ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.12 by root, Mon Dec 25 11:25:49 2006 UTC vs.
Revision 1.62 by root, Mon Oct 12 14:00:57 2009 UTC

1/* 1/*
2 CrossFire, A Multiplayer game for X-windows 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 3 *
4 * Copyright (©) 2005,2006,2007,2008,2009 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
4 Copyright (C) 2002 Mark Wedel & Crossfire Development Team 5 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
5 Copyright (C) 1992 Frank Tore Johansen 6 * Copyright (©) 1992,2007 Frank Tore Johansen
6 7 *
7 This program is free software; you can redistribute it and/or modify 8 * Deliantra is free software: you can redistribute it and/or modify it under
8 it under the terms of the GNU General Public License as published by 9 * the terms of the Affero GNU General Public License as published by the
9 the Free Software Foundation; either version 2 of the License, or 10 * Free Software Foundation, either version 3 of the License, or (at your
10 (at your option) any later version. 11 * option) any later version.
11 12 *
12 This program is distributed in the hope that it will be useful, 13 * This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details. 16 * GNU General Public License for more details.
16 17 *
17 You should have received a copy of the GNU General Public License 18 * You should have received a copy of the Affero GNU General Public License
18 along with this program; if not, write to the Free Software 19 * and the GNU General Public License along with this program. If not, see
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 * <http://www.gnu.org/licenses/>.
20 21 *
21 The authors can be reached via e-mail at <crossfire@schmorp.de> 22 * The authors can be reached via e-mail to <support@deliantra.net>
22*/ 23 */
23
24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
25 24
26#include <global.h> 25#include <global.h>
27#include <funcpoint.h>
28#include <math.h> 26#include <cmath>
29 27
28#define SEE_IN_DARK_RADIUS 2
29#define MAX_VISION 10 // maximum visible radius
30 30
31/* Distance must be less than this for the object to be blocked. 31// los flags
32 * An object is 1.0 wide, so if set to 0.5, it means the object 32enum {
33 * that blocks half the view (0.0 is complete block) will 33 FLG_XI = 0x01, // we have an x-parent
34 * block view in our tables. 34 FLG_YI = 0x02, // we have an y-parent
35 * .4 or less lets you see through walls. .5 is about right. 35 FLG_BLOCKED = 0x04, // this space blocks the view
36 */ 36 FLG_QUEUED = 0x80 // already queued in queue, or border
37};
37 38
38#define SPACE_BLOCK 0.5 39struct los_info
39
40typedef struct blstr
41{ 40{
42 int x[4], y[4]; 41 uint8 flags; // FLG_xxx
43 int index; 42 uint8 culled; // culled from "tree"
44} blocks; 43 uint8 visible;
44 uint8 pad0;
45 45
46 sint8 xo, yo; // obscure angle
47 sint8 xe, ye; // angle deviation
48};
49
50// temporary storage for the los algorithm,
51// one los_info for each lightable map space
46blocks block[MAP_CLIENT_X][MAP_CLIENT_Y]; 52static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
47 53
48static void expand_lighted_sight (object *op); 54struct point
49
50/*
51 * Used to initialise the array used by the LOS routines.
52 * What this sets if that x,y blocks the view of bx,by
53 * This then sets up a relation - for example, something
54 * at 5,4 blocks view at 5,3 which blocks view at 5,2
55 * etc. So when we check 5,4 and find it block, we have
56 * the data to know that 5,3 and 5,2 and 5,1 should also
57 * be blocked.
58 */
59
60static void
61set_block (int x, int y, int bx, int by)
62{ 55{
63 int index = block[x][y].index, i;
64
65 /* Due to flipping, we may get duplicates - better safe than sorry.
66 */
67 for (i = 0; i < index; i++)
68 {
69 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
70 return;
71 }
72
73 block[x][y].x[index] = bx;
74 block[x][y].y[index] = by;
75 block[x][y].index++;
76#ifdef LOS_DEBUG
77 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
78#endif
79}
80
81/*
82 * initialises the array used by the LOS routines.
83 */
84
85/* since we are only doing the upper left quadrant, only
86 * these spaces could possibly get blocked, since these
87 * are the only ones further out that are still possibly in the
88 * sightline.
89 */
90
91void
92init_block (void)
93{
94 int x, y, dx, dy, i;
95 static int block_x[3] = { -1, -1, 0 }, block_y[3] =
96 {
97 -1, 0, -1};
98
99 for (x = 0; x < MAP_CLIENT_X; x++)
100 for (y = 0; y < MAP_CLIENT_Y; y++)
101 {
102 block[x][y].index = 0;
103 }
104
105
106 /* The table should be symmetric, so only do the upper left
107 * quadrant - makes the processing easier.
108 */
109 for (x = 1; x <= MAP_CLIENT_X / 2; x++)
110 {
111 for (y = 1; y <= MAP_CLIENT_Y / 2; y++)
112 {
113 for (i = 0; i < 3; i++)
114 {
115 dx = x + block_x[i];
116 dy = y + block_y[i];
117
118 /* center space never blocks */
119 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
120 continue;
121
122 /* If its a straight line, its blocked */
123 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
124 {
125 /* For simplicity, we mirror the coordinates to block the other
126 * quadrants.
127 */
128 set_block (x, y, dx, dy);
129 if (x == MAP_CLIENT_X / 2)
130 {
131 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
132 }
133 else if (y == MAP_CLIENT_Y / 2)
134 {
135 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
136 }
137 }
138 else
139 {
140 float d1, r, s, l;
141
142 /* We use the algorihm that found out how close the point
143 * (x,y) is to the line from dx,dy to the center of the viewable
144 * area. l is the distance from x,y to the line.
145 * r is more a curiosity - it lets us know what direction (left/right)
146 * the line is off
147 */
148
149 d1 = (float) (pow (MAP_CLIENT_X / 2 - dx, 2.f) + pow (MAP_CLIENT_Y / 2 - dy, 2.f));
150 r = (float) ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
151 s = (float) ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
152 l = FABS (sqrt (d1) * s);
153
154 if (l <= SPACE_BLOCK)
155 {
156 /* For simplicity, we mirror the coordinates to block the other
157 * quadrants.
158 */
159 set_block (x, y, dx, dy);
160 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
161 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
162 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
163 }
164 }
165 }
166 }
167 }
168}
169
170/*
171 * Used to initialise the array used by the LOS routines.
172 * x,y are indexes into the blocked[][] array.
173 * This recursively sets the blocked line of sight view.
174 * From the blocked[][] array, we know for example
175 * that if some particular space is blocked, it blocks
176 * the view of the spaces 'behind' it, and those blocked
177 * spaces behind it may block other spaces, etc.
178 * In this way, the chain of visibility is set.
179 */
180
181static void
182set_wall (object *op, int x, int y)
183{
184 int i;
185
186 for (i = 0; i < block[x][y].index; i++)
187 {
188 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
189
190 /* ax, ay are the values as adjusted to be in the
191 * socket look structure.
192 */
193 ax = dx - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
194 ay = dy - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
195
196 if (ax < 0 || ax >= op->contr->ns->mapx || ay < 0 || ay >= op->contr->ns->mapy)
197 continue;
198#if 0
199 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
200#endif
201 /* we need to adjust to the fact that the socket
202 * code wants the los to start from the 0,0
203 * and not be relative to middle of los array.
204 */
205 op->contr->blocked_los[ax][ay] = 100;
206 set_wall (op, dx, dy);
207 }
208}
209
210/*
211 * Used to initialise the array used by the LOS routines.
212 * op is the object, x and y values based on MAP_CLIENT_X and Y.
213 * this is because they index the blocked[][] arrays.
214 */
215
216static void
217check_wall (object *op, int x, int y)
218{
219 int ax, ay; 56 sint8 x, y;
57};
220 58
221 if (!block[x][y].index) 59// minimum size, but must be a power of two
222 return; 60#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
223 61
224 /* ax, ay are coordinates as indexed into the look window */ 62// a queue of spaces to calculate
225 ax = x - (MAP_CLIENT_X - op->contr->ns->mapx) / 2; 63static point queue [QUEUE_LENGTH];
226 ay = y - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2; 64static int q1, q2; // queue start, end
227
228 /* If the converted coordinates are outside the viewable
229 * area for the client, return now.
230 */
231 if (ax < 0 || ay < 0 || ax >= op->contr->ns->mapx || ay >= op->contr->ns->mapy)
232 return;
233
234#if 0
235 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
236 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
237#endif
238
239 /* If this space is already blocked, prune the processing - presumably
240 * whatever has set this space to be blocked has done the work and already
241 * done the dependency chain.
242 */
243 if (op->contr->blocked_los[ax][ay] == 100)
244 return;
245
246
247 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
248 set_wall (op, x, y);
249}
250 65
251/* 66/*
252 * Clears/initialises the los-array associated to the player 67 * Clears/initialises the los-array associated to the player
253 * controlling the object. 68 * controlling the object.
254 */ 69 */
255
256void 70void
257clear_los (object *op) 71player::clear_los (sint8 value)
258{ 72{
259 /* This is safer than using the ns->mapx, mapy because 73 memset (los, value, sizeof (los));
260 * we index the blocked_los as a 2 way array, so clearing
261 * the first z spaces may not not cover the spaces we are
262 * actually going to use
263 */
264 (void) memset ((void *) op->contr->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
265} 74}
266 75
267/* 76// enqueue a single mapspace, but only if it hasn't
268 * expand_sight goes through the array of what the given player is 77// been enqueued yet.
269 * able to see, and expands the visible area a bit, so the player will,
270 * to a certain degree, be able to see into corners.
271 * This is somewhat suboptimal, would be better to improve the formula.
272 */
273
274static void 78static void
275expand_sight (object *op) 79enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
276{ 80{
277 int i, x, y, dx, dy; 81 sint8 x = LOS_X0 + dx;
82 sint8 y = LOS_Y0 + dy;
278 83
279 for (x = 1; x < op->contr->ns->mapx - 1; x++) /* loop over inner squares */ 84 los_info &l = los[x][y];
280 for (y = 1; y < op->contr->ns->mapy - 1; y++) 85
86 l.flags |= flags;
87
88 if (l.flags & FLG_QUEUED)
89 return;
90
91 l.flags |= FLG_QUEUED;
92
93 queue[q1].x = dx;
94 queue[q1].y = dy;
95
96 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
97}
98
99// run the los algorithm
100// this is a variant of a spiral los algorithm taken from
101// http://www.geocities.com/temerra/los_rays.html
102// which has been simplified and changed considerably, but
103// still is basically the same algorithm.
104static void
105calculate_los (player *pl)
106{
107 {
108 memset (los, 0, sizeof (los));
109
110 // we keep one line for ourselves, for the border flag
111 // so the client area is actually MAP_CLIENT_(X|Y) - 2
112 int half_x = min (LOS_X0 - 1, pl->ns->mapx / 2);
113 int half_y = min (LOS_Y0 - 1, pl->ns->mapy / 2);
114
115 // create borders, the corners are not touched
116 for (int dx = -half_x; dx <= half_x; ++dx)
117 los [dx + LOS_X0][LOS_Y0 - (half_y + 1)].flags =
118 los [dx + LOS_X0][LOS_Y0 + (half_y + 1)].flags = FLG_QUEUED;
119
120 for (int dy = -half_y; dy <= half_y; ++dy)
121 los [LOS_X0 - (half_x + 1)][dy + LOS_Y0].flags =
122 los [LOS_X0 + (half_x + 1)][dy + LOS_Y0].flags = FLG_QUEUED;
123
124 // now reset the los area and also add blocked flags
125 // which supposedly is faster than doing it inside the
126 // spiral path algorithm below, except when very little
127 // area is visible, in which case it is slower. which evens
128 // out los calculation times between large and small los maps.
129 // apply_lights also iterates over this area, maybe these
130 // two passes could be combined somehow.
131 unordered_mapwalk (pl->observe, -half_x, -half_y, half_x, half_y)
281 { 132 {
282 if (!op->contr->blocked_los[x][y] && 133 los_info &l = los [LOS_X0 + dx][LOS_Y0 + dy];
283 !(get_map_flags (op->map, NULL, 134 l.flags = m->at (nx, ny).flags () & P_BLOCKSVIEW ? FLG_BLOCKED : 0;
284 op->x - op->contr->ns->mapx / 2 + x, 135 }
285 op->y - op->contr->ns->mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))) 136 }
137
138 q1 = 0; q2 = 0; // initialise queue, not strictly required
139 enqueue (0, 0); // enqueue center
140
141 // treat the origin specially
142 los[LOS_X0][LOS_Y0].visible = 1;
143 pl->los[LOS_X0][LOS_Y0] = 0;
144
145 // loop over all enqueued points until the queue is empty
146 // the order in which this is done ensures that we
147 // never touch a mapspace whose input spaces we haven't checked
148 // yet.
149 while (q1 != q2)
150 {
151 sint8 dx = queue[q2].x;
152 sint8 dy = queue[q2].y;
153
154 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
155
156 sint8 x = LOS_X0 + dx;
157 sint8 y = LOS_Y0 + dy;
158
159 los_info &l = los[x][y];
160
161 if (expect_true (l.flags & (FLG_XI | FLG_YI)))
162 {
163 l.culled = 1;
164 l.xo = l.yo = l.xe = l.ye = 0;
165
166 // check contributing spaces, first horizontal
167 if (expect_true (l.flags & FLG_XI))
168 {
169 los_info *xi = &los[x - sign (dx)][y];
170
171 // don't cull unless obscured
172 l.culled &= !xi->visible;
173
174 /* merge input space */
175 if (expect_false (xi->xo || xi->yo))
176 {
177 // The X input can provide two main pieces of information:
178 // 1. Progressive X obscurity.
179 // 2. Recessive Y obscurity.
180
181 // Progressive X obscurity, favouring recessive input angle
182 if (xi->xe > 0 && l.xo == 0)
183 {
184 l.xe = xi->xe - xi->yo;
185 l.ye = xi->ye + xi->yo;
186 l.xo = xi->xo;
187 l.yo = xi->yo;
188 }
189
190 // Recessive Y obscurity
191 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
192 {
193 l.ye = xi->yo + xi->ye;
194 l.xe = xi->xe - xi->yo;
195 l.xo = xi->xo;
196 l.yo = xi->yo;
197 }
198 }
199 }
200
201 // check contributing spaces, last vertical, identical structure
202 if (expect_true (l.flags & FLG_YI))
203 {
204 los_info *yi = &los[x][y - sign (dy)];
205
206 // don't cull unless obscured
207 l.culled &= !yi->visible;
208
209 /* merge input space */
210 if (expect_false (yi->yo || yi->xo))
211 {
212 // The Y input can provide two main pieces of information:
213 // 1. Progressive Y obscurity.
214 // 2. Recessive X obscurity.
215
216 // Progressive Y obscurity, favouring recessive input angle
217 if (yi->ye > 0 && l.yo == 0)
218 {
219 l.ye = yi->ye - yi->xo;
220 l.xe = yi->xe + yi->xo;
221 l.yo = yi->yo;
222 l.xo = yi->xo;
223 }
224
225 // Recessive X obscurity
226 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
227 {
228 l.xe = yi->xo + yi->xe;
229 l.ye = yi->ye - yi->xo;
230 l.yo = yi->yo;
231 l.xo = yi->xo;
232 }
233 }
234 }
235
236 if (l.flags & FLG_BLOCKED)
237 {
238 l.xo = l.xe = abs (dx);
239 l.yo = l.ye = abs (dy);
240
241 // we obscure dependents, but might be visible
242 // copy the los from the square towards the player,
243 // so outward diagonal corners are lit.
244 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
245
246 l.visible = false;
247 }
248 else
249 {
250 // we are not blocked, so calculate visibility, by checking
251 // whether we are inside or outside the shadow
252 l.visible = (l.xe <= 0 || l.xe > l.xo)
253 && (l.ye <= 0 || l.ye > l.yo);
254
255 pl->los[x][y] = l.culled ? LOS_BLOCKED
256 : l.visible ? 0
257 : 3;
258 }
259
260 }
261
262 // Expands by the unit length in each component's current direction.
263 // If a component has no direction, then it is expanded in both of its
264 // positive and negative directions.
265 if (!l.culled)
266 {
267 if (dx >= 0) enqueue (dx + 1, dy, FLG_XI);
268 if (dx <= 0) enqueue (dx - 1, dy, FLG_XI);
269 if (dy >= 0) enqueue (dx, dy + 1, FLG_YI);
270 if (dy <= 0) enqueue (dx, dy - 1, FLG_YI);
271 }
272 }
273}
274
275/* radius, distance => lightness adjust */
276static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
277static sint8 vision_atten[MAX_VISION + 1][MAX_VISION * 3 / 2 + 1];
278
279static struct los_init
280{
281 los_init ()
282 {
283 assert (("QUEUE_LENGTH, MAP_CLIENT_X and MAP_CLIENT_Y *must* be powers of two",
284 !(QUEUE_LENGTH & (QUEUE_LENGTH - 1))));
285
286 /* for lights */
287 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
288 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
289 {
290 // max intensity
291 int intensity = min (LOS_MAX, abs (radius) + 1);
292
293 // actual intensity
294 intensity = max (0, lerp_ru (distance, 0, abs (radius) + 1, intensity, 0));
295
296 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
297 ? min (3, intensity)
298 : LOS_MAX - intensity;
299 }
300
301 /* for general vision */
302 for (int radius = 0; radius <= MAX_VISION; ++radius)
303 for (int distance = 0; distance <= MAX_VISION * 3 / 2; ++distance)
304 vision_atten [radius][distance] = distance <= radius ? clamp (lerp (radius, 0, MAX_DARKNESS, 3, 0), 0, 3) : 4;
305 }
306} los_init;
307
308sint8
309los_brighten (sint8 b, sint8 l)
310{
311 return b == LOS_BLOCKED ? b : min (b, l);
312}
313
314sint8
315los_darken (sint8 b, sint8 l)
316{
317 return max (b, l);
318}
319
320template<sint8 change_it (sint8, sint8)>
321static void
322apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
323{
324 // min or max the circular area around basex, basey
325 dx += LOS_X0;
326 dy += LOS_Y0;
327
328 int hx = pl->ns->mapx / 2;
329 int hy = pl->ns->mapy / 2;
330
331 int ax0 = max (LOS_X0 - hx, dx - light);
332 int ay0 = max (LOS_Y0 - hy, dy - light);
333 int ax1 = min (dx + light, LOS_X0 + hx);
334 int ay1 = min (dy + light, LOS_Y0 + hy);
335
336 for (int ax = ax0; ax <= ax1; ax++)
337 for (int ay = ay0; ay <= ay1; ay++)
338 pl->los[ax][ay] =
339 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
340}
341
342/* add light, by finding all (non-null) nearby light sources, then
343 * mark those squares specially.
344 */
345static void
346apply_lights (player *pl)
347{
348 object *op = pl->observe;
349 int darklevel = op->map->darklevel ();
350
351 int half_x = pl->ns->mapx / 2;
352 int half_y = pl->ns->mapy / 2;
353
354 int pass2 = 0; // negative lights have an extra pass
355
356 maprect *rects = pl->observe->map->split_to_tiles (
357 pl->observe->x - half_x - MAX_LIGHT_RADIUS,
358 pl->observe->y - half_y - MAX_LIGHT_RADIUS,
359 pl->observe->x + half_x + MAX_LIGHT_RADIUS + 1,
360 pl->observe->y + half_y + MAX_LIGHT_RADIUS + 1
361 );
362
363 /* If the player can see in the dark, increase light/vision radius */
364 int bonus = op->flag [FLAG_SEE_IN_DARK] ? SEE_IN_DARK_RADIUS : 0;
365
366 if (!darklevel)
367 pass2 = 1;
368 else
369 {
370 /* first, make everything totally dark */
371 for (int dx = -half_x; dx <= half_x; dx++)
372 for (int dy = -half_x; dy <= half_y; dy++)
373 max_it (pl->los[dx + LOS_X0][dy + LOS_Y0], LOS_MAX);
374
375 /*
376 * Only process the area of interest.
377 * the basex, basey values represent the position in the op->contr->los
378 * array. Its easier to just increment them here (and start with the right
379 * value) than to recalculate them down below.
380 */
381 for (maprect *r = rects; r->m; ++r)
382 rect_mapwalk (r, 0, 0)
286 { 383 {
384 mapspace &ms = m->at (nx, ny);
385 ms.update ();
386 sint8 light = ms.light;
287 387
288 for (i = 1; i <= 8; i += 1) 388 if (expect_false (light))
289 { /* mark all directions */ 389 if (light < 0)
290 dx = x + freearr_x[i]; 390 pass2 = 1;
291 dy = y + freearr_y[i]; 391 else
292 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */ 392 {
293 op->contr->blocked_los[dx][dy] = -1; 393 light = clamp (light + bonus, 0, MAX_LIGHT_RADIUS);
394 apply_light<los_brighten> (pl, dx - pl->observe->x, dy - pl->observe->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
294 } 395 }
295 } 396 }
397
398 /* grant some vision to the player, based on outside, outdoor, and darklevel */
399 {
400 int light;
401
402 if (!op->map->outdoor) // not outdoor, darkness becomes light radius
403 light = MAX_DARKNESS - op->map->darkness;
404 else if (op->map->darkness > 0) // outdoor and darkness > 0 => use darkness as max radius
405 light = lerp_rd (maptile::outdoor_darkness + 0, 0, MAX_DARKNESS, MAX_DARKNESS - op->map->darkness, 0);
406 else // outdoor and darkness <= 0 => start wide and decrease quickly
407 light = lerp (maptile::outdoor_darkness + op->map->darkness, 0, MAX_DARKNESS, MAX_VISION, 2);
408
409 light = clamp (light + bonus, 0, MAX_VISION);
410
411 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
296 } 412 }
297
298 if (MAP_DARKNESS (op->map) > 0) /* player is on a dark map */
299 expand_lighted_sight (op);
300
301
302 /* clear mark squares */
303 for (x = 0; x < op->contr->ns->mapx; x++)
304 for (y = 0; y < op->contr->ns->mapy; y++)
305 if (op->contr->blocked_los[x][y] < 0)
306 op->contr->blocked_los[x][y] = 0;
307}
308
309
310
311
312/* returns true if op carries one or more lights
313 * This is a trivial function now days, but it used to
314 * be a bit longer. Probably better for callers to just
315 * check the op->glow_radius instead of calling this.
316 */
317
318int
319has_carried_lights (const object *op)
320{
321 /* op may glow! */
322 if (op->glow_radius > 0)
323 return 1;
324
325 return 0;
326}
327
328static void
329expand_lighted_sight (object *op)
330{
331 int x, y, darklevel, ax, ay, basex, basey, mflags, light, x1, y1;
332 maptile *m = op->map;
333 sint16 nx, ny;
334
335 darklevel = MAP_DARKNESS (m);
336
337 /* If the player can see in the dark, lower the darklevel for him */
338 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK))
339 darklevel -= 2;
340
341 /* add light, by finding all (non-null) nearby light sources, then
342 * mark those squares specially. If the darklevel<1, there is no
343 * reason to do this, so we skip this function
344 */
345
346 if (darklevel < 1)
347 return;
348
349 /* Do a sanity check. If not valid, some code below may do odd
350 * things.
351 */
352 if (darklevel > MAX_DARKNESS)
353 {
354 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, op->map->path, darklevel);
355 darklevel = MAX_DARKNESS;
356 } 413 }
357 414
358 /* First, limit player furthest (unlighted) vision */ 415 // possibly do 2nd pass for rare negative glow radii
359 for (x = 0; x < op->contr->ns->mapx; x++) 416 // for effect, those are always considered to be stronger than anything else
360 for (y = 0; y < op->contr->ns->mapy; y++) 417 // but they can't darken a place completely
361 if (op->contr->blocked_los[x][y] != 100) 418 if (pass2)
362 op->contr->blocked_los[x][y] = MAX_LIGHT_RADII; 419 for (maprect *r = rects; r->m; ++r)
363 420 rect_mapwalk (r, 0, 0)
364 /* the spaces[] darkness value contains the information we need.
365 * Only process the area of interest.
366 * the basex, basey values represent the position in the op->contr->blocked_los
367 * array. Its easier to just increment them here (and start with the right
368 * value) than to recalculate them down below.
369 */
370 for (x = (op->x - op->contr->ns->mapx / 2 - MAX_LIGHT_RADII), basex = -MAX_LIGHT_RADII;
371 x <= (op->x + op->contr->ns->mapx / 2 + MAX_LIGHT_RADII); x++, basex++)
372 {
373
374 for (y = (op->y - op->contr->ns->mapy / 2 - MAX_LIGHT_RADII), basey = -MAX_LIGHT_RADII;
375 y <= (op->y + op->contr->ns->mapy / 2 + MAX_LIGHT_RADII); y++, basey++)
376 { 421 {
377 m = op->map; 422 mapspace &ms = m->at (nx, ny);
378 nx = x; 423 ms.update ();
379 ny = y; 424 sint8 light = ms.light;
380 425
381 mflags = get_map_flags (m, &m, nx, ny, &nx, &ny); 426 if (expect_false (light < 0))
382
383 if (mflags & P_OUT_OF_MAP)
384 continue;
385
386 /* This space is providing light, so we need to brighten up the
387 * spaces around here.
388 */
389 light = GET_MAP_LIGHT (m, nx, ny);
390 if (light != 0)
391 { 427 {
392#if 0 428 light = clamp (light - bonus, 0, MAX_DARKNESS);
393 LOG (llevDebug, "expand_lighted_sight: Found light at x=%d, y=%d, basex=%d, basey=%d\n", x, y, basex, basey); 429 apply_light<los_darken> (pl, dx - pl->observe->x, dy - pl->observe->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
394#endif
395 for (ax = basex - light; ax <= basex + light; ax++)
396 {
397 if (ax < 0 || ax >= op->contr->ns->mapx)
398 continue;
399 for (ay = basey - light; ay <= basey + light; ay++)
400 {
401 if (ay < 0 || ay >= op->contr->ns->mapy)
402 continue;
403
404 /* If the space is fully blocked, do nothing. Otherwise, we
405 * brighten the space. The further the light is away from the
406 * source (basex-x), the less effect it has. Though light used
407 * to dim in a square manner, it now dims in a circular manner
408 * using the the pythagorean theorem. glow_radius still
409 * represents the radius
410 */
411 if (op->contr->blocked_los[ax][ay] != 100)
412 {
413 x1 = abs (basex - ax) * abs (basex - ax);
414 y1 = abs (basey - ay) * abs (basey - ay);
415 if (light > 0)
416 op->contr->blocked_los[ax][ay] -= MAX ((light - isqrt (x1 + y1)), 0);
417 if (light < 0)
418 op->contr->blocked_los[ax][ay] -= MIN ((light + isqrt (x1 + y1)), 0);
419 }
420 } /* for ay */
421 } /* for ax */
422 } /* if this space is providing light */
423 } /* for y */
424 } /* for x */
425
426 /* Outdoor should never really be completely pitch black dark like
427 * a dungeon, so let the player at least see a little around themselves
428 */
429 if (op->map->outdoor && darklevel > (MAX_DARKNESS - 3))
430 {
431 if (op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] > (MAX_DARKNESS - 3))
432 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = MAX_DARKNESS - 3;
433
434 for (x = -1; x <= 1; x++)
435 for (y = -1; y <= 1; y++)
436 {
437 if (op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] > (MAX_DARKNESS - 2))
438 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] = MAX_DARKNESS - 2;
439 } 430 }
440 } 431 }
441 /* grant some vision to the player, based on the darklevel */
442 for (x = darklevel - MAX_DARKNESS; x < MAX_DARKNESS + 1 - darklevel; x++)
443 for (y = darklevel - MAX_DARKNESS; y < MAX_DARKNESS + 1 - darklevel; y++)
444 if (!(op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] == 100))
445 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] -=
446 MAX (0, 6 - darklevel - MAX (abs (x), abs (y)));
447} 432}
448 433
449/* blinded_sight() - sets all veiwable squares to blocked except 434/* blinded_sight() - sets all viewable squares to blocked except
450 * for the one the central one that the player occupies. A little 435 * for the one the central one that the player occupies. A little
451 * odd that you can see yourself (and what your standing on), but 436 * odd that you can see yourself (and what your standing on), but
452 * really need for any reasonable game play. 437 * really need for any reasonable game play.
453 */ 438 */
454
455static void 439static void
456blinded_sight (object *op) 440blinded_sight (player *pl)
457{ 441{
458 int x, y; 442 pl->los[LOS_X0][LOS_Y0] = 1;
459
460 for (x = 0; x < op->contr->ns->mapx; x++)
461 for (y = 0; y < op->contr->ns->mapy; y++)
462 op->contr->blocked_los[x][y] = 100;
463
464 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = 0;
465} 443}
466 444
467/* 445/*
468 * update_los() recalculates the array which specifies what is 446 * update_los() recalculates the array which specifies what is
469 * visible for the given player-object. 447 * visible for the given player-object.
470 */ 448 */
471
472void 449void
473update_los (object *op) 450player::update_los ()
474{ 451{
475 int dx = op->contr->ns->mapx / 2, dy = op->contr->ns->mapy / 2, x, y; 452 if (ob->flag [FLAG_REMOVED])//D really needed?
476
477 if (QUERY_FLAG (op, FLAG_REMOVED))
478 return; 453 return;
479 454
455 if (ob->flag [FLAG_WIZLOOK])
480 clear_los (op); 456 clear_los (0);
481 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ ) 457 else if (observe->flag [FLAG_BLIND]) /* player is blind */
482 return; 458 {
483 459 clear_los ();
484 /* For larger maps, this is more efficient than the old way which
485 * used the chaining of the block array. Since many space views could
486 * be blocked by different spaces in front, this mean that a lot of spaces
487 * could be examined multile times, as each path would be looked at.
488 */
489 for (x = (MAP_CLIENT_X - op->contr->ns->mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->ns->mapx) / 2 + 1; x++)
490 for (y = (MAP_CLIENT_Y - op->contr->ns->mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->ns->mapy) / 2 + 1; y++)
491 check_wall (op, x, y);
492
493
494 /* do the los of the player. 3 (potential) cases */
495 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
496 blinded_sight (op); 460 blinded_sight (this);
461 }
497 else 462 else
498 expand_sight (op);
499
500 if (QUERY_FLAG (op, FLAG_XRAYS))
501 { 463 {
502 int x, y; 464 clear_los ();
503 465 calculate_los (this);
504 for (x = -2; x <= 2; x++) 466 apply_lights (this);
505 for (y = -2; y <= 2; y++)
506 op->contr->blocked_los[dx + x][dy + y] = 0;
507 } 467 }
468
469 if (observe->flag [FLAG_XRAYS])
470 for (int dx = -2; dx <= 2; dx++)
471 for (int dy = -2; dy <= 2; dy++)
472 min_it (los[dx + LOS_X0][dy + LOS_Y0], 1);
508} 473}
509 474
510/* update all_map_los is like update_all_los below, 475/* update all_map_los is like update_all_los below,
511 * but updates everyone on the map, no matter where they 476 * but updates everyone on the map, no matter where they
512 * are. This generally should not be used, as a per 477 * are. This generally should not be used, as a per
519 * change_map_light function 484 * change_map_light function
520 */ 485 */
521void 486void
522update_all_map_los (maptile *map) 487update_all_map_los (maptile *map)
523{ 488{
524 for_all_players (pl) 489 for_all_players_on_map (pl, map)
525 if (pl->ob && pl->ob->map == map)
526 pl->do_los = 1; 490 pl->do_los = 1;
527} 491}
528 492
529/* 493/*
530 * This function makes sure that update_los() will be called for all 494 * This function makes sure that update_los() will be called for all
531 * players on the given map within the next frame. 495 * players on the given map within the next frame.
539 * map is the map that changed, x and y are the coordinates. 503 * map is the map that changed, x and y are the coordinates.
540 */ 504 */
541void 505void
542update_all_los (const maptile *map, int x, int y) 506update_all_los (const maptile *map, int x, int y)
543{ 507{
508 map->at (x, y).invalidate ();
509
544 for_all_players (pl) 510 for_all_players (pl)
545 { 511 {
546 /* Player should not have a null map, but do this 512 /* Player should not have a null map, but do this
547 * check as a safety 513 * check as a safety
548 */ 514 */
549 if (!pl->ob || !pl->ob->map || !pl->ns) 515 if (!pl->ob || !pl->ob->map || !pl->ns)
550 continue; 516 continue;
551 517
552 /* Same map is simple case - see if pl is close enough. 518 rv_vector rv;
553 * Note in all cases, we did the check for same map first, 519
554 * and then see if the player is close enough and update 520 get_rangevector_from_mapcoord (map, x, y, pl->ob, &rv);
555 * los if that is the case. If the player is on the
556 * corresponding map, but not close enough, then the
557 * player can't be on another map that may be closer,
558 * so by setting it up this way, we trim processing
559 * some.
560 */ 521
561 if (pl->ob->map == map) 522 if ((abs (rv.distance_x) <= pl->ns->mapx / 2) && (abs (rv.distance_y) <= pl->ns->mapy / 2))
562 {
563 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
564 pl->do_los = 1; 523 pl->do_los = 1;
565 }
566
567 /* Now we check to see if player is on adjacent
568 * maps to the one that changed and also within
569 * view. The tile_maps[] could be null, but in that
570 * case it should never match the pl->ob->map, so
571 * we want ever try to dereference any of the data in it.
572 *
573 * The logic for 0 and 3 is to see how far the player is
574 * from the edge of the map (height/width) - pl->ob->(x,y)
575 * and to add current position on this map - that gives a
576 * distance.
577 * For 1 and 2, we check to see how far the given
578 * coordinate (x,y) is from the corresponding edge,
579 * and then add the players location, which gives
580 * a distance.
581 */
582 else if (pl->ob->map == map->tile_map[0])
583 {
584 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + MAP_HEIGHT (map->tile_map[0]) - pl->ob->y) <= pl->ns->mapy / 2))
585 pl->do_los = 1;
586 }
587 else if (pl->ob->map == map->tile_map[2])
588 {
589 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + MAP_HEIGHT (map) - y) <= pl->ns->mapy / 2))
590 pl->do_los = 1;
591 }
592 else if (pl->ob->map == map->tile_map[1])
593 {
594 if ((abs (pl->ob->x + MAP_WIDTH (map) - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
595 pl->do_los = 1;
596 }
597 else if (pl->ob->map == map->tile_map[3])
598 {
599 if ((abs (x + MAP_WIDTH (map->tile_map[3]) - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
600 pl->do_los = 1;
601 }
602 } 524 }
603} 525}
604 526
527static const int season_darkness[5][HOURS_PER_DAY] = {
528 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
529 { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
530 { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
531 { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
532 { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
533 { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
534};
535
605/* 536/*
606 * Debug-routine which dumps the array which specifies the visible 537 * Tell players the time and compute the darkness level for all maps in the game.
607 * area of a player. Triggered by the z key in DM mode. 538 * MUST be called exactly once per hour.
608 */ 539 */
609void 540void
610print_los (object *op) 541maptile::adjust_daylight ()
611{ 542{
612 int x, y; 543 timeofday_t tod;
613 char buf[50], buf2[10];
614 544
615 strcpy (buf, " "); 545 get_tod (&tod);
616 546
617 for (x = 0; x < op->contr->ns->mapx; x++) 547 // log the time to log-1 every hour, and to chat every day
618 { 548 {
619 sprintf (buf2, "%2d", x); 549 char todbuf[512];
620 strcat (buf, buf2); 550
551 format_tod (todbuf, sizeof (todbuf), &tod);
552
553 for_all_players (pl)
554 pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
621 } 555 }
622 556
623 new_draw_info (NDI_UNIQUE, 0, op, buf); 557 /* If the light level isn't changing, no reason to do all
558 * the work below.
559 */
560 sint8 new_darkness = season_darkness[tod.season][tod.hour];
624 561
625 for (y = 0; y < op->contr->ns->mapy; y++) 562 if (new_darkness == maptile::outdoor_darkness)
626 { 563 return;
627 sprintf (buf, "%2d:", y);
628 564
629 for (x = 0; x < op->contr->ns->mapx; x++) 565 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
630 { 566 new_darkness > maptile::outdoor_darkness
631 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]); 567 ? "It becomes darker."
632 strcat (buf, buf2); 568 : "It becomes brighter.");
633 }
634 569
635 new_draw_info (NDI_UNIQUE, 0, op, buf); 570 maptile::outdoor_darkness = new_darkness;
636 } 571
572 // we simply update the los for all players, which is unnecessarily
573 // costly, but should do for the moment.
574 for_all_players (pl)
575 pl->do_los = 1;
637} 576}
638 577
639/* 578/*
640 * make_sure_seen: The object is supposed to be visible through walls, thus 579 * make_sure_seen: The object is supposed to be visible through walls, thus
641 * check if any players are nearby, and edit their LOS array. 580 * check if any players are nearby, and edit their LOS array.
642 */ 581 */
643
644void 582void
645make_sure_seen (const object *op) 583make_sure_seen (const object *op)
646{ 584{
647 for_all_players (pl) 585 for_all_players (pl)
648 if (pl->ob->map == op->map && 586 if (pl->ob->map == op->map &&
649 pl->ob->y - pl->ns->mapy / 2 <= op->y && 587 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
650 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x) 588 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
651 pl->blocked_los[pl->ns->mapx / 2 + op->x - pl->ob->x][pl->ns->mapy / 2 + op->y - pl->ob->y] = 0; 589 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_Y0] = 0;
652} 590}
653 591
654/* 592/*
655 * make_sure_not_seen: The object which is supposed to be visible through 593 * make_sure_not_seen: The object which is supposed to be visible through
656 * walls has just been removed from the map, so update the los of any 594 * walls has just been removed from the map, so update the los of any
657 * players within its range 595 * players within its range
658 */ 596 */
659
660void 597void
661make_sure_not_seen (const object *op) 598make_sure_not_seen (const object *op)
662{ 599{
663 for_all_players (pl) 600 for_all_players (pl)
664 if (pl->ob->map == op->map && 601 if (pl->ob->map == op->map &&
665 pl->ob->y - pl->ns->mapy / 2 <= op->y && 602 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
666 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x) 603 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
667 pl->do_los = 1; 604 pl->do_los = 1;
668} 605}
606

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines