ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.3 by root, Sun Sep 3 00:18:40 2006 UTC vs.
Revision 1.49 by root, Tue Dec 23 22:03:06 2008 UTC

1/* 1/*
2 * static char *rcsid_los_c = 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * "$Id: los.C,v 1.3 2006/09/03 00:18:40 root Exp $"; 3 *
4 */ 4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5
6/*
7 CrossFire, A Multiplayer game for X-windows
8
9 Copyright (C) 2002 Mark Wedel & Crossfire Development Team 5 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
10 Copyright (C) 1992 Frank Tore Johansen 6 * Copyright (©) 1992,2007 Frank Tore Johansen
11 7 *
12 This program is free software; you can redistribute it and/or modify 8 * Deliantra is free software: you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by 9 * it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or 10 * the Free Software Foundation, either version 3 of the License, or
15 (at your option) any later version. 11 * (at your option) any later version.
16 12 *
17 This program is distributed in the hope that it will be useful, 13 * This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details. 16 * GNU General Public License for more details.
21 17 *
22 You should have received a copy of the GNU General Public License 18 * You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software 19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
24 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 *
25 21 * The authors can be reached via e-mail to <support@deliantra.net>
26 The authors can be reached via e-mail at crossfire-devel@real-time.com
27*/ 22 */
28 23
29/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */ 24#include <bench.h>//D
30
31#include <global.h> 25#include <global.h>
32#include <funcpoint.h>
33#include <math.h> 26#include <cmath>
34 27
28// los flags
29enum {
30 FLG_XI = 0x01, // we have an x-parent
31 FLG_YI = 0x02, // we have an y-parent
32 FLG_BLOCKED = 0x04, // this space blocks the view
33 FLG_QUEUED = 0x80 // already queued in queue, or border
34};
35 35
36/* Distance must be less than this for the object to be blocked. 36struct los_info
37 * An object is 1.0 wide, so if set to 0.5, it means the object 37{
38 * that blocks half the view (0.0 is complete block) will 38 uint8 flags; // FLG_xxx
39 * block view in our tables. 39 uint8 culled; // culled from "tree"
40 * .4 or less lets you see through walls. .5 is about right. 40 uint8 visible;
41 */ 41 uint8 pad0;
42 42
43#define SPACE_BLOCK 0.5 43 sint8 xo, yo; // obscure angle
44 sint8 xe, ye; // angle deviation
45};
44 46
45typedef struct blstr { 47// temporary storage for the los algorithm,
46 int x[4],y[4]; 48// one los_info for each lightable map space
47 int index;
48} blocks;
49
50blocks block[MAP_CLIENT_X][MAP_CLIENT_Y]; 49static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
51 50
52static void expand_lighted_sight(object *op); 51struct point
52{
53 sint8 x, y;
54};
53 55
54/* 56// minimum size, but must be a power of two
55 * Used to initialise the array used by the LOS routines. 57#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
56 * What this sets if that x,y blocks the view of bx,by
57 * This then sets up a relation - for example, something
58 * at 5,4 blocks view at 5,3 which blocks view at 5,2
59 * etc. So when we check 5,4 and find it block, we have
60 * the data to know that 5,3 and 5,2 and 5,1 should also
61 * be blocked.
62 */
63 58
64static void set_block(int x, int y, int bx, int by) { 59// a queue of spaces to calculate
65 int index=block[x][y].index,i; 60static point queue [QUEUE_LENGTH];
66 61static int q1, q2; // queue start, end
67 /* Due to flipping, we may get duplicates - better safe than sorry.
68 */
69 for (i=0; i<index; i++) {
70 if (block[x][y].x[i] == bx && block[x][y].y[i] == by) return;
71 }
72
73 block[x][y].x[index]=bx;
74 block[x][y].y[index]=by;
75 block[x][y].index++;
76#ifdef LOS_DEBUG
77 LOG(llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by,
78 block[x][y].index);
79#endif
80}
81
82/*
83 * initialises the array used by the LOS routines.
84 */
85
86/* since we are only doing the upper left quadrant, only
87 * these spaces could possibly get blocked, since these
88 * are the only ones further out that are still possibly in the
89 * sightline.
90 */
91
92void init_block(void) {
93 int x,y, dx, dy, i;
94 static int block_x[3] = {-1, -1, 0}, block_y[3] = {-1, 0, -1};
95
96 for(x=0;x<MAP_CLIENT_X;x++)
97 for(y=0;y<MAP_CLIENT_Y;y++) {
98 block[x][y].index=0;
99 }
100
101
102 /* The table should be symmetric, so only do the upper left
103 * quadrant - makes the processing easier.
104 */
105 for (x=1; x<=MAP_CLIENT_X/2; x++) {
106 for (y=1; y<=MAP_CLIENT_Y/2; y++) {
107 for (i=0; i< 3; i++) {
108 dx = x + block_x[i];
109 dy = y + block_y[i];
110
111 /* center space never blocks */
112 if (x == MAP_CLIENT_X/2 && y == MAP_CLIENT_Y/2) continue;
113
114 /* If its a straight line, its blocked */
115 if ((dx == x && x == MAP_CLIENT_X/2) ||
116 (dy==y && y == MAP_CLIENT_Y/2)) {
117 /* For simplicity, we mirror the coordinates to block the other
118 * quadrants.
119 */
120 set_block(x, y, dx, dy);
121 if (x == MAP_CLIENT_X/2) {
122 set_block(x, MAP_CLIENT_Y - y -1, dx, MAP_CLIENT_Y - dy-1);
123 } else if (y == MAP_CLIENT_Y/2) {
124 set_block(MAP_CLIENT_X - x -1, y, MAP_CLIENT_X - dx - 1, dy);
125 }
126 } else {
127 float d1, r, s,l;
128
129 /* We use the algorihm that found out how close the point
130 * (x,y) is to the line from dx,dy to the center of the viewable
131 * area. l is the distance from x,y to the line.
132 * r is more a curiosity - it lets us know what direction (left/right)
133 * the line is off
134 */
135
136 d1 = (float) (pow(MAP_CLIENT_X/2 - dx, 2) + pow(MAP_CLIENT_Y/2 - dy,2));
137 r = (float)((dy-y)*(dy - MAP_CLIENT_Y/2) - (dx-x)*(MAP_CLIENT_X/2-dx))/d1;
138 s = (float)((dy-y)*(MAP_CLIENT_X/2 - dx ) - (dx-x)*(MAP_CLIENT_Y/2-dy))/d1;
139 l = FABS(sqrt(d1) * s);
140
141 if (l <= SPACE_BLOCK) {
142 /* For simplicity, we mirror the coordinates to block the other
143 * quadrants.
144 */
145 set_block(x,y,dx,dy);
146 set_block(MAP_CLIENT_X - x -1, y, MAP_CLIENT_X - dx - 1, dy);
147 set_block(x, MAP_CLIENT_Y - y -1, dx, MAP_CLIENT_Y - dy - 1);
148 set_block(MAP_CLIENT_X -x-1, MAP_CLIENT_Y -y-1, MAP_CLIENT_X - dx-1, MAP_CLIENT_Y - dy-1);
149 }
150 }
151 }
152 }
153 }
154}
155
156/*
157 * Used to initialise the array used by the LOS routines.
158 * x,y are indexes into the blocked[][] array.
159 * This recursively sets the blocked line of sight view.
160 * From the blocked[][] array, we know for example
161 * that if some particular space is blocked, it blocks
162 * the view of the spaces 'behind' it, and those blocked
163 * spaces behind it may block other spaces, etc.
164 * In this way, the chain of visibility is set.
165 */
166
167static void set_wall(object *op,int x,int y) {
168 int i;
169
170 for(i=0;i<block[x][y].index;i++) {
171 int dx=block[x][y].x[i],dy=block[x][y].y[i],ax,ay;
172
173 /* ax, ay are the values as adjusted to be in the
174 * socket look structure.
175 */
176 ax = dx - (MAP_CLIENT_X - op->contr->socket.mapx)/2;
177 ay = dy - (MAP_CLIENT_Y - op->contr->socket.mapy)/2;
178
179 if (ax < 0 || ax>=op->contr->socket.mapx ||
180 ay < 0 || ay>=op->contr->socket.mapy) continue;
181#if 0
182 LOG(llevDebug, "blocked %d %d -> %d %d\n",
183 dx, dy, ax, ay);
184#endif
185 /* we need to adjust to the fact that the socket
186 * code wants the los to start from the 0,0
187 * and not be relative to middle of los array.
188 */
189 op->contr->blocked_los[ax][ay]=100;
190 set_wall(op,dx,dy);
191 }
192}
193
194/*
195 * Used to initialise the array used by the LOS routines.
196 * op is the object, x and y values based on MAP_CLIENT_X and Y.
197 * this is because they index the blocked[][] arrays.
198 */
199
200static void check_wall(object *op,int x,int y) {
201 int ax, ay;
202
203 if(!block[x][y].index)
204 return;
205
206 /* ax, ay are coordinates as indexed into the look window */
207 ax = x - (MAP_CLIENT_X - op->contr->socket.mapx)/2;
208 ay = y - (MAP_CLIENT_Y - op->contr->socket.mapy)/2;
209
210 /* If the converted coordinates are outside the viewable
211 * area for the client, return now.
212 */
213 if (ax < 0 || ay < 0 || ax >= op->contr->socket.mapx || ay >= op->contr->socket.mapy)
214 return;
215
216#if 0
217 LOG(llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
218 ax, ay, x, y, op->x + x - MAP_CLIENT_X/2, op->y + y - MAP_CLIENT_Y/2);
219#endif
220
221 /* If this space is already blocked, prune the processing - presumably
222 * whatever has set this space to be blocked has done the work and already
223 * done the dependency chain.
224 */
225 if (op->contr->blocked_los[ax][ay] == 100) return;
226
227
228 if(get_map_flags(op->map, NULL,
229 op->x + x - MAP_CLIENT_X/2, op->y + y - MAP_CLIENT_Y/2,
230 NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
231 set_wall(op,x,y);
232}
233 62
234/* 63/*
235 * Clears/initialises the los-array associated to the player 64 * Clears/initialises the los-array associated to the player
236 * controlling the object. 65 * controlling the object.
237 */ 66 */
238 67void
239void clear_los(object *op) { 68player::clear_los (sint8 value)
240 /* This is safer than using the socket->mapx, mapy because
241 * we index the blocked_los as a 2 way array, so clearing
242 * the first z spaces may not not cover the spaces we are
243 * actually going to use
244 */
245 (void)memset((void *) op->contr->blocked_los,0,
246 MAP_CLIENT_X * MAP_CLIENT_Y);
247}
248
249/*
250 * expand_sight goes through the array of what the given player is
251 * able to see, and expands the visible area a bit, so the player will,
252 * to a certain degree, be able to see into corners.
253 * This is somewhat suboptimal, would be better to improve the formula.
254 */
255
256static void expand_sight(object *op)
257{ 69{
258 int i,x,y, dx, dy; 70 memset (los, value, sizeof (los));
71}
259 72
260 for(x=1;x<op->contr->socket.mapx-1;x++) /* loop over inner squares */ 73// enqueue a single mapspace, but only if it hasn't
261 for(y=1;y<op->contr->socket.mapy-1;y++) { 74// been enqueued yet.
262 if (!op->contr->blocked_los[x][y] && 75static void
263 !(get_map_flags(op->map,NULL, 76enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
264 op->x-op->contr->socket.mapx/2+x, 77{
265 op->y-op->contr->socket.mapy/2+y, 78 sint8 x = LOS_X0 + dx;
266 NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))) { 79 sint8 y = LOS_Y0 + dy;
267 80
268 for(i=1;i<=8;i+=1) { /* mark all directions */ 81 los_info &l = los[x][y];
269 dx = x + freearr_x[i]; 82
270 dy = y + freearr_y[i]; 83 l.flags |= flags;
271 if(op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */ 84
272 op->contr->blocked_los[dx][dy]= -1; 85 if (l.flags & FLG_QUEUED)
86 return;
87
88 l.flags |= FLG_QUEUED;
89
90 queue[q1].x = dx;
91 queue[q1].y = dy;
92
93 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
94}
95
96// run the los algorithm
97// this is a variant of a spiral los algorithm taken from
98// http://www.geocities.com/temerra/los_rays.html
99// which has been simplified and changed considerably, but
100// still is basically the same algorithm.
101static void
102calculate_los (player *pl)
103{
104 {
105 // we keep one line for ourselves, for the border flag
106 // so the client area is actually MAP_CLIENT_(X|Y) - 2
107 int half_x = min (LOS_X0 - 1, pl->ns->mapx / 2);
108 int half_y = min (LOS_Y0 - 1, pl->ns->mapy / 2);
109
110 // create borders, the corners are not touched
111 for (int dx = -half_x; dx <= half_x; ++dx)
112 los [dx + LOS_X0][LOS_Y0 - (half_y + 1)].flags =
113 los [dx + LOS_X0][LOS_Y0 + (half_y + 1)].flags = FLG_QUEUED;
114
115 for (int dy = -half_y; dy <= half_y; ++dy)
116 los [LOS_X0 - (half_x + 1)][dy + LOS_Y0].flags =
117 los [LOS_X0 + (half_x + 1)][dy + LOS_Y0].flags = FLG_QUEUED;
118
119 // now reset the los area and also add blocked flags
120 // which supposedly is faster than doing it inside the
121 // spiral path algorithm below, except when very little
122 // area is visible, in which case it is slower, evening
123 // out los calculation times between large and small los maps.
124 // apply_lights also iterates over this area, maybe these
125 // two passes could be combined somehow.
126 rectangular_mapspace_iterate_begin (pl->observe, -half_x, half_x, -half_y, half_y)
127 los_info &l = los [LOS_X0 + dx][LOS_Y0 + dy];
128 l.flags = m && m->at (nx, ny).flags () & P_BLOCKSVIEW ? FLG_BLOCKED : 0;
129 rectangular_mapspace_iterate_end
130 }
131
132 q1 = 0; q2 = 0; // initialise queue, not strictly required
133 enqueue (0, 0); // enqueue center
134
135 // treat the origin specially
136 los[LOS_X0][LOS_Y0].visible = 1;
137 pl->los[LOS_X0][LOS_Y0] = 0;
138
139 // loop over all enqueued points until the queue is empty
140 // the order in which this is done ensures that we
141 // never touch a mapspace whose input spaces we haven't checked
142 // yet.
143 while (q1 != q2)
144 {
145 sint8 dx = queue[q2].x;
146 sint8 dy = queue[q2].y;
147
148 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
149
150 sint8 x = LOS_X0 + dx;
151 sint8 y = LOS_Y0 + dy;
152
153 los_info &l = los[x][y];
154
155 if (expect_true (l.flags & (FLG_XI | FLG_YI)))
156 {
157 l.culled = 1;
158 l.xo = l.yo = l.xe = l.ye = 0;
159
160 // check contributing spaces, first horizontal
161 if (expect_true (l.flags & FLG_XI))
162 {
163 los_info *xi = &los[x - sign (dx)][y];
164
165 // don't cull unless obscured
166 l.culled &= !xi->visible;
167
168 /* merge input space */
169 if (expect_false (xi->xo || xi->yo))
170 {
171 // The X input can provide two main pieces of information:
172 // 1. Progressive X obscurity.
173 // 2. Recessive Y obscurity.
174
175 // Progressive X obscurity, favouring recessive input angle
176 if (xi->xe > 0 && l.xo == 0)
177 {
178 l.xe = xi->xe - xi->yo;
179 l.ye = xi->ye + xi->yo;
180 l.xo = xi->xo;
181 l.yo = xi->yo;
182 }
183
184 // Recessive Y obscurity
185 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
186 {
187 l.ye = xi->yo + xi->ye;
188 l.xe = xi->xe - xi->yo;
189 l.xo = xi->xo;
190 l.yo = xi->yo;
191 }
273 } 192 }
274 } 193 }
194
195 // check contributing spaces, last vertical, identical structure
196 if (expect_true (l.flags & FLG_YI))
197 {
198 los_info *yi = &los[x][y - sign (dy)];
199
200 // don't cull unless obscured
201 l.culled &= !yi->visible;
202
203 /* merge input space */
204 if (expect_false (yi->yo || yi->xo))
205 {
206 // The Y input can provide two main pieces of information:
207 // 1. Progressive Y obscurity.
208 // 2. Recessive X obscurity.
209
210 // Progressive Y obscurity, favouring recessive input angle
211 if (yi->ye > 0 && l.yo == 0)
212 {
213 l.ye = yi->ye - yi->xo;
214 l.xe = yi->xe + yi->xo;
215 l.yo = yi->yo;
216 l.xo = yi->xo;
217 }
218
219 // Recessive X obscurity
220 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
221 {
222 l.xe = yi->xo + yi->xe;
223 l.ye = yi->ye - yi->xo;
224 l.yo = yi->yo;
225 l.xo = yi->xo;
226 }
227 }
228 }
229
230 if (l.flags & FLG_BLOCKED)
231 {
232 l.xo = l.xe = abs (dx);
233 l.yo = l.ye = abs (dy);
234
235 // we obscure dependents, but might be visible
236 // copy the los from the square towards the player,
237 // so outward diagonal corners are lit.
238 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
239
240 l.visible = false;
241 }
242 else
243 {
244 // we are not blocked, so calculate visibility, by checking
245 // whether we are inside or outside the shadow
246 l.visible = (l.xe <= 0 || l.xe > l.xo)
247 && (l.ye <= 0 || l.ye > l.yo);
248
249 pl->los[x][y] = l.culled ? LOS_BLOCKED
250 : l.visible ? 0
251 : 3;
252 }
253
254 }
255
256 // Expands by the unit length in each component's current direction.
257 // If a component has no direction, then it is expanded in both of its
258 // positive and negative directions.
259 if (!l.culled)
275 } 260 {
276 261 if (dx >= 0) enqueue (dx + 1, dy, FLG_XI);
277 if(MAP_DARKNESS(op->map)>0) /* player is on a dark map */ 262 if (dx <= 0) enqueue (dx - 1, dy, FLG_XI);
278 expand_lighted_sight(op); 263 if (dy >= 0) enqueue (dx, dy + 1, FLG_YI);
279 264 if (dy <= 0) enqueue (dx, dy - 1, FLG_YI);
280 265 }
281 /* clear mark squares */ 266 }
282 for (x = 0; x < op->contr->socket.mapx; x++)
283 for (y = 0; y < op->contr->socket.mapy; y++)
284 if (op->contr->blocked_los[x][y] < 0)
285 op->contr->blocked_los[x][y] = 0;
286} 267}
287
288
289
290 268
291/* returns true if op carries one or more lights 269/* returns true if op carries one or more lights
292 * This is a trivial function now days, but it used to 270 * This is a trivial function now days, but it used to
293 * be a bit longer. Probably better for callers to just 271 * be a bit longer. Probably better for callers to just
294 * check the op->glow_radius instead of calling this. 272 * check the op->glow_radius instead of calling this.
295 */ 273 */
296 274int
297int has_carried_lights(const object *op) { 275has_carried_lights (const object *op)
276{
298 /* op may glow! */ 277 /* op may glow! */
299 if(op->glow_radius>0) return 1; 278 if (op->glow_radius > 0)
300
301 return 0; 279 return 1;
302}
303
304static void expand_lighted_sight(object *op)
305{
306 int x,y,darklevel,ax,ay, basex, basey, mflags, light, x1, y1;
307 mapstruct *m=op->map;
308 sint16 nx, ny;
309
310 darklevel = MAP_DARKNESS(m);
311 280
281 return 0;
282}
283
284/* radius, distance => lightness adjust */
285static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
286static sint8 vision_atten[MAX_DARKNESS + 1][MAX_DARKNESS * 3 / 2 + 1];
287
288static struct los_init
289{
290 los_init ()
291 {
292 assert (("QUEUE_LENGTH, MAP_CLIENT_X and MAP_CLIENT_Y *must* be powers of two",
293 !(QUEUE_LENGTH & (QUEUE_LENGTH - 1))));
294
295 /* for lights */
296 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
297 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
298 {
299 // max intensity
300 int intensity = min (LOS_MAX, abs (radius) + 1);
301
302 // actual intensity
303 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
304
305 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
306 ? min (3, intensity)
307 : LOS_MAX - intensity;
308 }
309
310 /* for general vision */
311 for (int radius = 0; radius <= MAX_DARKNESS; ++radius)
312 for (int distance = 0; distance <= MAX_DARKNESS * 3 / 2; ++distance)
313 {
314 vision_atten [radius][distance] = distance <= radius ? 3 : 4;
315 }
316 }
317} los_init;
318
319sint8
320los_brighten (sint8 b, sint8 l)
321{
322 return b == LOS_BLOCKED ? b : min (b, l);
323}
324
325sint8
326los_darken (sint8 b, sint8 l)
327{
328 return max (b, l);
329}
330
331template<sint8 change_it (sint8, sint8)>
332static void
333apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
334{
335 // min or max the circular area around basex, basey
336 dx += LOS_X0;
337 dy += LOS_Y0;
338
339 int hx = pl->ns->mapx / 2;
340 int hy = pl->ns->mapy / 2;
341
342 int ax0 = max (LOS_X0 - hx, dx - light);
343 int ay0 = max (LOS_Y0 - hy, dy - light);
344 int ax1 = min (dx + light, LOS_X0 + hx);
345 int ay1 = min (dy + light, LOS_Y0 + hy);
346
347 for (int ax = ax0; ax <= ax1; ax++)
348 for (int ay = ay0; ay <= ay1; ay++)
349 pl->los[ax][ay] =
350 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
351}
352
353/* add light, by finding all (non-null) nearby light sources, then
354 * mark those squares specially.
355 */
356static void
357apply_lights (player *pl)
358{
359 object *op = pl->observe;
360 int darklevel = op->map->darklevel ();
361
312 /* If the player can see in the dark, lower the darklevel for him */ 362 /* If the player can see in the dark, lower the darklevel for him */
313 if(QUERY_FLAG(op,FLAG_SEE_IN_DARK)) darklevel -= 2; 363 if (op->flag [FLAG_SEE_IN_DARK])
364 darklevel = max (0, darklevel - 2);
314 365
315 /* add light, by finding all (non-null) nearby light sources, then 366 int half_x = pl->ns->mapx / 2;
316 * mark those squares specially. If the darklevel<1, there is no 367 int half_y = pl->ns->mapy / 2;
317 * reason to do this, so we skip this function 368
369 int pass2 = 0; // negative lights have an extra pass
370
371 if (!darklevel)
372 pass2 = 1;
373 else
374 {
375 /* first, make everything totally dark */
376 for (int dx = -half_x; dx <= half_x; dx++)
377 for (int dy = -half_x; dy <= half_y; dy++)
378 max_it (pl->los[dx + LOS_X0][dy + LOS_Y0], LOS_MAX);
379
380 /*
381 * Only process the area of interest.
382 * the basex, basey values represent the position in the op->contr->los
383 * array. Its easier to just increment them here (and start with the right
384 * value) than to recalculate them down below.
318 */ 385 */
386 rectangular_mapspace_iterate_begin (pl->observe, -half_x - MAX_LIGHT_RADIUS, half_x + MAX_LIGHT_RADIUS, -half_y - MAX_LIGHT_RADIUS, half_y + MAX_LIGHT_RADIUS)
387 if (m)
388 {
389 mapspace &ms = m->at (nx, ny);
390 ms.update ();
391 sint8 light = ms.light;
319 392
320 if(darklevel<1) return; 393 if (expect_false (light))
394 if (light < 0)
395 pass2 = 1;
396 else
397 apply_light<los_brighten> (pl, dx, dy, light, light_atten [light + MAX_LIGHT_RADIUS]);
398 }
399 rectangular_mapspace_iterate_end
321 400
322 /* Do a sanity check. If not valid, some code below may do odd 401 /* grant some vision to the player, based on the darklevel */
323 * things. 402 {
324 */ 403 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_DARKNESS);
325 if (darklevel > MAX_DARKNESS) { 404
326 LOG(llevError,"Map darkness for %s on %s is too high (%d)\n", 405 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
327 &op->name, op->map->path, darklevel); 406 }
328 darklevel = MAX_DARKNESS;
329 } 407 }
330 408
331 /* First, limit player furthest (unlighted) vision */ 409 // possibly do 2nd pass for rare negative glow radii
332 for (x = 0; x < op->contr->socket.mapx; x++) 410 // for effect, those are always considered to be stronger than anything else
333 for (y = 0; y < op->contr->socket.mapy; y++) 411 // but they can't darken a place completely
334 if(op->contr->blocked_los[x][y]!=100) 412 if (pass2)
335 op->contr->blocked_los[x][y]= MAX_LIGHT_RADII; 413 rectangular_mapspace_iterate_begin (pl->observe, -half_x - MAX_LIGHT_RADIUS, half_x + MAX_LIGHT_RADIUS, -half_y - MAX_LIGHT_RADIUS, half_y + MAX_LIGHT_RADIUS)
414 if (m)
415 {
416 mapspace &ms = m->at (nx, ny);
417 ms.update ();
418 sint8 light = ms.light;
336 419
337 /* the spaces[] darkness value contains the information we need. 420 if (expect_false (light < 0))
338 * Only process the area of interest. 421 apply_light<los_darken> (pl, dx, dy, -light, light_atten [light + MAX_LIGHT_RADIUS]);
339 * the basex, basey values represent the position in the op->contr->blocked_los
340 * array. Its easier to just increment them here (and start with the right
341 * value) than to recalculate them down below.
342 */
343 for (x=(op->x - op->contr->socket.mapx/2 - MAX_LIGHT_RADII), basex=-MAX_LIGHT_RADII;
344 x <= (op->x + op->contr->socket.mapx/2 + MAX_LIGHT_RADII); x++, basex++) {
345
346 for (y=(op->y - op->contr->socket.mapy/2 - MAX_LIGHT_RADII), basey=-MAX_LIGHT_RADII;
347 y <= (op->y + op->contr->socket.mapy/2 + MAX_LIGHT_RADII); y++, basey++) {
348 m = op->map;
349 nx = x;
350 ny = y;
351
352 mflags = get_map_flags(m, &m, nx, ny, &nx, &ny);
353
354 if (mflags & P_OUT_OF_MAP) continue;
355
356 /* This space is providing light, so we need to brighten up the
357 * spaces around here.
358 */
359 light = GET_MAP_LIGHT(m, nx, ny);
360 if (light != 0) {
361#if 0
362 LOG(llevDebug, "expand_lighted_sight: Found light at x=%d, y=%d, basex=%d, basey=%d\n",
363 x, y, basex, basey);
364#endif
365 for (ax=basex - light; ax<=basex+light; ax++) {
366 if (ax<0 || ax>=op->contr->socket.mapx) continue;
367 for (ay=basey - light; ay<=basey+light; ay++) {
368 if (ay<0 || ay>=op->contr->socket.mapy) continue;
369
370 /* If the space is fully blocked, do nothing. Otherwise, we
371 * brighten the space. The further the light is away from the
372 * source (basex-x), the less effect it has. Though light used
373 * to dim in a square manner, it now dims in a circular manner
374 * using the the pythagorean theorem. glow_radius still
375 * represents the radius
376 */
377 if(op->contr->blocked_los[ax][ay]!=100) {
378 x1 = abs(basex-ax)*abs(basex-ax);
379 y1 = abs(basey-ay)*abs(basey-ay);
380 if (light > 0) op->contr->blocked_los[ax][ay]-= MAX((light - isqrt(x1 + y1)), 0);
381 if (light < 0) op->contr->blocked_los[ax][ay]-= MIN((light + isqrt(x1 + y1)), 0);
382 }
383 } /* for ay */
384 } /* for ax */
385 } /* if this space is providing light */
386 } /* for y */
387 } /* for x */
388
389 /* Outdoor should never really be completely pitch black dark like
390 * a dungeon, so let the player at least see a little around themselves
391 */
392 if (op->map->outdoor && darklevel > (MAX_DARKNESS - 3)) {
393 if (op->contr->blocked_los[op->contr->socket.mapx/2][op->contr->socket.mapy/2] > (MAX_DARKNESS-3))
394 op->contr->blocked_los[op->contr->socket.mapx/2][op->contr->socket.mapy/2] = MAX_DARKNESS - 3;
395
396 for (x=-1; x<=1; x++)
397 for (y=-1; y<=1; y++) {
398 if (op->contr->blocked_los[x + op->contr->socket.mapx/2][y + op->contr->socket.mapy/2] > (MAX_DARKNESS-2))
399 op->contr->blocked_los[x + op->contr->socket.mapx/2][y + op->contr->socket.mapy/2] = MAX_DARKNESS - 2;
400 }
401 } 422 }
402 /* grant some vision to the player, based on the darklevel */ 423 rectangular_mapspace_iterate_end
403 for(x=darklevel-MAX_DARKNESS; x<MAX_DARKNESS + 1 -darklevel; x++)
404 for(y=darklevel-MAX_DARKNESS; y<MAX_DARKNESS + 1 -darklevel; y++)
405 if(!(op->contr->blocked_los[x+op->contr->socket.mapx/2][y+op->contr->socket.mapy/2]==100))
406 op->contr->blocked_los[x+op->contr->socket.mapx/2][y+op->contr->socket.mapy/2]-=
407 MAX(0,6 -darklevel - MAX(abs(x),abs(y)));
408} 424}
409 425
410/* blinded_sight() - sets all veiwable squares to blocked except 426/* blinded_sight() - sets all viewable squares to blocked except
411 * for the one the central one that the player occupies. A little 427 * for the one the central one that the player occupies. A little
412 * odd that you can see yourself (and what your standing on), but 428 * odd that you can see yourself (and what your standing on), but
413 * really need for any reasonable game play. 429 * really need for any reasonable game play.
414 */ 430 */
415 431static void
416static void blinded_sight(object *op) { 432blinded_sight (player *pl)
417 int x,y; 433{
418 434 pl->los[LOS_X0][LOS_Y0] = 1;
419 for (x = 0; x < op->contr->socket.mapx; x++)
420 for (y = 0; y < op->contr->socket.mapy; y++)
421 op->contr->blocked_los[x][y] = 100;
422
423 op->contr->blocked_los[ op->contr->socket.mapx/2][ op->contr->socket.mapy/2] = 0;
424} 435}
425 436
426/* 437/*
427 * update_los() recalculates the array which specifies what is 438 * update_los() recalculates the array which specifies what is
428 * visible for the given player-object. 439 * visible for the given player-object.
429 */ 440 */
430 441void
431void update_los(object *op) { 442player::update_los ()
432 int dx = op->contr->socket.mapx/2, dy = op->contr->socket.mapy/2, x, y; 443{
433 444 if (ob->flag [FLAG_REMOVED])//D really needed?
434 if(QUERY_FLAG(op,FLAG_REMOVED))
435 return; 445 return;
436 446
447 if (ob->flag [FLAG_WIZLOOK])
437 clear_los(op); 448 clear_los (0);
438 if(QUERY_FLAG(op,FLAG_WIZ) /* ||XRAYS(op) */) 449 else if (observe->flag [FLAG_BLIND]) /* player is blind */
439 return; 450 {
440 451 clear_los ();
441 /* For larger maps, this is more efficient than the old way which
442 * used the chaining of the block array. Since many space views could
443 * be blocked by different spaces in front, this mean that a lot of spaces
444 * could be examined multile times, as each path would be looked at.
445 */
446 for (x=(MAP_CLIENT_X - op->contr->socket.mapx)/2 - 1; x<(MAP_CLIENT_X + op->contr->socket.mapx)/2 + 1; x++)
447 for (y=(MAP_CLIENT_Y - op->contr->socket.mapy)/2 - 1; y<(MAP_CLIENT_Y + op->contr->socket.mapy)/2 + 1; y++)
448 check_wall(op, x, y);
449
450
451 /* do the los of the player. 3 (potential) cases */
452 if(QUERY_FLAG(op,FLAG_BLIND)) /* player is blind */
453 blinded_sight(op); 452 blinded_sight (this);
454 else
455 expand_sight(op);
456
457 if (QUERY_FLAG(op,FLAG_XRAYS)) {
458 int x, y;
459 for (x = -2; x <= 2; x++)
460 for (y = -2; y <= 2; y++)
461 op->contr->blocked_los[dx + x][dy + y] = 0;
462 } 453 }
454 else
455 {
456 clear_los ();
457 calculate_los (this);
458 apply_lights (this);
459 }
460
461 if (observe->flag [FLAG_XRAYS])
462 for (int dx = -2; dx <= 2; dx++)
463 for (int dy = -2; dy <= 2; dy++)
464 min_it (los[dx + LOS_X0][dy + LOS_Y0], 1);
463} 465}
464 466
465/* update all_map_los is like update_all_los below, 467/* update all_map_los is like update_all_los below,
466 * but updates everyone on the map, no matter where they 468 * but updates everyone on the map, no matter where they
467 * are. This generally should not be used, as a per 469 * are. This generally should not be used, as a per
468 * specific map change doesn't make much sense when tiling 470 * specific map change doesn't make much sense when tiling
469 * is considered (lowering darkness would certainly be a 471 * is considered (lowering darkness would certainly be a
470 * strange effect if done on a tile map, as it makes 472 * strange effect if done on a tile map, as it makes
471 * the distinction between maps much more obvious to the 473 * the distinction between maps much more obvious to the
472 * players, which is should not be. 474 * players, which is should not be.
473 * Currently, this function is called from the 475 * Currently, this function is called from the
474 * change_map_light function 476 * change_map_light function
475 */ 477 */
478void
476void update_all_map_los(mapstruct *map) { 479update_all_map_los (maptile *map)
477 player *pl; 480{
478 481 for_all_players_on_map (pl, map)
479 for(pl=first_player;pl!=NULL;pl=pl->next) {
480 if(pl->ob->map==map)
481 pl->do_los=1; 482 pl->do_los = 1;
482 }
483} 483}
484
485 484
486/* 485/*
487 * This function makes sure that update_los() will be called for all 486 * This function makes sure that update_los() will be called for all
488 * players on the given map within the next frame. 487 * players on the given map within the next frame.
489 * It is triggered by removal or inserting of objects which blocks 488 * It is triggered by removal or inserting of objects which blocks
493 * means that just being on the same map is not sufficient - the 492 * means that just being on the same map is not sufficient - the
494 * space that changes must be withing your viewable area. 493 * space that changes must be withing your viewable area.
495 * 494 *
496 * map is the map that changed, x and y are the coordinates. 495 * map is the map that changed, x and y are the coordinates.
497 */ 496 */
498 497void
499void update_all_los(const mapstruct *map, int x, int y) { 498update_all_los (const maptile *map, int x, int y)
500 player *pl; 499{
500 map->at (x, y).invalidate ();
501 501
502 for(pl=first_player;pl!=NULL;pl=pl->next) { 502 for_all_players (pl)
503 {
503 /* Player should not have a null map, but do this 504 /* Player should not have a null map, but do this
504 * check as a safety 505 * check as a safety
505 */ 506 */
506 if (!pl->ob->map) continue; 507 if (!pl->ob || !pl->ob->map || !pl->ns)
508 continue;
507 509
508 /* Same map is simple case - see if pl is close enough. 510 /* Same map is simple case - see if pl is close enough.
509 * Note in all cases, we did the check for same map first, 511 * Note in all cases, we did the check for same map first,
510 * and then see if the player is close enough and update 512 * and then see if the player is close enough and update
511 * los if that is the case. If the player is on the 513 * los if that is the case. If the player is on the
512 * corresponding map, but not close enough, then the 514 * corresponding map, but not close enough, then the
513 * player can't be on another map that may be closer, 515 * player can't be on another map that may be closer,
514 * so by setting it up this way, we trim processing 516 * so by setting it up this way, we trim processing
515 * some. 517 * some.
516 */ 518 */
517 if(pl->ob->map==map) { 519 if (pl->ob->map == map)
518 if ((abs(pl->ob->x - x) <= pl->socket.mapx/2) && 520 {
519 (abs(pl->ob->y - y) <= pl->socket.mapy/2)) 521 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
520 pl->do_los=1; 522 pl->do_los = 1;
521 } 523 }
524
522 /* Now we check to see if player is on adjacent 525 /* Now we check to see if player is on adjacent
523 * maps to the one that changed and also within 526 * maps to the one that changed and also within
524 * view. The tile_maps[] could be null, but in that 527 * view. The tile_maps[] could be null, but in that
525 * case it should never match the pl->ob->map, so 528 * case it should never match the pl->ob->map, so
526 * we want ever try to dereference any of the data in it. 529 * we want ever try to dereference any of the data in it.
527 */ 530 *
528
529 /* The logic for 0 and 3 is to see how far the player is 531 * The logic for 0 and 3 is to see how far the player is
530 * from the edge of the map (height/width) - pl->ob->(x,y) 532 * from the edge of the map (height/width) - pl->ob->(x,y)
531 * and to add current position on this map - that gives a 533 * and to add current position on this map - that gives a
532 * distance. 534 * distance.
533 * For 1 and 2, we check to see how far the given 535 * For 1 and 2, we check to see how far the given
534 * coordinate (x,y) is from the corresponding edge, 536 * coordinate (x,y) is from the corresponding edge,
535 * and then add the players location, which gives 537 * and then add the players location, which gives
536 * a distance. 538 * a distance.
537 */ 539 */
538 else if (pl->ob->map == map->tile_map[0]) { 540 else if (pl->ob->map == map->tile_map[0])
539 if ((abs(pl->ob->x - x) <= pl->socket.mapx/2) && 541 {
540 (abs(y + MAP_HEIGHT(map->tile_map[0]) - pl->ob->y) <= pl->socket.mapy/2)) 542 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
541 pl->do_los=1; 543 pl->do_los = 1;
542 } 544 }
543 else if (pl->ob->map == map->tile_map[2]) { 545 else if (pl->ob->map == map->tile_map[2])
544 if ((abs(pl->ob->x - x) <= pl->socket.mapx/2) && 546 {
545 (abs(pl->ob->y + MAP_HEIGHT(map) - y) <= pl->socket.mapy/2)) 547 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
546 pl->do_los=1; 548 pl->do_los = 1;
547 } 549 }
548 else if (pl->ob->map == map->tile_map[1]) { 550 else if (pl->ob->map == map->tile_map[1])
549 if ((abs(pl->ob->x + MAP_WIDTH(map) - x) <= pl->socket.mapx/2) && 551 {
550 (abs(pl->ob->y - y) <= pl->socket.mapy/2)) 552 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
551 pl->do_los=1; 553 pl->do_los = 1;
552 } 554 }
553 else if (pl->ob->map == map->tile_map[3]) { 555 else if (pl->ob->map == map->tile_map[3])
554 if ((abs(x + MAP_WIDTH(map->tile_map[3]) - pl->ob->x) <= pl->socket.mapx/2) && 556 {
555 (abs(pl->ob->y - y) <= pl->socket.mapy/2)) 557 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
556 pl->do_los=1; 558 pl->do_los = 1;
557 } 559 }
558 } 560 }
559} 561}
560 562
563static const int season_darkness[5][HOURS_PER_DAY] = {
564 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
565 { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
566 { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
567 { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
568 { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
569 { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
570};
571
561/* 572/*
562 * Debug-routine which dumps the array which specifies the visible 573 * Tell players the time and compute the darkness level for all maps in the game.
563 * area of a player. Triggered by the z key in DM mode. 574 * MUST be called exactly once per hour.
564 */ 575 */
576void
577maptile::adjust_daylight ()
578{
579 timeofday_t tod;
565 580
566void print_los(object *op) { 581 get_tod (&tod);
567 int x,y;
568 char buf[50], buf2[10];
569 582
570 strcpy(buf," "); 583 // log the time to log-1 every hour, and to chat every day
571 for(x=0;x<op->contr->socket.mapx;x++) { 584 {
572 sprintf(buf2,"%2d",x); 585 char todbuf[512];
573 strcat(buf,buf2); 586
587 format_tod (todbuf, sizeof (todbuf), &tod);
588
589 for_all_players (pl)
590 pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
574 } 591 }
575 new_draw_info(NDI_UNIQUE, 0, op, buf); 592
576 for(y=0;y<op->contr->socket.mapy;y++) { 593 /* If the light level isn't changing, no reason to do all
577 sprintf(buf,"%2d:",y); 594 * the work below.
578 for(x=0;x<op->contr->socket.mapx;x++) { 595 */
579 sprintf(buf2," %1d",op->contr->blocked_los[x][y]); 596 sint8 new_darkness = season_darkness[tod.season][tod.hour];
580 strcat(buf,buf2); 597
581 } 598 if (new_darkness == maptile::outdoor_darkness)
582 new_draw_info(NDI_UNIQUE, 0, op, buf); 599 return;
583 } 600
601 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
602 new_darkness > maptile::outdoor_darkness
603 ? "It becomes darker."
604 : "It becomes brighter.");
605
606 maptile::outdoor_darkness = new_darkness;
607
608 // we simply update the los for all players, which is unnecessarily
609 // costly, but should do for the moment.
610 for_all_players (pl)
611 pl->do_los = 1;
584} 612}
585 613
586/* 614/*
587 * make_sure_seen: The object is supposed to be visible through walls, thus 615 * make_sure_seen: The object is supposed to be visible through walls, thus
588 * check if any players are nearby, and edit their LOS array. 616 * check if any players are nearby, and edit their LOS array.
589 */ 617 */
590 618void
591void make_sure_seen(const object *op) { 619make_sure_seen (const object *op)
592 player *pl; 620{
593 621 for_all_players (pl)
594 for (pl = first_player; pl; pl = pl->next)
595 if (pl->ob->map == op->map && 622 if (pl->ob->map == op->map &&
596 pl->ob->y - pl->socket.mapy/2 <= op->y && 623 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
597 pl->ob->y + pl->socket.mapy/2 >= op->y && 624 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
598 pl->ob->x - pl->socket.mapx/2 <= op->x && 625 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_Y0] = 0;
599 pl->ob->x + pl->socket.mapx/2 >= op->x)
600 pl->blocked_los[pl->socket.mapx/2 + op->x - pl->ob->x]
601 [pl->socket.mapy/2 + op->y - pl->ob->y] = 0;
602} 626}
603 627
604/* 628/*
605 * make_sure_not_seen: The object which is supposed to be visible through 629 * make_sure_not_seen: The object which is supposed to be visible through
606 * walls has just been removed from the map, so update the los of any 630 * walls has just been removed from the map, so update the los of any
607 * players within its range 631 * players within its range
608 */ 632 */
609 633void
610void make_sure_not_seen(const object *op) { 634make_sure_not_seen (const object *op)
611 player *pl; 635{
612 for (pl = first_player; pl; pl = pl->next) 636 for_all_players (pl)
613 if (pl->ob->map == op->map && 637 if (pl->ob->map == op->map &&
614 pl->ob->y - pl->socket.mapy/2 <= op->y && 638 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
615 pl->ob->y + pl->socket.mapy/2 >= op->y && 639 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
616 pl->ob->x - pl->socket.mapx/2 <= op->x &&
617 pl->ob->x + pl->socket.mapx/2 >= op->x)
618 pl->do_los = 1; 640 pl->do_los = 1;
619} 641}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines