873Similarly to their C counterparts, these functions load an unsigned 8, 16,
87432 or 64 bit value from memory, with optional conversion from big/little
875endian.
876
877Since the type cannot be deduced, it has to be specified explicitly, e.g.
878
879 uint_fast16_t v = ecb_peek<uint16_t> (ptr);
880
881C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
882
883Unlike their C counterparts, these functions support 8 bit quantities
884(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
885all of which hopefully makes them more useful in generic code.
886
887=item ecb_poke (void *ptr, T v)
888
889=item ecb_poke_be (void *ptr, T v)
890
891=item ecb_poke_le (void *ptr, T v)
892
893=item ecb_poke_u (void *ptr, T v)
894
895=item ecb_poke_be_u (void *ptr, T v)
896
897=item ecb_poke_le_u (void *ptr, T v)
898
899Again, similarly to their C counterparts, these functions store an
900unsigned 8, 16, 32 or z64 bit value to memory, with optional conversion to
901big/little endian.
902
903C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
904
905Unlike their C counterparts, these functions support 8 bit quantities
906(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
907all of which hopefully makes them more useful in generic code.
908
909=back
910
654=head2 FLOATING POINT FIDDLING 911=head2 FLOATING POINT FIDDLING
655 912
656=over 4 913=over 4
657 914
915=item ECB_INFINITY [-UECB_NO_LIBM]
916
917Evaluates to positive infinity if supported by the platform, otherwise to
918a truly huge number.
919
920=item ECB_NAN [-UECB_NO_LIBM]
921
922Evaluates to a quiet NAN if supported by the platform, otherwise to
923C<ECB_INFINITY>.
924
925=item float ecb_ldexpf (float x, int exp) [-UECB_NO_LIBM]
926
927Same as C<ldexpf>, but always available.
928
929=item uint32_t ecb_float_to_binary16 (float x) [-UECB_NO_LIBM]
930
658=item uint32_t ecb_float_to_binary32 (float x) [-UECB_NO_LIBM] 931=item uint32_t ecb_float_to_binary32 (float x) [-UECB_NO_LIBM]
659 932
660=item uint64_t ecb_double_to_binary64 (double x) [-UECB_NO_LIBM] 933=item uint64_t ecb_double_to_binary64 (double x) [-UECB_NO_LIBM]
661 934
662These functions each take an argument in the native C<float> or C<double> 935These functions each take an argument in the native C<float> or C<double>
663type and return the IEEE 754 bit representation of it. 936type and return the IEEE 754 bit representation of it (binary16/half,
937binary32/single or binary64/double precision).
664 938
665The bit representation is just as IEEE 754 defines it, i.e. the sign bit 939The bit representation is just as IEEE 754 defines it, i.e. the sign bit
666will be the most significant bit, followed by exponent and mantissa. 940will be the most significant bit, followed by exponent and mantissa.
667 941
668This function should work even when the native floating point format isn't 942This function should work even when the native floating point format isn't
672 946
673On all modern platforms (where C<ECB_STDFP> is true), the compiler should 947On all modern platforms (where C<ECB_STDFP> is true), the compiler should
674be able to optimise away this function completely. 948be able to optimise away this function completely.
675 949
676These functions can be helpful when serialising floats to the network - you 950These functions can be helpful when serialising floats to the network - you
677can serialise the return value like a normal uint32_t/uint64_t. 951can serialise the return value like a normal uint16_t/uint32_t/uint64_t.
678 952
679Another use for these functions is to manipulate floating point values 953Another use for these functions is to manipulate floating point values
680directly. 954directly.
681 955
682Silly example: toggle the sign bit of a float. 956Silly example: toggle the sign bit of a float.
689 963
690=item float ecb_binary16_to_float (uint16_t x) [-UECB_NO_LIBM] 964=item float ecb_binary16_to_float (uint16_t x) [-UECB_NO_LIBM]
691 965
692=item float ecb_binary32_to_float (uint32_t x) [-UECB_NO_LIBM] 966=item float ecb_binary32_to_float (uint32_t x) [-UECB_NO_LIBM]
693 967
694=item double ecb_binary32_to_double (uint64_t x) [-UECB_NO_LIBM] 968=item double ecb_binary64_to_double (uint64_t x) [-UECB_NO_LIBM]
695 969
696The reverse operation of the previous function - takes the bit 970The reverse operation of the previous function - takes the bit
697representation of an IEEE binary16, binary32 or binary64 number and 971representation of an IEEE binary16, binary32 or binary64 number (half,
698converts it to the native C<float> or C<double> format. 972single or double precision) and converts it to the native C<float> or
973C<double> format.
699 974
700This function should work even when the native floating point format isn't 975This function should work even when the native floating point format isn't
701IEEE compliant, of course at a speed and code size penalty, and of course 976IEEE compliant, of course at a speed and code size penalty, and of course
702also within reasonable limits (it tries to convert normals and denormals, 977also within reasonable limits (it tries to convert normals and denormals,
703and might be lucky for infinities, and with extraordinary luck, also for 978and might be lucky for infinities, and with extraordinary luck, also for
704negative zero). 979negative zero).
705 980
706On all modern platforms (where C<ECB_STDFP> is true), the compiler should 981On all modern platforms (where C<ECB_STDFP> is true), the compiler should
707be able to optimise away this function completely. 982be able to optimise away this function completely.
983
984=item uint16_t ecb_binary32_to_binary16 (uint32_t x)
985
986=item uint32_t ecb_binary16_to_binary32 (uint16_t x)
987
988Convert a IEEE binary32/single precision to binary16/half format, and vice
989versa, handling all details (round-to-nearest-even, subnormals, infinity
990and NaNs) correctly.
991
992These are functions are available under C<-DECB_NO_LIBM>, since
993they do not rely on the platform floating point format. The
994C<ecb_float_to_binary16> and C<ecb_binary16_to_float> functions are
995usually what you want.
708 996
709=back 997=back
710 998
711=head2 ARITHMETIC 999=head2 ARITHMETIC
712 1000
793dependencies on the math library (usually called F<-lm>) - these are 1081dependencies on the math library (usually called F<-lm>) - these are
794marked with [-UECB_NO_LIBM]. 1082marked with [-UECB_NO_LIBM].
795 1083
796=back 1084=back
797 1085
1086=head1 UNDOCUMENTED FUNCTIONALITY
798 1087
1088F<ecb.h> is full of undocumented functionality as well, some of which is
1089intended to be internal-use only, some of which we forgot to document, and
1090some of which we hide because we are not sure we will keep the interface
1091stable.
1092
1093While you are welcome to rummage around and use whatever you find useful
1094(we can't stop you), keep in mind that we will change undocumented
1095functionality in incompatible ways without thinking twice, while we are
1096considerably more conservative with documented things.
1097
1098=head1 AUTHORS
1099
1100C<libecb> is designed and maintained by:
1101
1102 Emanuele Giaquinta <e.giaquinta@glauco.it>
1103 Marc Alexander Lehmann <schmorp@schmorp.de>
1104
1105

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines