ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/cvsroot/libecb/ecb.pod
(Generate patch)

Comparing cvsroot/libecb/ecb.pod (file contents):
Revision 1.76 by root, Mon Jan 20 13:13:56 2020 UTC vs.
Revision 1.94 by root, Sat Jul 31 16:13:30 2021 UTC

10 10
11Its homepage can be found here: 11Its homepage can be found here:
12 12
13 http://software.schmorp.de/pkg/libecb 13 http://software.schmorp.de/pkg/libecb
14 14
15It mainly provides a number of wrappers around GCC built-ins, together 15It mainly provides a number of wrappers around many compiler built-ins,
16with replacement functions for other compilers. In addition to this, 16together with replacement functions for other compilers. In addition
17it provides a number of other lowlevel C utilities, such as endianness 17to this, it provides a number of other lowlevel C utilities, such as
18detection, byte swapping or bit rotations. 18endianness detection, byte swapping or bit rotations.
19 19
20Or in other words, things that should be built into any standard C system, 20Or in other words, things that should be built into any standard C
21but aren't, implemented as efficient as possible with GCC, and still 21system, but aren't, implemented as efficient as possible with GCC (clang,
22correct with other compilers. 22msvc...), and still correct with other compilers.
23 23
24More might come. 24More might come.
25 25
26=head2 ABOUT THE HEADER 26=head2 ABOUT THE HEADER
27 27
80 80
81All the following symbols expand to an expression that can be tested in 81All the following symbols expand to an expression that can be tested in
82preprocessor instructions as well as treated as a boolean (use C<!!> to 82preprocessor instructions as well as treated as a boolean (use C<!!> to
83ensure it's either C<0> or C<1> if you need that). 83ensure it's either C<0> or C<1> if you need that).
84 84
85=over 4 85=over
86 86
87=item ECB_C 87=item ECB_C
88 88
89True if the implementation defines the C<__STDC__> macro to a true value, 89True if the implementation defines the C<__STDC__> macro to a true value,
90while not claiming to be C++. 90while not claiming to be C++, i..e C, but not C++.
91 91
92=item ECB_C99 92=item ECB_C99
93 93
94True if the implementation claims to be compliant to C99 (ISO/IEC 94True if the implementation claims to be compliant to C99 (ISO/IEC
959899:1999) or any later version, while not claiming to be C++. 959899:1999) or any later version, while not claiming to be C++.
110=item ECB_CPP11, ECB_CPP14, ECB_CPP17 110=item ECB_CPP11, ECB_CPP14, ECB_CPP17
111 111
112True if the implementation claims to be compliant to C++11/C++14/C++17 112True if the implementation claims to be compliant to C++11/C++14/C++17
113(ISO/IEC 14882:2011, :2014, :2017) or any later version. 113(ISO/IEC 14882:2011, :2014, :2017) or any later version.
114 114
115Note that many C++20 features will likely have their own feature test
116macros (see e.g. L<http://eel.is/c++draft/cpp.predefined#1.8>).
117
118=item ECB_OPTIMIZE_SIZE
119
120Is C<1> when the compiler optimizes for size, C<0> otherwise. This symbol
121can also be defined before including F<ecb.h>, in which case it will be
122unchanged.
123
115=item ECB_GCC_VERSION (major, minor) 124=item ECB_GCC_VERSION (major, minor)
116 125
117Expands to a true value (suitable for testing in by the preprocessor) 126Expands to a true value (suitable for testing by the preprocessor) if the
118if the compiler used is GNU C and the version is the given version, or 127compiler used is GNU C and the version is the given version, or higher.
119higher.
120 128
121This macro tries to return false on compilers that claim to be GCC 129This macro tries to return false on compilers that claim to be GCC
122compatible but aren't. 130compatible but aren't.
123 131
124=item ECB_EXTERN_C 132=item ECB_EXTERN_C
143 151
144 ECB_EXTERN_C_END 152 ECB_EXTERN_C_END
145 153
146=item ECB_STDFP 154=item ECB_STDFP
147 155
148If this evaluates to a true value (suitable for testing in by the 156If this evaluates to a true value (suitable for testing by the
149preprocessor), then C<float> and C<double> use IEEE 754 single/binary32 157preprocessor), then C<float> and C<double> use IEEE 754 single/binary32
150and double/binary64 representations internally I<and> the endianness of 158and double/binary64 representations internally I<and> the endianness of
151both types match the endianness of C<uint32_t> and C<uint64_t>. 159both types match the endianness of C<uint32_t> and C<uint64_t>.
152 160
153This means you can just copy the bits of a C<float> (or C<double>) to an 161This means you can just copy the bits of a C<float> (or C<double>) to an
155without having to think about format or endianness. 163without having to think about format or endianness.
156 164
157This is true for basically all modern platforms, although F<ecb.h> might 165This is true for basically all modern platforms, although F<ecb.h> might
158not be able to deduce this correctly everywhere and might err on the safe 166not be able to deduce this correctly everywhere and might err on the safe
159side. 167side.
168
169=item ECB_64BIT_NATIVE
170
171Evaluates to a true value (suitable for both preprocessor and C code
172testing) if 64 bit integer types on this architecture are evaluated
173"natively", that is, with similar speeds as 32 bit integers. While 64 bit
174integer support is very common (and in fact required by libecb), 32 bit
175cpus have to emulate operations on them, so you might want to avoid them.
160 176
161=item ECB_AMD64, ECB_AMD64_X32 177=item ECB_AMD64, ECB_AMD64_X32
162 178
163These two macros are defined to C<1> on the x86_64/amd64 ABI and the X32 179These two macros are defined to C<1> on the x86_64/amd64 ABI and the X32
164ABI, respectively, and undefined elsewhere. 180ABI, respectively, and undefined elsewhere.
171 187
172=back 188=back
173 189
174=head2 MACRO TRICKERY 190=head2 MACRO TRICKERY
175 191
176=over 4 192=over
177 193
178=item ECB_CONCAT (a, b) 194=item ECB_CONCAT (a, b)
179 195
180Expands any macros in C<a> and C<b>, then concatenates the result to form 196Expands any macros in C<a> and C<b>, then concatenates the result to form
181a single token. This is mainly useful to form identifiers from components, 197a single token. This is mainly useful to form identifiers from components,
222declarations must be put before the whole declaration: 238declarations must be put before the whole declaration:
223 239
224 ecb_const int mysqrt (int a); 240 ecb_const int mysqrt (int a);
225 ecb_unused int i; 241 ecb_unused int i;
226 242
227=over 4 243=over
228 244
229=item ecb_unused 245=item ecb_unused
230 246
231Marks a function or a variable as "unused", which simply suppresses a 247Marks a function or a variable as "unused", which simply suppresses a
232warning by GCC when it detects it as unused. This is useful when you e.g. 248warning by the compiler when it detects it as unused. This is useful when
233declare a variable but do not always use it: 249you e.g. declare a variable but do not always use it:
234 250
235 { 251 {
236 ecb_unused int var; 252 ecb_unused int var;
237 253
238 #ifdef SOMECONDITION 254 #ifdef SOMECONDITION
406 422
407=back 423=back
408 424
409=head2 OPTIMISATION HINTS 425=head2 OPTIMISATION HINTS
410 426
411=over 4 427=over
412
413=item ECB_OPTIMIZE_SIZE
414
415Is C<1> when the compiler optimizes for size, C<0> otherwise. This symbol
416can also be defined before including F<ecb.h>, in which case it will be
417unchanged.
418 428
419=item bool ecb_is_constant (expr) 429=item bool ecb_is_constant (expr)
420 430
421Returns true iff the expression can be deduced to be a compile-time 431Returns true iff the expression can be deduced to be a compile-time
422constant, and false otherwise. 432constant, and false otherwise.
579 589
580=back 590=back
581 591
582=head2 BIT FIDDLING / BIT WIZARDRY 592=head2 BIT FIDDLING / BIT WIZARDRY
583 593
584=over 4 594=over
585 595
586=item bool ecb_big_endian () 596=item bool ecb_big_endian ()
587 597
588=item bool ecb_little_endian () 598=item bool ecb_little_endian ()
589 599
595 605
596=item int ecb_ctz32 (uint32_t x) 606=item int ecb_ctz32 (uint32_t x)
597 607
598=item int ecb_ctz64 (uint64_t x) 608=item int ecb_ctz64 (uint64_t x)
599 609
610=item int ecb_ctz (T x) [C++]
611
600Returns the index of the least significant bit set in C<x> (or 612Returns the index of the least significant bit set in C<x> (or
601equivalently the number of bits set to 0 before the least significant bit 613equivalently the number of bits set to 0 before the least significant bit
602set), starting from 0. If C<x> is 0 the result is undefined. 614set), starting from 0. If C<x> is 0 the result is undefined.
603 615
604For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>. 616For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>.
605 617
618The overloaded C++ C<ecb_ctz> function supports C<uint8_t>, C<uint16_t>,
619C<uint32_t> and C<uint64_t> types.
620
606For example: 621For example:
607 622
608 ecb_ctz32 (3) = 0 623 ecb_ctz32 (3) = 0
609 ecb_ctz32 (6) = 1 624 ecb_ctz32 (6) = 1
610 625
611=item bool ecb_is_pot32 (uint32_t x) 626=item bool ecb_is_pot32 (uint32_t x)
612 627
613=item bool ecb_is_pot64 (uint32_t x) 628=item bool ecb_is_pot64 (uint32_t x)
614 629
630=item bool ecb_is_pot (T x) [C++]
631
615Returns true iff C<x> is a power of two or C<x == 0>. 632Returns true iff C<x> is a power of two or C<x == 0>.
616 633
617For smaller types than C<uint32_t> you can safely use C<ecb_is_pot32>. 634For smaller types than C<uint32_t> you can safely use C<ecb_is_pot32>.
618 635
636The overloaded C++ C<ecb_is_pot> function supports C<uint8_t>, C<uint16_t>,
637C<uint32_t> and C<uint64_t> types.
638
619=item int ecb_ld32 (uint32_t x) 639=item int ecb_ld32 (uint32_t x)
620 640
621=item int ecb_ld64 (uint64_t x) 641=item int ecb_ld64 (uint64_t x)
642
643=item int ecb_ld64 (T x) [C++]
622 644
623Returns the index of the most significant bit set in C<x>, or the number 645Returns the index of the most significant bit set in C<x>, or the number
624of digits the number requires in binary (so that C<< 2**ld <= x < 646of digits the number requires in binary (so that C<< 2**ld <= x <
6252**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is 6472**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is
626to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for 648to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for
631the given data type), while C<ecb_ld> returns how many bits the number 653the given data type), while C<ecb_ld> returns how many bits the number
632itself requires. 654itself requires.
633 655
634For smaller types than C<uint32_t> you can safely use C<ecb_ld32>. 656For smaller types than C<uint32_t> you can safely use C<ecb_ld32>.
635 657
658The overloaded C++ C<ecb_ld> function supports C<uint8_t>, C<uint16_t>,
659C<uint32_t> and C<uint64_t> types.
660
636=item int ecb_popcount32 (uint32_t x) 661=item int ecb_popcount32 (uint32_t x)
637 662
638=item int ecb_popcount64 (uint64_t x) 663=item int ecb_popcount64 (uint64_t x)
639 664
665=item int ecb_popcount (T x) [C++]
666
640Returns the number of bits set to 1 in C<x>. 667Returns the number of bits set to 1 in C<x>.
641 668
642For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>. 669For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>.
670
671The overloaded C++ C<ecb_popcount> function supports C<uint8_t>, C<uint16_t>,
672C<uint32_t> and C<uint64_t> types.
643 673
644For example: 674For example:
645 675
646 ecb_popcount32 (7) = 3 676 ecb_popcount32 (7) = 3
647 ecb_popcount32 (255) = 8 677 ecb_popcount32 (255) = 8
650 680
651=item uint16_t ecb_bitrev16 (uint16_t x) 681=item uint16_t ecb_bitrev16 (uint16_t x)
652 682
653=item uint32_t ecb_bitrev32 (uint32_t x) 683=item uint32_t ecb_bitrev32 (uint32_t x)
654 684
685=item T ecb_bitrev (T x) [C++]
686
655Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1 687Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1
656and so on. 688and so on.
657 689
690The overloaded C++ C<ecb_bitrev> function supports C<uint8_t>, C<uint16_t> and C<uint32_t> types.
691
658Example: 692Example:
659 693
660 ecb_bitrev8 (0xa7) = 0xea 694 ecb_bitrev8 (0xa7) = 0xea
661 ecb_bitrev32 (0xffcc4411) = 0x882233ff 695 ecb_bitrev32 (0xffcc4411) = 0x882233ff
662 696
697=item T ecb_bitrev (T x) [C++]
698
699Overloaded C++ bitrev function.
700
701C<T> must be one of C<uint8_t>, C<uint16_t> or C<uint32_t>.
702
663=item uint32_t ecb_bswap16 (uint32_t x) 703=item uint32_t ecb_bswap16 (uint32_t x)
664 704
665=item uint32_t ecb_bswap32 (uint32_t x) 705=item uint32_t ecb_bswap32 (uint32_t x)
666 706
667=item uint64_t ecb_bswap64 (uint64_t x) 707=item uint64_t ecb_bswap64 (uint64_t x)
708
709=item T ecb_bswap (T x)
668 710
669These functions return the value of the 16-bit (32-bit, 64-bit) value 711These functions return the value of the 16-bit (32-bit, 64-bit) value
670C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in 712C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in
671C<ecb_bswap32>). 713C<ecb_bswap32>).
672 714
673=item T ecb_bswap (T x) [C++] 715The overloaded C++ C<ecb_bswap> function supports C<uint8_t>, C<uint16_t>,
674 716C<uint32_t> and C<uint64_t> types.
675For C++, an additional generic bswap function is provided. It supports
676C<uint8_t>, C<uint16_t>, C<uint32_t> and C<uint64_t>.
677 717
678=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count) 718=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count)
679 719
680=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count) 720=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count)
681 721
691 731
692=item uint64_t ecb_rotr64 (uint64_t x, unsigned int count) 732=item uint64_t ecb_rotr64 (uint64_t x, unsigned int count)
693 733
694These two families of functions return the value of C<x> after rotating 734These two families of functions return the value of C<x> after rotating
695all the bits by C<count> positions to the right (C<ecb_rotr>) or left 735all the bits by C<count> positions to the right (C<ecb_rotr>) or left
696(C<ecb_rotl>). 736(C<ecb_rotl>). There are no restrictions on the value C<count>, i.e. both
737zero and values equal or larger than the word width work correctly.
697 738
698Current GCC versions understand these functions and usually compile them 739Current GCC/clang versions understand these functions and usually compile
699to "optimal" code (e.g. a single C<rol> or a combination of C<shld> on 740them to "optimal" code (e.g. a single C<rol> or a combination of C<shld>
700x86). 741on x86).
742
743=item T ecb_rotl (T x, unsigned int count) [C++]
744
745=item T ecb_rotr (T x, unsigned int count) [C++]
746
747Overloaded C++ rotl/rotr functions.
748
749C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
701 750
702=back 751=back
703 752
704=head2 HOST ENDIANNESS CONVERSION 753=head2 HOST ENDIANNESS CONVERSION
705 754
706=over 4 755=over
707 756
708=item uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) 757=item uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v)
709 758
710=item uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) 759=item uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v)
711 760
718=item uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) 767=item uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v)
719 768
720Convert an unsigned 16, 32 or 64 bit value from big or little endian to host byte order. 769Convert an unsigned 16, 32 or 64 bit value from big or little endian to host byte order.
721 770
722The naming convention is C<ecb_>(C<be>|C<le>)C<_u>C<16|32|64>C<_to_host>, 771The naming convention is C<ecb_>(C<be>|C<le>)C<_u>C<16|32|64>C<_to_host>,
723where be and le stand for big endian and little endian, respectively. 772where C<be> and C<le> stand for big endian and little endian, respectively.
724 773
725=item uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) 774=item uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v)
726 775
727=item uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) 776=item uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v)
728 777
737Like above, but converts I<from> host byte order to the specified 786Like above, but converts I<from> host byte order to the specified
738endianness. 787endianness.
739 788
740=back 789=back
741 790
742In C++ the following additional functions are supported: 791In C++ the following additional template functions are supported:
743 792
744=over 4 793=over
745 794
746=item T ecb_be_to_host (T v) 795=item T ecb_be_to_host (T v)
747 796
748=item T ecb_le_to_host (T v) 797=item T ecb_le_to_host (T v)
749 798
750=item T ecb_host_to_be (T v) 799=item T ecb_host_to_be (T v)
751 800
752=item T ecb_host_to_le (T v) 801=item T ecb_host_to_le (T v)
753 802
803=back
804
754These work like their C counterparts, above, but use templates for the 805These functions work like their C counterparts, above, but use templates,
755type, which make them useful in generic code. 806which make them useful in generic code.
756 807
757C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t> 808C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>
758(so unlike their C counterparts, there is a version for C<uint8_t>, which 809(so unlike their C counterparts, there is a version for C<uint8_t>, which
759again can be useful in generic code). 810again can be useful in generic code).
760 811
761=head2 UNALIGNED LOAD/STORE 812=head2 UNALIGNED LOAD/STORE
762 813
763These function load or store unaligned multi-byte values. 814These function load or store unaligned multi-byte values.
764 815
765=over 4 816=over
766 817
767=item uint_fast16_t ecb_peek_u16_u (const void *ptr) 818=item uint_fast16_t ecb_peek_u16_u (const void *ptr)
768 819
769=item uint_fast32_t ecb_peek_u32_u (const void *ptr) 820=item uint_fast32_t ecb_peek_u32_u (const void *ptr)
770 821
812Like above, but additionally convert from host byte order to big endian 863Like above, but additionally convert from host byte order to big endian
813(C<be>) or little endian (C<le>) byte order while doing so. 864(C<be>) or little endian (C<le>) byte order while doing so.
814 865
815=back 866=back
816 867
817In C++ the following additional functions are supported: 868In C++ the following additional template functions are supported:
818 869
819=over 4 870=over
820 871
821=item T ecb_peek (const void *ptr) 872=item T ecb_peek<T> (const void *ptr)
822 873
823=item T ecb_peek_be (const void *ptr) 874=item T ecb_peek_be<T> (const void *ptr)
824 875
825=item T ecb_peek_le (const void *ptr) 876=item T ecb_peek_le<T> (const void *ptr)
826 877
827=item T ecb_peek_u (const void *ptr) 878=item T ecb_peek_u<T> (const void *ptr)
828 879
829=item T ecb_peek_be_u (const void *ptr) 880=item T ecb_peek_be_u<T> (const void *ptr)
830 881
831=item T ecb_peek_le_u (const void *ptr) 882=item T ecb_peek_le_u<T> (const void *ptr)
832 883
833Similarly to their C counterparts, these functions load an unsigned 8, 16, 884Similarly to their C counterparts, these functions load an unsigned 8, 16,
83432 or 64 bit value from memory, with optional conversion from big/little 88532 or 64 bit value from memory, with optional conversion from big/little
835endian. 886endian.
836 887
837Since the type cannot be deduced, it has top be specified explicitly, e.g. 888Since the type cannot be deduced, it has to be specified explicitly, e.g.
838 889
839 uint_fast16_t v = ecb_peek<uint16_t> (ptr); 890 uint_fast16_t v = ecb_peek<uint16_t> (ptr);
840 891
841C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>. 892C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
842 893
866(C<uint8_t>) and also have an aligned version (without the C<_u> prefix), 917(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
867all of which hopefully makes them more useful in generic code. 918all of which hopefully makes them more useful in generic code.
868 919
869=back 920=back
870 921
922=head2 FAST INTEGER TO STRING
923
924Libecb defines a set of very fast integer to decimal string (or integer
925to ascii, short C<i2a>) functions. These work by converting the integer
926to a fixed point representation and then successively multiplying out
927the topmost digits. Unlike some other, also very fast, libraries, ecb's
928algorithm should be completely branchless per digit, and does not rely on
929the presence of special cpu functions (such as clz).
930
931There is a high level API that takes an C<int32_t>, C<uint32_t>,
932C<int64_t> or C<uint64_t> as argument, and a low-level API, which is
933harder to use but supports slightly more formatting options.
934
935=head3 HIGH LEVEL API
936
937The high level API consists of four functions, one each for C<int32_t>,
938C<uint32_t>, C<int64_t> and C<uint64_t>:
939
940Example:
941
942 char buf[ECB_I2A_MAX_DIGITS + 1];
943 char *end = ecb_i2a_i32 (buf, 17262);
944 *end = 0;
945 // buf now contains "17262"
946
947=over
948
949=item ECB_I2A_I32_DIGITS (=11)
950
951=item char *ecb_i2a_u32 (char *ptr, uint32_t value)
952
953Takes an C<uint32_t> I<value> and formats it as a decimal number starting
954at I<ptr>, using at most C<ECB_I2A_I32_DIGITS> characters. Returns a
955pointer to just after the generated string, where you would normally put
956the terminating C<0> character. This function outputs the minimum number
957of digits.
958
959=item ECB_I2A_U32_DIGITS (=10)
960
961=item char *ecb_i2a_i32 (char *ptr, int32_t value)
962
963Same as C<ecb_i2a_u32>, but formats a C<int32_t> value, including a minus
964sign if needed.
965
966=item ECB_I2A_I64_DIGITS (=20)
967
968=item char *ecb_i2a_u64 (char *ptr, uint64_t value)
969
970=item ECB_I2A_U64_DIGITS (=21)
971
972=item char *ecb_i2a_i64 (char *ptr, int64_t value)
973
974Similar to their 32 bit counterparts, these take a 64 bit argument.
975
976=item ECB_I2A_MAX_DIGITS (=21)
977
978Instead of using a type specific length macro, youi can just use
979C<ECB_I2A_MAX_DIGITS>, which is good enough for any C<ecb_i2a> function.
980
981=back
982
983=head3 LOW-LEVEL API
984
985The functions above use a number of low-level APIs which have some strict
986limitations, but can be used as building blocks (study of C<ecb_i2a_i32>
987and related functions is recommended).
988
989There are three families of functions: functions that convert a number
990to a fixed number of digits with leading zeroes (C<ecb_i2a_0N>, C<0>
991for "leading zeroes"), functions that generate up to N digits, skipping
992leading zeroes (C<_N>), and functions that can generate more digits, but
993the leading digit has limited range (C<_xN>).
994
995None of the functions deal with negative numbers.
996
997Example: convert an IP address in an u32 into dotted-quad:
998
999 uint32_t ip = 0x0a000164; // 10.0.1.100
1000 char ips[3 * 4 + 3 + 1];
1001 char *ptr = ips;
1002 ptr = ecb_i2a_3 (ptr, ip >> 24 ); *ptr++ = '.';
1003 ptr = ecb_i2a_3 (ptr, (ip >> 16) & 0xff); *ptr++ = '.';
1004 ptr = ecb_i2a_3 (ptr, (ip >> 8) & 0xff); *ptr++ = '.';
1005 ptr = ecb_i2a_3 (ptr, ip & 0xff); *ptr++ = 0;
1006 printf ("ip: %s\n", ips); // prints "ip: 10.0.1.100"
1007
1008=over
1009
1010=item char *ecb_i2a_02 (char *ptr, uint32_t value) // 32 bit
1011
1012=item char *ecb_i2a_03 (char *ptr, uint32_t value) // 32 bit
1013
1014=item char *ecb_i2a_04 (char *ptr, uint32_t value) // 32 bit
1015
1016=item char *ecb_i2a_05 (char *ptr, uint32_t value) // 64 bit
1017
1018=item char *ecb_i2a_06 (char *ptr, uint32_t value) // 64 bit
1019
1020=item char *ecb_i2a_07 (char *ptr, uint32_t value) // 64 bit
1021
1022=item char *ecb_i2a_08 (char *ptr, uint32_t value) // 64 bit
1023
1024=item char *ecb_i2a_09 (char *ptr, uint32_t value) // 64 bit
1025
1026The C<< ecb_i2a_0I<N> > functions take an unsigned I<value> and convert
1027them to exactly I<N> digits, returning a pointer to the first character
1028after the digits. The I<value> must be in range. The functions marked with
1029I<32 bit> do their calculations internally in 32 bit, the ones marked with
1030I<64 bit> internally use 64 bit integers, which might be slow on 32 bit
1031architectures (the high level API decides on 32 vs. 64 bit versions using
1032C<ECB_64BIT_NATIVE>).
1033
1034=item char *ecb_i2a_2 (char *ptr, uint32_t value) // 32 bit
1035
1036=item char *ecb_i2a_3 (char *ptr, uint32_t value) // 32 bit
1037
1038=item char *ecb_i2a_4 (char *ptr, uint32_t value) // 32 bit
1039
1040=item char *ecb_i2a_5 (char *ptr, uint32_t value) // 64 bit
1041
1042=item char *ecb_i2a_6 (char *ptr, uint32_t value) // 64 bit
1043
1044=item char *ecb_i2a_7 (char *ptr, uint32_t value) // 64 bit
1045
1046=item char *ecb_i2a_8 (char *ptr, uint32_t value) // 64 bit
1047
1048=item char *ecb_i2a_9 (char *ptr, uint32_t value) // 64 bit
1049
1050Similarly, the C<< ecb_i2a_I<N> > functions take an unsigned I<value>
1051and convert them to at most I<N> digits, suppressing leading zeroes, and
1052returning a pointer to the first character after the digits.
1053
1054=item ECB_I2A_MAX_X5 (=59074)
1055
1056=item char *ecb_i2a_x5 (char *ptr, uint32_t value) // 32 bit
1057
1058=item ECB_I2A_MAX_X10 (=2932500665)
1059
1060=item char *ecb_i2a_x10 (char *ptr, uint32_t value) // 64 bit
1061
1062The C<< ecb_i2a_xI<N> >> functions are similar to the C<< ecb_i2a_I<N> >
1063functions, but they can generate one digit more, as long as the number
1064is within range, which is given by the symbols C<ECB_I2A_MAX_X5> (almost
106516 bit range) and C<ECB_I2A_MAX_X10> (a bit more than 31 bit range),
1066respectively.
1067
1068For example, the digit part of a 32 bit signed integer just fits into the
1069C<ECB_I2A_MAX_X10> range, so while C<ecb_i2a_x10> cannot convert a 10
1070digit number, it can convert all 32 bit signed numbers. Sadly, it's not
1071good enough for 32 bit unsigned numbers.
1072
1073=back
1074
871=head2 FLOATING POINT FIDDLING 1075=head2 FLOATING POINT FIDDLING
872 1076
873=over 4 1077=over
874 1078
875=item ECB_INFINITY [-UECB_NO_LIBM] 1079=item ECB_INFINITY [-UECB_NO_LIBM]
876 1080
877Evaluates to positive infinity if supported by the platform, otherwise to 1081Evaluates to positive infinity if supported by the platform, otherwise to
878a truly huge number. 1082a truly huge number.
956 1160
957=back 1161=back
958 1162
959=head2 ARITHMETIC 1163=head2 ARITHMETIC
960 1164
961=over 4 1165=over
962 1166
963=item x = ecb_mod (m, n) 1167=item x = ecb_mod (m, n)
964 1168
965Returns C<m> modulo C<n>, which is the same as the positive remainder 1169Returns C<m> modulo C<n>, which is the same as the positive remainder
966of the division operation between C<m> and C<n>, using floored 1170of the division operation between C<m> and C<n>, using floored
973C<n> must be strictly positive (i.e. C<< >= 1 >>), while C<m> must be 1177C<n> must be strictly positive (i.e. C<< >= 1 >>), while C<m> must be
974negatable, that is, both C<m> and C<-m> must be representable in its 1178negatable, that is, both C<m> and C<-m> must be representable in its
975type (this typically excludes the minimum signed integer value, the same 1179type (this typically excludes the minimum signed integer value, the same
976limitation as for C</> and C<%> in C). 1180limitation as for C</> and C<%> in C).
977 1181
978Current GCC versions compile this into an efficient branchless sequence on 1182Current GCC/clang versions compile this into an efficient branchless
979almost all CPUs. 1183sequence on almost all CPUs.
980 1184
981For example, when you want to rotate forward through the members of an 1185For example, when you want to rotate forward through the members of an
982array for increasing C<m> (which might be negative), then you should use 1186array for increasing C<m> (which might be negative), then you should use
983C<ecb_mod>, as the C<%> operator might give either negative results, or 1187C<ecb_mod>, as the C<%> operator might give either negative results, or
984change direction for negative values: 1188change direction for negative values:
997 1201
998=back 1202=back
999 1203
1000=head2 UTILITY 1204=head2 UTILITY
1001 1205
1002=over 4 1206=over
1003 1207
1004=item element_count = ecb_array_length (name) 1208=item element_count = ecb_array_length (name)
1005 1209
1006Returns the number of elements in the array C<name>. For example: 1210Returns the number of elements in the array C<name>. For example:
1007 1211
1015 1219
1016=head2 SYMBOLS GOVERNING COMPILATION OF ECB.H ITSELF 1220=head2 SYMBOLS GOVERNING COMPILATION OF ECB.H ITSELF
1017 1221
1018These symbols need to be defined before including F<ecb.h> the first time. 1222These symbols need to be defined before including F<ecb.h> the first time.
1019 1223
1020=over 4 1224=over
1021 1225
1022=item ECB_NO_THREADS 1226=item ECB_NO_THREADS
1023 1227
1024If F<ecb.h> is never used from multiple threads, then this symbol can 1228If F<ecb.h> is never used from multiple threads, then this symbol can
1025be defined, in which case memory fences (and similar constructs) are 1229be defined, in which case memory fences (and similar constructs) are

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines