ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.2 by root, Tue Aug 29 08:01:35 2006 UTC vs.
Revision 1.47 by root, Tue Dec 23 01:51:27 2008 UTC

1/* 1/*
2 * static char *rcsid_los_c = 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * "$Id: los.C,v 1.2 2006/08/29 08:01:35 root Exp $"; 3 *
4 */ 4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5
6/*
7 CrossFire, A Multiplayer game for X-windows
8
9 Copyright (C) 2002 Mark Wedel & Crossfire Development Team 5 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
10 Copyright (C) 1992 Frank Tore Johansen 6 * Copyright (©) 1992,2007 Frank Tore Johansen
11 7 *
12 This program is free software; you can redistribute it and/or modify 8 * Deliantra is free software: you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by 9 * it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or 10 * the Free Software Foundation, either version 3 of the License, or
15 (at your option) any later version. 11 * (at your option) any later version.
16 12 *
17 This program is distributed in the hope that it will be useful, 13 * This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details. 16 * GNU General Public License for more details.
21 17 *
22 You should have received a copy of the GNU General Public License 18 * You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software 19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
24 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 *
25 21 * The authors can be reached via e-mail to <support@deliantra.net>
26 The authors can be reached via e-mail at crossfire-devel@real-time.com
27*/ 22 */
28 23
29/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */ 24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
30 25
31#include <global.h> 26#include <global.h>
32#include <funcpoint.h>
33#include <math.h> 27#include <cmath>
34 28
35
36/* Distance must be less than this for the object to be blocked.
37 * An object is 1.0 wide, so if set to 0.5, it means the object
38 * that blocks half the view (0.0 is complete block) will
39 * block view in our tables.
40 * .4 or less lets you see through walls. .5 is about right.
41 */
42
43#define SPACE_BLOCK 0.5
44
45typedef struct blstr {
46 int x[4],y[4];
47 int index;
48} blocks;
49
50blocks block[MAP_CLIENT_X][MAP_CLIENT_Y];
51
52static void expand_lighted_sight(object *op); 29static void expand_lighted_sight (object *op);
53 30
54/* 31enum {
55 * Used to initialise the array used by the LOS routines. 32 LOS_XI = 0x01,
56 * What this sets if that x,y blocks the view of bx,by 33 LOS_YI = 0x02,
57 * This then sets up a relation - for example, something 34};
58 * at 5,4 blocks view at 5,3 which blocks view at 5,2
59 * etc. So when we check 5,4 and find it block, we have
60 * the data to know that 5,3 and 5,2 and 5,1 should also
61 * be blocked.
62 */
63 35
64static void set_block(int x, int y, int bx, int by) { 36struct los_info
65 int index=block[x][y].index,i; 37{
38 sint8 xo, yo; // obscure angle
39 sint8 xe, ye; // angle deviation
40 uint8 culled; // culled from "tree"
41 uint8 queued; // already queued
42 uint8 visible;
43 uint8 flags; // LOS_XI/YI
44};
66 45
67 /* Due to flipping, we may get duplicates - better safe than sorry. 46// temporary storage for the los algorithm,
68 */ 47// one los_info for each lightable map space
69 for (i=0; i<index; i++) { 48static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
70 if (block[x][y].x[i] == bx && block[x][y].y[i] == by) return;
71 }
72 49
73 block[x][y].x[index]=bx; 50struct point
74 block[x][y].y[index]=by; 51{
75 block[x][y].index++; 52 sint8 x, y;
76#ifdef LOS_DEBUG 53};
77 LOG(llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by,
78 block[x][y].index);
79#endif
80}
81 54
82/* 55// minimum size, but must be a power of two
83 * initialises the array used by the LOS routines. 56#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
84 */
85 57
86/* since we are only doing the upper left quadrant, only 58// a queue of spaces to calculate
87 * these spaces could possibly get blocked, since these 59static point queue [QUEUE_LENGTH];
88 * are the only ones further out that are still possibly in the 60static int q1, q2; // queue start, end
89 * sightline.
90 */
91
92void init_block(void) {
93 int x,y, dx, dy, i;
94 static int block_x[3] = {-1, -1, 0}, block_y[3] = {-1, 0, -1};
95
96 for(x=0;x<MAP_CLIENT_X;x++)
97 for(y=0;y<MAP_CLIENT_Y;y++) {
98 block[x][y].index=0;
99 }
100
101
102 /* The table should be symmetric, so only do the upper left
103 * quadrant - makes the processing easier.
104 */
105 for (x=1; x<=MAP_CLIENT_X/2; x++) {
106 for (y=1; y<=MAP_CLIENT_Y/2; y++) {
107 for (i=0; i< 3; i++) {
108 dx = x + block_x[i];
109 dy = y + block_y[i];
110
111 /* center space never blocks */
112 if (x == MAP_CLIENT_X/2 && y == MAP_CLIENT_Y/2) continue;
113
114 /* If its a straight line, its blocked */
115 if ((dx == x && x == MAP_CLIENT_X/2) ||
116 (dy==y && y == MAP_CLIENT_Y/2)) {
117 /* For simplicity, we mirror the coordinates to block the other
118 * quadrants.
119 */
120 set_block(x, y, dx, dy);
121 if (x == MAP_CLIENT_X/2) {
122 set_block(x, MAP_CLIENT_Y - y -1, dx, MAP_CLIENT_Y - dy-1);
123 } else if (y == MAP_CLIENT_Y/2) {
124 set_block(MAP_CLIENT_X - x -1, y, MAP_CLIENT_X - dx - 1, dy);
125 }
126 } else {
127 float d1, r, s,l;
128
129 /* We use the algorihm that found out how close the point
130 * (x,y) is to the line from dx,dy to the center of the viewable
131 * area. l is the distance from x,y to the line.
132 * r is more a curiosity - it lets us know what direction (left/right)
133 * the line is off
134 */
135
136 d1 = (float) (pow(MAP_CLIENT_X/2 - dx, 2) + pow(MAP_CLIENT_Y/2 - dy,2));
137 r = (float)((dy-y)*(dy - MAP_CLIENT_Y/2) - (dx-x)*(MAP_CLIENT_X/2-dx))/d1;
138 s = (float)((dy-y)*(MAP_CLIENT_X/2 - dx ) - (dx-x)*(MAP_CLIENT_Y/2-dy))/d1;
139 l = FABS(sqrt(d1) * s);
140
141 if (l <= SPACE_BLOCK) {
142 /* For simplicity, we mirror the coordinates to block the other
143 * quadrants.
144 */
145 set_block(x,y,dx,dy);
146 set_block(MAP_CLIENT_X - x -1, y, MAP_CLIENT_X - dx - 1, dy);
147 set_block(x, MAP_CLIENT_Y - y -1, dx, MAP_CLIENT_Y - dy - 1);
148 set_block(MAP_CLIENT_X -x-1, MAP_CLIENT_Y -y-1, MAP_CLIENT_X - dx-1, MAP_CLIENT_Y - dy-1);
149 }
150 }
151 }
152 }
153 }
154}
155
156/*
157 * Used to initialise the array used by the LOS routines.
158 * x,y are indexes into the blocked[][] array.
159 * This recursively sets the blocked line of sight view.
160 * From the blocked[][] array, we know for example
161 * that if some particular space is blocked, it blocks
162 * the view of the spaces 'behind' it, and those blocked
163 * spaces behind it may block other spaces, etc.
164 * In this way, the chain of visibility is set.
165 */
166
167static void set_wall(object *op,int x,int y) {
168 int i;
169
170 for(i=0;i<block[x][y].index;i++) {
171 int dx=block[x][y].x[i],dy=block[x][y].y[i],ax,ay;
172
173 /* ax, ay are the values as adjusted to be in the
174 * socket look structure.
175 */
176 ax = dx - (MAP_CLIENT_X - op->contr->socket.mapx)/2;
177 ay = dy - (MAP_CLIENT_Y - op->contr->socket.mapy)/2;
178
179 if (ax < 0 || ax>=op->contr->socket.mapx ||
180 ay < 0 || ay>=op->contr->socket.mapy) continue;
181#if 0
182 LOG(llevDebug, "blocked %d %d -> %d %d\n",
183 dx, dy, ax, ay);
184#endif
185 /* we need to adjust to the fact that the socket
186 * code wants the los to start from the 0,0
187 * and not be relative to middle of los array.
188 */
189 op->contr->blocked_los[ax][ay]=100;
190 set_wall(op,dx,dy);
191 }
192}
193
194/*
195 * Used to initialise the array used by the LOS routines.
196 * op is the object, x and y values based on MAP_CLIENT_X and Y.
197 * this is because they index the blocked[][] arrays.
198 */
199
200static void check_wall(object *op,int x,int y) {
201 int ax, ay;
202
203 if(!block[x][y].index)
204 return;
205
206 /* ax, ay are coordinates as indexed into the look window */
207 ax = x - (MAP_CLIENT_X - op->contr->socket.mapx)/2;
208 ay = y - (MAP_CLIENT_Y - op->contr->socket.mapy)/2;
209
210 /* If the converted coordinates are outside the viewable
211 * area for the client, return now.
212 */
213 if (ax < 0 || ay < 0 || ax >= op->contr->socket.mapx || ay >= op->contr->socket.mapy)
214 return;
215
216#if 0
217 LOG(llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
218 ax, ay, x, y, op->x + x - MAP_CLIENT_X/2, op->y + y - MAP_CLIENT_Y/2);
219#endif
220
221 /* If this space is already blocked, prune the processing - presumably
222 * whatever has set this space to be blocked has done the work and already
223 * done the dependency chain.
224 */
225 if (op->contr->blocked_los[ax][ay] == 100) return;
226
227
228 if(get_map_flags(op->map, NULL,
229 op->x + x - MAP_CLIENT_X/2, op->y + y - MAP_CLIENT_Y/2,
230 NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
231 set_wall(op,x,y);
232}
233 61
234/* 62/*
235 * Clears/initialises the los-array associated to the player 63 * Clears/initialises the los-array associated to the player
236 * controlling the object. 64 * controlling the object.
237 */ 65 */
238 66void
239void clear_los(object *op) { 67player::clear_los (sint8 value)
240 /* This is safer than using the socket->mapx, mapy because
241 * we index the blocked_los as a 2 way array, so clearing
242 * the first z spaces may not not cover the spaces we are
243 * actually going to use
244 */
245 (void)memset((void *) op->contr->blocked_los,0,
246 MAP_CLIENT_X * MAP_CLIENT_Y);
247}
248
249/*
250 * expand_sight goes through the array of what the given player is
251 * able to see, and expands the visible area a bit, so the player will,
252 * to a certain degree, be able to see into corners.
253 * This is somewhat suboptimal, would be better to improve the formula.
254 */
255
256static void expand_sight(object *op)
257{ 68{
258 int i,x,y, dx, dy; 69 memset (los, value, sizeof (los));
70}
259 71
260 for(x=1;x<op->contr->socket.mapx-1;x++) /* loop over inner squares */ 72// enqueue a single mapspace, but only if it hasn't
261 for(y=1;y<op->contr->socket.mapy-1;y++) { 73// been enqueued yet.
262 if (!op->contr->blocked_los[x][y] && 74static void
263 !(get_map_flags(op->map,NULL, 75enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
264 op->x-op->contr->socket.mapx/2+x, 76{
265 op->y-op->contr->socket.mapy/2+y, 77 sint8 x = LOS_X0 + dx;
266 NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))) { 78 sint8 y = LOS_Y0 + dy;
267 79
268 for(i=1;i<=8;i+=1) { /* mark all directions */ 80 if (x < 0 || x >= MAP_CLIENT_X) return;
269 dx = x + freearr_x[i]; 81 if (y < 0 || y >= MAP_CLIENT_Y) return;
270 dy = y + freearr_y[i]; 82
271 if(op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */ 83 los_info &l = los[x][y];
272 op->contr->blocked_los[dx][dy]= -1; 84
85 l.flags |= flags;
86
87 if (l.queued)
88 return;
89
90 l.queued = 1;
91
92 queue[q1].x = dx;
93 queue[q1].y = dy;
94
95 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
96}
97
98// run the los algorithm
99// this is a variant of a spiral los algorithm taken from
100// http://www.geocities.com/temerra/los_rays.html
101// which has been simplified and changed considerably, but
102// still is basically the same algorithm.
103static void
104do_los (object *op)
105{
106 player *pl = op->contr;
107
108 int max_radius = max (pl->ns->mapx, pl->ns->mapy) / 2;
109
110 memset (los, 0, sizeof (los));
111
112 q1 = 0; q2 = 0; // initialise queue, not strictly required
113 enqueue (0, 0); // enqueue center
114
115 // treat the origin specially
116 los[LOS_X0][LOS_Y0].visible = 1;
117 pl->los[LOS_X0][LOS_Y0] = 0;
118
119 // loop over all enqueued points until the queue is empty
120 // the order in which this is done ensures that we
121 // never touch a mapspace whose input spaces we haven't checked
122 // yet.
123 while (q1 != q2)
124 {
125 sint8 dx = queue[q2].x;
126 sint8 dy = queue[q2].y;
127
128 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
129
130 sint8 x = LOS_X0 + dx;
131 sint8 y = LOS_Y0 + dy;
132
133 //int distance = idistance (dx, dy); if (distance > max_radius) continue;//D
134 int distance = 0;//D
135
136 los_info &l = los[x][y];
137
138 if (expect_true (l.flags & (LOS_XI | LOS_YI)))
139 {
140 l.culled = 1;
141
142 // check contributing spaces, first horizontal
143 if (expect_true (l.flags & LOS_XI))
144 {
145 los_info *xi = &los[x - sign (dx)][y];
146
147 // don't cull unless obscured
148 l.culled &= !xi->visible;
149
150 /* merge input space */
151 if (expect_false (xi->xo || xi->yo))
152 {
153 // The X input can provide two main pieces of information:
154 // 1. Progressive X obscurity.
155 // 2. Recessive Y obscurity.
156
157 // Progressive X obscurity, favouring recessive input angle
158 if (xi->xe > 0 && l.xo == 0)
159 {
160 l.xe = xi->xe - xi->yo;
161 l.ye = xi->ye + xi->yo;
162 l.xo = xi->xo;
163 l.yo = xi->yo;
164 }
165
166 // Recessive Y obscurity
167 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
168 {
169 l.ye = xi->yo + xi->ye;
170 l.xe = xi->xe - xi->yo;
171 l.xo = xi->xo;
172 l.yo = xi->yo;
173 }
273 } 174 }
274 } 175 }
176
177 // check contributing spaces, last vertical, identical structure
178 if (expect_true (l.flags & LOS_YI))
179 {
180 los_info *yi = &los[x][y - sign (dy)];
181
182 // don't cull unless obscured
183 l.culled &= !yi->visible;
184
185 /* merge input space */
186 if (expect_false (yi->yo || yi->xo))
187 {
188 // The Y input can provide two main pieces of information:
189 // 1. Progressive Y obscurity.
190 // 2. Recessive X obscurity.
191
192 // Progressive Y obscurity, favouring recessive input angle
193 if (yi->ye > 0 && l.yo == 0)
194 {
195 l.ye = yi->ye - yi->xo;
196 l.xe = yi->xe + yi->xo;
197 l.yo = yi->yo;
198 l.xo = yi->xo;
199 }
200
201 // Recessive X obscurity
202 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
203 {
204 l.xe = yi->xo + yi->xe;
205 l.ye = yi->ye - yi->xo;
206 l.yo = yi->yo;
207 l.xo = yi->xo;
208 }
209 }
210 }
211
212 // check whether this space blocks the view
213 maptile *m = op->map;
214 sint16 nx = op->x + dx;
215 sint16 ny = op->y + dy;
216
217 if (expect_true (!xy_normalise (m, nx, ny))
218 || expect_false (m->at (nx, ny).flags () & P_BLOCKSVIEW))
219 {
220 l.xo = l.xe = abs (dx);
221 l.yo = l.ye = abs (dy);
222
223 // we obscure dependents, but might be visible
224 // copy the los from the square towards the player,
225 // so outward diagonal corners are lit.
226 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
227 l.visible = false;
228 }
229 else
230 {
231 // we are not blocked, so calculate visibility, by checking
232 // whether we are inside or outside the shadow
233 l.visible = (l.xe <= 0 || l.xe > l.xo)
234 && (l.ye <= 0 || l.ye > l.yo);
235
236 pl->los[x][y] = l.culled ? LOS_BLOCKED
237 : l.visible ? max (0, 2 - max_radius + distance)
238 : 3;
239 }
240
241 }
242
243 // Expands by the unit length in each component's current direction.
244 // If a component has no direction, then it is expanded in both of its
245 // positive and negative directions.
246 if (!l.culled)
275 } 247 {
276 248 if (dx >= 0) enqueue (dx + 1, dy, LOS_XI);
277 if(MAP_DARKNESS(op->map)>0) /* player is on a dark map */ 249 if (dx <= 0) enqueue (dx - 1, dy, LOS_XI);
278 expand_lighted_sight(op); 250 if (dy >= 0) enqueue (dx, dy + 1, LOS_YI);
279 251 if (dy <= 0) enqueue (dx, dy - 1, LOS_YI);
280 252 }
281 /* clear mark squares */ 253 }
282 for (x = 0; x < op->contr->socket.mapx; x++)
283 for (y = 0; y < op->contr->socket.mapy; y++)
284 if (op->contr->blocked_los[x][y] < 0)
285 op->contr->blocked_los[x][y] = 0;
286} 254}
287
288
289
290 255
291/* returns true if op carries one or more lights 256/* returns true if op carries one or more lights
292 * This is a trivial function now days, but it used to 257 * This is a trivial function now days, but it used to
293 * be a bit longer. Probably better for callers to just 258 * be a bit longer. Probably better for callers to just
294 * check the op->glow_radius instead of calling this. 259 * check the op->glow_radius instead of calling this.
295 */ 260 */
296 261int
297int has_carried_lights(const object *op) { 262has_carried_lights (const object *op)
263{
298 /* op may glow! */ 264 /* op may glow! */
299 if(op->glow_radius>0) return 1; 265 if (op->glow_radius > 0)
300
301 return 0; 266 return 1;
267
268 return 0;
302} 269}
303 270
304static void expand_lighted_sight(object *op) 271/* radius, distance => lightness adjust */
272static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
273static sint8 vision_atten[MAX_DARKNESS + 1][MAX_DARKNESS * 3 / 2 + 1];
274
275static struct los_init
305{ 276{
277 los_init ()
278 {
279 /* for lights */
280 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
281 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
282 {
283 // max intensity
284 int intensity = min (LOS_MAX, abs (radius) + 1);
285
286 // actual intensity
287 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
288
289 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
290 ? min (3, intensity)
291 : LOS_MAX - intensity;
292 }
293
294 /* for general vision */
295 for (int radius = 0; radius <= MAX_DARKNESS; ++radius)
296 for (int distance = 0; distance <= MAX_DARKNESS * 3 / 2; ++distance)
297 {
298 vision_atten [radius][distance] = distance <= radius ? 3 : 4;
299 }
300 }
301} los_init;
302
303sint8
304los_brighten (sint8 b, sint8 l)
305{
306 return b == LOS_BLOCKED ? b : min (b, l);
307}
308
309sint8
310los_darken (sint8 b, sint8 l)
311{
312 return max (b, l);
313}
314
315template<sint8 change_it (sint8, sint8)>
316static void
317apply_light (object *op, int dx, int dy, int light, const sint8 *atten_table)
318{
319 // min or max the circular area around basex, basey
320 player *pl = op->contr;
321
322 dx += LOS_X0;
323 dy += LOS_Y0;
324
325 int hx = op->contr->ns->mapx / 2;
326 int hy = op->contr->ns->mapy / 2;
327
328 int ax0 = max (LOS_X0 - hx, dx - light);
329 int ay0 = max (LOS_Y0 - hy, dy - light);
330 int ax1 = min (dx + light, LOS_X0 + hx);
331 int ay1 = min (dy + light, LOS_Y0 + hy);
332
333 for (int ax = ax0; ax <= ax1; ax++)
334 for (int ay = ay0; ay <= ay1; ay++)
335 pl->los[ax][ay] =
336 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
337}
338
339/* add light, by finding all (non-null) nearby light sources, then
340 * mark those squares specially.
341 */
342static void
343apply_lights (object *op)
344{
306 int x,y,darklevel,ax,ay, basex, basey, mflags, light, x1, y1; 345 int darklevel, mflags, light, x1, y1;
307 mapstruct *m=op->map; 346 maptile *m = op->map;
308 sint16 nx, ny; 347 sint16 nx, ny;
309
310 darklevel = MAP_DARKNESS(m);
311 348
349 darklevel = m->darklevel ();
350
312 /* If the player can see in the dark, lower the darklevel for him */ 351 /* If the player can see in the dark, lower the darklevel for him */
313 if(QUERY_FLAG(op,FLAG_SEE_IN_DARK)) darklevel -= 2; 352 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK))
353 darklevel -= 2;
314 354
315 /* add light, by finding all (non-null) nearby light sources, then
316 * mark those squares specially. If the darklevel<1, there is no
317 * reason to do this, so we skip this function
318 */
319
320 if(darklevel<1) return;
321
322 /* Do a sanity check. If not valid, some code below may do odd 355 /* Do a sanity check. If not valid, some code below may do odd
323 * things. 356 * things.
324 */ 357 */
325 if (darklevel > MAX_DARKNESS) { 358 if (darklevel > MAX_DARKNESS)
359 {
326 LOG(llevError,"Map darkness for %s on %s is too high (%d)\n", 360 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel);
327 op->name, op->map->path, darklevel);
328 darklevel = MAX_DARKNESS; 361 darklevel = MAX_DARKNESS;
329 } 362 }
330 363
331 /* First, limit player furthest (unlighted) vision */ 364 int half_x = op->contr->ns->mapx / 2;
332 for (x = 0; x < op->contr->socket.mapx; x++) 365 int half_y = op->contr->ns->mapy / 2;
333 for (y = 0; y < op->contr->socket.mapy; y++)
334 if(op->contr->blocked_los[x][y]!=100)
335 op->contr->blocked_los[x][y]= MAX_LIGHT_RADII;
336 366
337 /* the spaces[] darkness value contains the information we need. 367 int min_x = op->x - half_x - MAX_LIGHT_RADIUS;
368 int min_y = op->y - half_y - MAX_LIGHT_RADIUS;
369 int max_x = op->x + half_x + MAX_LIGHT_RADIUS;
370 int max_y = op->y + half_y + MAX_LIGHT_RADIUS;
371
372 int pass2 = 0; // negative lights have an extra pass
373
374 if (darklevel < 1)
375 pass2 = 1;
376 else
377 {
378 /* first, make everything totally dark */
379 for (int dx = -half_x; dx <= half_x; dx++)
380 for (int dy = -half_x; dy <= half_y; dy++)
381 if (op->contr->los[dx + LOS_X0][dy + LOS_Y0] != LOS_BLOCKED)
382 op->contr->los[dx + LOS_X0][dy + LOS_Y0] = LOS_MAX;
383
384 /*
338 * Only process the area of interest. 385 * Only process the area of interest.
339 * the basex, basey values represent the position in the op->contr->blocked_los 386 * the basex, basey values represent the position in the op->contr->los
340 * array. Its easier to just increment them here (and start with the right 387 * array. Its easier to just increment them here (and start with the right
341 * value) than to recalculate them down below. 388 * value) than to recalculate them down below.
342 */ 389 */
343 for (x=(op->x - op->contr->socket.mapx/2 - MAX_LIGHT_RADII), basex=-MAX_LIGHT_RADII; 390 for (int x = min_x; x <= max_x; x++)
344 x <= (op->x + op->contr->socket.mapx/2 + MAX_LIGHT_RADII); x++, basex++) { 391 for (int y = min_y; y <= max_y; y++)
345 392 {
346 for (y=(op->y - op->contr->socket.mapy/2 - MAX_LIGHT_RADII), basey=-MAX_LIGHT_RADII;
347 y <= (op->y + op->contr->socket.mapy/2 + MAX_LIGHT_RADII); y++, basey++) {
348 m = op->map; 393 maptile *m = op->map;
349 nx = x; 394 sint16 nx = x;
350 ny = y; 395 sint16 ny = y;
351 396
352 mflags = get_map_flags(m, &m, nx, ny, &nx, &ny); 397 if (!xy_normalise (m, nx, ny))
398 continue;
353 399
354 if (mflags & P_OUT_OF_MAP) continue; 400 mapspace &ms = m->at (nx, ny);
401 ms.update ();
402 sint8 light = ms.light;
355 403
356 /* This space is providing light, so we need to brighten up the 404 if (expect_false (light))
357 * spaces around here.
358 */
359 light = GET_MAP_LIGHT(m, nx, ny);
360 if (light != 0) { 405 if (light < 0)
361#if 0 406 pass2 = 1;
362 LOG(llevDebug, "expand_lighted_sight: Found light at x=%d, y=%d, basex=%d, basey=%d\n", 407 else
363 x, y, basex, basey); 408 apply_light<los_brighten> (op, x - op->x, y - op->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
364#endif
365 for (ax=basex - light; ax<=basex+light; ax++) {
366 if (ax<0 || ax>=op->contr->socket.mapx) continue;
367 for (ay=basey - light; ay<=basey+light; ay++) {
368 if (ay<0 || ay>=op->contr->socket.mapy) continue;
369
370 /* If the space is fully blocked, do nothing. Otherwise, we
371 * brighten the space. The further the light is away from the
372 * source (basex-x), the less effect it has. Though light used
373 * to dim in a square manner, it now dims in a circular manner
374 * using the the pythagorean theorem. glow_radius still
375 * represents the radius
376 */
377 if(op->contr->blocked_los[ax][ay]!=100) {
378 x1 = abs(basex-ax)*abs(basex-ax);
379 y1 = abs(basey-ay)*abs(basey-ay);
380 if (light > 0) op->contr->blocked_los[ax][ay]-= MAX((light - isqrt(x1 + y1)), 0);
381 if (light < 0) op->contr->blocked_los[ax][ay]-= MIN((light + isqrt(x1 + y1)), 0);
382 }
383 } /* for ay */
384 } /* for ax */
385 } /* if this space is providing light */
386 } /* for y */
387 } /* for x */
388
389 /* Outdoor should never really be completely pitch black dark like
390 * a dungeon, so let the player at least see a little around themselves
391 */
392 if (op->map->outdoor && darklevel > (MAX_DARKNESS - 3)) {
393 if (op->contr->blocked_los[op->contr->socket.mapx/2][op->contr->socket.mapy/2] > (MAX_DARKNESS-3))
394 op->contr->blocked_los[op->contr->socket.mapx/2][op->contr->socket.mapy/2] = MAX_DARKNESS - 3;
395
396 for (x=-1; x<=1; x++)
397 for (y=-1; y<=1; y++) {
398 if (op->contr->blocked_los[x + op->contr->socket.mapx/2][y + op->contr->socket.mapy/2] > (MAX_DARKNESS-2))
399 op->contr->blocked_los[x + op->contr->socket.mapx/2][y + op->contr->socket.mapy/2] = MAX_DARKNESS - 2;
400 } 409 }
410
411 /* grant some vision to the player, based on the darklevel */
412 {
413 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_DARKNESS);
414
415 apply_light<los_brighten> (op, 0, 0, light, vision_atten [light]);
416 }
401 } 417 }
402 /* grant some vision to the player, based on the darklevel */
403 for(x=darklevel-MAX_DARKNESS; x<MAX_DARKNESS + 1 -darklevel; x++)
404 for(y=darklevel-MAX_DARKNESS; y<MAX_DARKNESS + 1 -darklevel; y++)
405 if(!(op->contr->blocked_los[x+op->contr->socket.mapx/2][y+op->contr->socket.mapy/2]==100))
406 op->contr->blocked_los[x+op->contr->socket.mapx/2][y+op->contr->socket.mapy/2]-=
407 MAX(0,6 -darklevel - MAX(abs(x),abs(y)));
408}
409 418
419 // possibly do 2nd pass for rare negative glow radii
420 // for effect, those are always considered to be stronger than anything else
421 // but they can't darken a place completely
422 if (pass2)
423 for (int x = min_x; x <= max_x; x++)
424 for (int y = min_y; y <= max_y; y++)
425 {
426 maptile *m = op->map;
427 sint16 nx = x;
428 sint16 ny = y;
429
430 if (!xy_normalise (m, nx, ny))
431 continue;
432
433 mapspace &ms = m->at (nx, ny);
434 ms.update ();
435 sint8 light = ms.light;
436
437 if (expect_false (light < 0))
438 apply_light<los_darken> (op, x - op->x, y - op->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
439 }
440}
441
410/* blinded_sight() - sets all veiwable squares to blocked except 442/* blinded_sight() - sets all viewable squares to blocked except
411 * for the one the central one that the player occupies. A little 443 * for the one the central one that the player occupies. A little
412 * odd that you can see yourself (and what your standing on), but 444 * odd that you can see yourself (and what your standing on), but
413 * really need for any reasonable game play. 445 * really need for any reasonable game play.
414 */ 446 */
415 447static void
416static void blinded_sight(object *op) { 448blinded_sight (object *op)
417 int x,y; 449{
418 450 op->contr->los[LOS_X0][LOS_Y0] = 1;
419 for (x = 0; x < op->contr->socket.mapx; x++)
420 for (y = 0; y < op->contr->socket.mapy; y++)
421 op->contr->blocked_los[x][y] = 100;
422
423 op->contr->blocked_los[ op->contr->socket.mapx/2][ op->contr->socket.mapy/2] = 0;
424} 451}
425 452
426/* 453/*
427 * update_los() recalculates the array which specifies what is 454 * update_los() recalculates the array which specifies what is
428 * visible for the given player-object. 455 * visible for the given player-object.
429 */ 456 */
430 457void
431void update_los(object *op) { 458update_los (object *op)
432 int dx = op->contr->socket.mapx/2, dy = op->contr->socket.mapy/2, x, y; 459{
433
434 if(QUERY_FLAG(op,FLAG_REMOVED)) 460 if (QUERY_FLAG (op, FLAG_REMOVED))
435 return; 461 return;
436 462
437 clear_los(op); 463 op->contr->clear_los ();
464
438 if(QUERY_FLAG(op,FLAG_WIZ) /* ||XRAYS(op) */) 465 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ )
439 return; 466 memset (op->contr->los, 0, sizeof (op->contr->los));
440
441 /* For larger maps, this is more efficient than the old way which
442 * used the chaining of the block array. Since many space views could
443 * be blocked by different spaces in front, this mean that a lot of spaces
444 * could be examined multile times, as each path would be looked at.
445 */
446 for (x=(MAP_CLIENT_X - op->contr->socket.mapx)/2 - 1; x<(MAP_CLIENT_X + op->contr->socket.mapx)/2 + 1; x++)
447 for (y=(MAP_CLIENT_Y - op->contr->socket.mapy)/2 - 1; y<(MAP_CLIENT_Y + op->contr->socket.mapy)/2 + 1; y++)
448 check_wall(op, x, y);
449
450
451 /* do the los of the player. 3 (potential) cases */
452 if(QUERY_FLAG(op,FLAG_BLIND)) /* player is blind */ 467 else if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
453 blinded_sight(op); 468 blinded_sight (op);
454 else 469 else
455 expand_sight(op); 470 {
456 471 do_los (op);
457 if (QUERY_FLAG(op,FLAG_XRAYS)) { 472 apply_lights (op);
458 int x, y;
459 for (x = -2; x <= 2; x++)
460 for (y = -2; y <= 2; y++)
461 op->contr->blocked_los[dx + x][dy + y] = 0;
462 } 473 }
474
475 if (QUERY_FLAG (op, FLAG_XRAYS))
476 for (int dx = -2; dx <= 2; dx++)
477 for (int dy = -2; dy <= 2; dy++)
478 min_it (op->contr->los[dx + LOS_X0][dy + LOS_X0], 1);
463} 479}
464 480
465/* update all_map_los is like update_all_los below, 481/* update all_map_los is like update_all_los below,
466 * but updates everyone on the map, no matter where they 482 * but updates everyone on the map, no matter where they
467 * are. This generally should not be used, as a per 483 * are. This generally should not be used, as a per
468 * specific map change doesn't make much sense when tiling 484 * specific map change doesn't make much sense when tiling
469 * is considered (lowering darkness would certainly be a 485 * is considered (lowering darkness would certainly be a
470 * strange effect if done on a tile map, as it makes 486 * strange effect if done on a tile map, as it makes
471 * the distinction between maps much more obvious to the 487 * the distinction between maps much more obvious to the
472 * players, which is should not be. 488 * players, which is should not be.
473 * Currently, this function is called from the 489 * Currently, this function is called from the
474 * change_map_light function 490 * change_map_light function
475 */ 491 */
492void
476void update_all_map_los(mapstruct *map) { 493update_all_map_los (maptile *map)
477 player *pl; 494{
478 495 for_all_players_on_map (pl, map)
479 for(pl=first_player;pl!=NULL;pl=pl->next) {
480 if(pl->ob->map==map)
481 pl->do_los=1; 496 pl->do_los = 1;
482 }
483} 497}
484
485 498
486/* 499/*
487 * This function makes sure that update_los() will be called for all 500 * This function makes sure that update_los() will be called for all
488 * players on the given map within the next frame. 501 * players on the given map within the next frame.
489 * It is triggered by removal or inserting of objects which blocks 502 * It is triggered by removal or inserting of objects which blocks
493 * means that just being on the same map is not sufficient - the 506 * means that just being on the same map is not sufficient - the
494 * space that changes must be withing your viewable area. 507 * space that changes must be withing your viewable area.
495 * 508 *
496 * map is the map that changed, x and y are the coordinates. 509 * map is the map that changed, x and y are the coordinates.
497 */ 510 */
498 511void
499void update_all_los(const mapstruct *map, int x, int y) { 512update_all_los (const maptile *map, int x, int y)
500 player *pl; 513{
514 map->at (x, y).invalidate ();
501 515
502 for(pl=first_player;pl!=NULL;pl=pl->next) { 516 for_all_players (pl)
517 {
503 /* Player should not have a null map, but do this 518 /* Player should not have a null map, but do this
504 * check as a safety 519 * check as a safety
505 */ 520 */
506 if (!pl->ob->map) continue; 521 if (!pl->ob || !pl->ob->map || !pl->ns)
522 continue;
507 523
508 /* Same map is simple case - see if pl is close enough. 524 /* Same map is simple case - see if pl is close enough.
509 * Note in all cases, we did the check for same map first, 525 * Note in all cases, we did the check for same map first,
510 * and then see if the player is close enough and update 526 * and then see if the player is close enough and update
511 * los if that is the case. If the player is on the 527 * los if that is the case. If the player is on the
512 * corresponding map, but not close enough, then the 528 * corresponding map, but not close enough, then the
513 * player can't be on another map that may be closer, 529 * player can't be on another map that may be closer,
514 * so by setting it up this way, we trim processing 530 * so by setting it up this way, we trim processing
515 * some. 531 * some.
516 */ 532 */
517 if(pl->ob->map==map) { 533 if (pl->ob->map == map)
518 if ((abs(pl->ob->x - x) <= pl->socket.mapx/2) && 534 {
519 (abs(pl->ob->y - y) <= pl->socket.mapy/2)) 535 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
520 pl->do_los=1; 536 pl->do_los = 1;
521 } 537 }
538
522 /* Now we check to see if player is on adjacent 539 /* Now we check to see if player is on adjacent
523 * maps to the one that changed and also within 540 * maps to the one that changed and also within
524 * view. The tile_maps[] could be null, but in that 541 * view. The tile_maps[] could be null, but in that
525 * case it should never match the pl->ob->map, so 542 * case it should never match the pl->ob->map, so
526 * we want ever try to dereference any of the data in it. 543 * we want ever try to dereference any of the data in it.
527 */ 544 *
528
529 /* The logic for 0 and 3 is to see how far the player is 545 * The logic for 0 and 3 is to see how far the player is
530 * from the edge of the map (height/width) - pl->ob->(x,y) 546 * from the edge of the map (height/width) - pl->ob->(x,y)
531 * and to add current position on this map - that gives a 547 * and to add current position on this map - that gives a
532 * distance. 548 * distance.
533 * For 1 and 2, we check to see how far the given 549 * For 1 and 2, we check to see how far the given
534 * coordinate (x,y) is from the corresponding edge, 550 * coordinate (x,y) is from the corresponding edge,
535 * and then add the players location, which gives 551 * and then add the players location, which gives
536 * a distance. 552 * a distance.
537 */ 553 */
538 else if (pl->ob->map == map->tile_map[0]) { 554 else if (pl->ob->map == map->tile_map[0])
539 if ((abs(pl->ob->x - x) <= pl->socket.mapx/2) && 555 {
540 (abs(y + MAP_HEIGHT(map->tile_map[0]) - pl->ob->y) <= pl->socket.mapy/2)) 556 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
541 pl->do_los=1; 557 pl->do_los = 1;
542 } 558 }
543 else if (pl->ob->map == map->tile_map[2]) { 559 else if (pl->ob->map == map->tile_map[2])
544 if ((abs(pl->ob->x - x) <= pl->socket.mapx/2) && 560 {
545 (abs(pl->ob->y + MAP_HEIGHT(map) - y) <= pl->socket.mapy/2)) 561 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
546 pl->do_los=1; 562 pl->do_los = 1;
547 } 563 }
548 else if (pl->ob->map == map->tile_map[1]) { 564 else if (pl->ob->map == map->tile_map[1])
549 if ((abs(pl->ob->x + MAP_WIDTH(map) - x) <= pl->socket.mapx/2) && 565 {
550 (abs(pl->ob->y - y) <= pl->socket.mapy/2)) 566 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
551 pl->do_los=1; 567 pl->do_los = 1;
552 } 568 }
553 else if (pl->ob->map == map->tile_map[3]) { 569 else if (pl->ob->map == map->tile_map[3])
554 if ((abs(x + MAP_WIDTH(map->tile_map[3]) - pl->ob->x) <= pl->socket.mapx/2) && 570 {
555 (abs(pl->ob->y - y) <= pl->socket.mapy/2)) 571 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
556 pl->do_los=1; 572 pl->do_los = 1;
557 } 573 }
558 } 574 }
559} 575}
560 576
577static const int season_timechange[5][HOURS_PER_DAY] = {
578 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
579 { 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1},
580 { 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0},
581 { 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0},
582 { 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0},
583 { 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0}
584};
585
586void
587maptile::set_darkness_map ()
588{
589 timeofday_t tod;
590
591 if (!outdoor)
592 return;
593
594 get_tod (&tod);
595 darkness = 0;
596
597 for (int i = HOURS_PER_DAY / 2; i < HOURS_PER_DAY; i++)
598 change_map_light (season_timechange[tod.season][i]);
599
600 for (int i = 0; i <= tod.hour; i++)
601 change_map_light (season_timechange[tod.season][i]);
602}
603
561/* 604/*
562 * Debug-routine which dumps the array which specifies the visible 605 * Compute the darkness level for all maps in the game. Requires the
563 * area of a player. Triggered by the z key in DM mode. 606 * time of day as an argument.
607 */
608
609static void
610dawn_to_dusk (const timeofday_t * tod)
611{
612 /* If the light level isn't changing, no reason to do all
613 * the work below.
564 */ 614 */
615 if (season_timechange[tod->season][tod->hour] == 0)
616 return;
565 617
566void print_los(object *op) { 618 maptile::change_all_map_light (season_timechange[tod->season][tod->hour]);
567 int x,y; 619}
568 char buf[50], buf2[10];
569 620
570 strcpy(buf," "); 621void
571 for(x=0;x<op->contr->socket.mapx;x++) { 622adjust_daylight ()
572 sprintf(buf2,"%2d",x); 623{
573 strcat(buf,buf2); 624 timeofday_t tod;
574 } 625
575 new_draw_info(NDI_UNIQUE, 0, op, buf); 626 get_tod (&tod);
576 for(y=0;y<op->contr->socket.mapy;y++) { 627 dawn_to_dusk (&tod);
577 sprintf(buf,"%2d:",y);
578 for(x=0;x<op->contr->socket.mapx;x++) {
579 sprintf(buf2," %1d",op->contr->blocked_los[x][y]);
580 strcat(buf,buf2);
581 }
582 new_draw_info(NDI_UNIQUE, 0, op, buf);
583 }
584} 628}
585 629
586/* 630/*
587 * make_sure_seen: The object is supposed to be visible through walls, thus 631 * make_sure_seen: The object is supposed to be visible through walls, thus
588 * check if any players are nearby, and edit their LOS array. 632 * check if any players are nearby, and edit their LOS array.
589 */ 633 */
590 634void
591void make_sure_seen(const object *op) { 635make_sure_seen (const object *op)
592 player *pl; 636{
593 637 for_all_players (pl)
594 for (pl = first_player; pl; pl = pl->next)
595 if (pl->ob->map == op->map && 638 if (pl->ob->map == op->map &&
596 pl->ob->y - pl->socket.mapy/2 <= op->y && 639 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
597 pl->ob->y + pl->socket.mapy/2 >= op->y && 640 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
598 pl->ob->x - pl->socket.mapx/2 <= op->x && 641 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_X0] = 0;
599 pl->ob->x + pl->socket.mapx/2 >= op->x)
600 pl->blocked_los[pl->socket.mapx/2 + op->x - pl->ob->x]
601 [pl->socket.mapy/2 + op->y - pl->ob->y] = 0;
602} 642}
603 643
604/* 644/*
605 * make_sure_not_seen: The object which is supposed to be visible through 645 * make_sure_not_seen: The object which is supposed to be visible through
606 * walls has just been removed from the map, so update the los of any 646 * walls has just been removed from the map, so update the los of any
607 * players within its range 647 * players within its range
608 */ 648 */
609 649void
610void make_sure_not_seen(const object *op) { 650make_sure_not_seen (const object *op)
611 player *pl; 651{
612 for (pl = first_player; pl; pl = pl->next) 652 for_all_players (pl)
613 if (pl->ob->map == op->map && 653 if (pl->ob->map == op->map &&
614 pl->ob->y - pl->socket.mapy/2 <= op->y && 654 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
615 pl->ob->y + pl->socket.mapy/2 >= op->y && 655 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
616 pl->ob->x - pl->socket.mapx/2 <= op->x &&
617 pl->ob->x + pl->socket.mapx/2 >= op->x)
618 pl->do_los = 1; 656 pl->do_los = 1;
619} 657}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines