ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.30 by root, Mon Apr 21 23:35:24 2008 UTC vs.
Revision 1.63 by root, Tue Nov 3 23:44:20 2009 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 4 * Copyright (©) 2005,2006,2007,2008,2009 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
6 * Copyright (©) 1992,2007 Frank Tore Johansen
7 * 5 *
8 * Deliantra is free software: you can redistribute it and/or modify 6 * Deliantra is free software: you can redistribute it and/or modify it under
9 * it under the terms of the GNU General Public License as published by 7 * the terms of the Affero GNU General Public License as published by the
10 * the Free Software Foundation, either version 3 of the License, or 8 * Free Software Foundation, either version 3 of the License, or (at your
11 * (at your option) any later version. 9 * option) any later version.
12 * 10 *
13 * This program is distributed in the hope that it will be useful, 11 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details. 14 * GNU General Public License for more details.
17 * 15 *
18 * You should have received a copy of the GNU General Public License 16 * You should have received a copy of the Affero GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>. 17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
20 * 19 *
21 * The authors can be reached via e-mail to <support@deliantra.net> 20 * The authors can be reached via e-mail to <support@deliantra.net>
22 */ 21 */
23 22
24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
25
26#include <global.h> 23#include <global.h>
27#include <math.h> 24#include <cmath>
28 25
29/* Distance must be less than this for the object to be blocked. 26#define SEE_IN_DARK_RADIUS 2
30 * An object is 1.0 wide, so if set to 0.5, it means the object 27#define MAX_VISION 10 // maximum visible radius
31 * that blocks half the view (0.0 is complete block) will
32 * block view in our tables.
33 * .4 or less lets you see through walls. .5 is about right.
34 */
35 28
36#define SPACE_BLOCK 0.5 29// los flags
30enum {
31 FLG_XI = 0x01, // we have an x-parent
32 FLG_YI = 0x02, // we have an y-parent
33 FLG_BLOCKED = 0x04, // this space blocks the view
34 FLG_QUEUED = 0x80 // already queued in queue, or border
35};
37 36
38typedef struct blstr 37struct los_info
39{ 38{
40 int x[4], y[4]; 39 uint8 flags; // FLG_xxx
41 int index; 40 uint8 culled; // culled from "tree"
42} blocks; 41 uint8 visible;
42 uint8 pad0;
43 43
44// 31/32 == a speed hack 44 sint8 xo, yo; // obscure angle
45// we would like to use 32 for speed, but the code loops endlessly 45 sint8 xe, ye; // angle deviation
46// then, reason not yet identified, so only make the array use 32, 46};
47// not the define's.
48blocks block[MAP_CLIENT_X][MAP_CLIENT_Y == 31 ? 32 : MAP_CLIENT_Y];
49 47
50static void expand_lighted_sight (object *op); 48// temporary storage for the los algorithm,
49// one los_info for each lightable map space
50static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
51 51
52/* 52struct point
53 * Used to initialise the array used by the LOS routines.
54 * What this sets if that x,y blocks the view of bx,by
55 * This then sets up a relation - for example, something
56 * at 5,4 blocks view at 5,3 which blocks view at 5,2
57 * etc. So when we check 5,4 and find it block, we have
58 * the data to know that 5,3 and 5,2 and 5,1 should also
59 * be blocked.
60 */
61
62static void
63set_block (int x, int y, int bx, int by)
64{ 53{
65 int index = block[x][y].index, i;
66
67 /* Due to flipping, we may get duplicates - better safe than sorry.
68 */
69 for (i = 0; i < index; i++)
70 {
71 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
72 return;
73 }
74
75 block[x][y].x[index] = bx;
76 block[x][y].y[index] = by;
77 block[x][y].index++;
78#ifdef LOS_DEBUG
79 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
80#endif
81}
82
83/*
84 * initialises the array used by the LOS routines.
85 */
86
87/* since we are only doing the upper left quadrant, only
88 * these spaces could possibly get blocked, since these
89 * are the only ones further out that are still possibly in the
90 * sightline.
91 */
92
93void
94init_block (void)
95{
96 int x, y, dx, dy, i;
97 static int block_x[3] = { -1, -1, 0 },
98 block_y[3] = { -1, 0, -1 };
99
100 for (x = 0; x < MAP_CLIENT_X; x++)
101 for (y = 0; y < MAP_CLIENT_Y; y++)
102 block[x][y].index = 0;
103
104
105 /* The table should be symmetric, so only do the upper left
106 * quadrant - makes the processing easier.
107 */
108 for (x = 1; x <= MAP_CLIENT_X / 2; x++)
109 {
110 for (y = 1; y <= MAP_CLIENT_Y / 2; y++)
111 {
112 for (i = 0; i < 3; i++)
113 {
114 dx = x + block_x[i];
115 dy = y + block_y[i];
116
117 /* center space never blocks */
118 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
119 continue;
120
121 /* If its a straight line, its blocked */
122 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
123 {
124 /* For simplicity, we mirror the coordinates to block the other
125 * quadrants.
126 */
127 set_block (x, y, dx, dy);
128 if (x == MAP_CLIENT_X / 2)
129 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
130 else if (y == MAP_CLIENT_Y / 2)
131 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
132 }
133 else
134 {
135 float d1, r, s, l;
136
137 /* We use the algorihm that found out how close the point
138 * (x,y) is to the line from dx,dy to the center of the viewable
139 * area. l is the distance from x,y to the line.
140 * r is more a curiosity - it lets us know what direction (left/right)
141 * the line is off
142 */
143
144 d1 = (float) (pow (MAP_CLIENT_X / 2 - dx, 2.f) + pow (MAP_CLIENT_Y / 2 - dy, 2.f));
145 r = (float) ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
146 s = (float) ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
147 l = FABS (sqrt (d1) * s);
148
149 if (l <= SPACE_BLOCK)
150 {
151 /* For simplicity, we mirror the coordinates to block the other
152 * quadrants.
153 */
154 set_block (x, y, dx, dy);
155 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
156 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
157 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
158 }
159 }
160 }
161 }
162 }
163}
164
165/*
166 * Used to initialise the array used by the LOS routines.
167 * x,y are indexes into the blocked[][] array.
168 * This recursively sets the blocked line of sight view.
169 * From the blocked[][] array, we know for example
170 * that if some particular space is blocked, it blocks
171 * the view of the spaces 'behind' it, and those blocked
172 * spaces behind it may block other spaces, etc.
173 * In this way, the chain of visibility is set.
174 */
175static void
176set_wall (object *op, int x, int y)
177{
178 int i;
179
180 for (i = 0; i < block[x][y].index; i++)
181 {
182 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
183
184 /* ax, ay are the values as adjusted to be in the
185 * socket look structure.
186 */
187 ax = dx - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
188 ay = dy - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
189
190 if (ax < 0 || ax >= op->contr->ns->mapx || ay < 0 || ay >= op->contr->ns->mapy)
191 continue;
192#if 0
193 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
194#endif
195 /* we need to adjust to the fact that the socket
196 * code wants the los to start from the 0,0
197 * and not be relative to middle of los array.
198 */
199 op->contr->blocked_los[ax][ay] = 100;
200 set_wall (op, dx, dy);
201 }
202}
203
204/*
205 * Used to initialise the array used by the LOS routines.
206 * op is the object, x and y values based on MAP_CLIENT_X and Y.
207 * this is because they index the blocked[][] arrays.
208 */
209
210static void
211check_wall (object *op, int x, int y)
212{
213 int ax, ay; 54 sint8 x, y;
55};
214 56
215 if (!block[x][y].index) 57// minimum size, but must be a power of two
216 return; 58#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
217 59
218 /* ax, ay are coordinates as indexed into the look window */ 60// a queue of spaces to calculate
219 ax = x - (MAP_CLIENT_X - op->contr->ns->mapx) / 2; 61static point queue [QUEUE_LENGTH];
220 ay = y - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2; 62static int q1, q2; // queue start, end
221
222 /* If the converted coordinates are outside the viewable
223 * area for the client, return now.
224 */
225 if (ax < 0 || ay < 0 || ax >= op->contr->ns->mapx || ay >= op->contr->ns->mapy)
226 return;
227
228#if 0
229 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
230 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
231#endif
232
233 /* If this space is already blocked, prune the processing - presumably
234 * whatever has set this space to be blocked has done the work and already
235 * done the dependency chain.
236 */
237 if (op->contr->blocked_los[ax][ay] == 100)
238 return;
239
240
241 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
242 set_wall (op, x, y);
243}
244 63
245/* 64/*
246 * Clears/initialises the los-array associated to the player 65 * Clears/initialises the los-array associated to the player
247 * controlling the object. 66 * controlling the object.
248 */ 67 */
249
250void 68void
251clear_los (player *pl) 69player::clear_los (sint8 value)
252{ 70{
253 /* This is safer than using the ns->mapx, mapy because 71 memset (los, value, sizeof (los));
254 * we index the blocked_los as a 2 way array, so clearing
255 * the first z spaces may not not cover the spaces we are
256 * actually going to use
257 */
258 memset (pl->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
259} 72}
260 73
261/* 74// enqueue a single mapspace, but only if it hasn't
262 * expand_sight goes through the array of what the given player is 75// been enqueued yet.
263 * able to see, and expands the visible area a bit, so the player will,
264 * to a certain degree, be able to see into corners.
265 * This is somewhat suboptimal, would be better to improve the formula.
266 */
267
268static void 76static void
269expand_sight (object *op) 77enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
270{ 78{
271 int i, x, y, dx, dy; 79 sint8 x = LOS_X0 + dx;
80 sint8 y = LOS_Y0 + dy;
272 81
273 for (x = 1; x < op->contr->ns->mapx - 1; x++) /* loop over inner squares */ 82 los_info &l = los[x][y];
274 for (y = 1; y < op->contr->ns->mapy - 1; y++) 83
84 l.flags |= flags;
85
86 if (l.flags & FLG_QUEUED)
87 return;
88
89 l.flags |= FLG_QUEUED;
90
91 queue[q1].x = dx;
92 queue[q1].y = dy;
93
94 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
95}
96
97// run the los algorithm
98// this is a variant of a spiral los algorithm taken from
99// http://www.geocities.com/temerra/los_rays.html
100// which has been simplified and changed considerably, but
101// still is basically the same algorithm.
102static void
103calculate_los (player *pl)
104{
105 {
106 memset (los, 0, sizeof (los));
107
108 // we keep one line for ourselves, for the border flag
109 // so the client area is actually MAP_CLIENT_(X|Y) - 2
110 int half_x = min (LOS_X0 - 1, pl->ns->mapx / 2);
111 int half_y = min (LOS_Y0 - 1, pl->ns->mapy / 2);
112
113 // create borders, the corners are not touched
114 for (int dx = -half_x; dx <= half_x; ++dx)
115 los [dx + LOS_X0][LOS_Y0 - (half_y + 1)].flags =
116 los [dx + LOS_X0][LOS_Y0 + (half_y + 1)].flags = FLG_QUEUED;
117
118 for (int dy = -half_y; dy <= half_y; ++dy)
119 los [LOS_X0 - (half_x + 1)][dy + LOS_Y0].flags =
120 los [LOS_X0 + (half_x + 1)][dy + LOS_Y0].flags = FLG_QUEUED;
121
122 // now reset the los area and also add blocked flags
123 // which supposedly is faster than doing it inside the
124 // spiral path algorithm below, except when very little
125 // area is visible, in which case it is slower. which evens
126 // out los calculation times between large and small los maps.
127 // apply_lights also iterates over this area, maybe these
128 // two passes could be combined somehow.
129 unordered_mapwalk (pl->observe, -half_x, -half_y, half_x, half_y)
275 { 130 {
276 if (!op->contr->blocked_los[x][y] && 131 los_info &l = los [LOS_X0 + dx][LOS_Y0 + dy];
277 !(get_map_flags (op->map, NULL, 132 l.flags = m->at (nx, ny).flags () & P_BLOCKSVIEW ? FLG_BLOCKED : 0;
278 op->x - op->contr->ns->mapx / 2 + x,
279 op->y - op->contr->ns->mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP)))
280 {
281
282 for (i = 1; i <= 8; i += 1)
283 { /* mark all directions */
284 dx = x + freearr_x[i];
285 dy = y + freearr_y[i];
286 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */
287 op->contr->blocked_los[dx][dy] = -1;
288 }
289 }
290 } 133 }
134 }
291 135
292 if (op->map->darkness > 0) /* player is on a dark map */ 136 q1 = 0; q2 = 0; // initialise queue, not strictly required
293 expand_lighted_sight (op); 137 enqueue (0, 0); // enqueue center
294 138
295 /* clear mark squares */ 139 // treat the origin specially
296 for (x = 0; x < op->contr->ns->mapx; x++) 140 los[LOS_X0][LOS_Y0].visible = 1;
297 for (y = 0; y < op->contr->ns->mapy; y++) 141 pl->los[LOS_X0][LOS_Y0] = 0;
298 if (op->contr->blocked_los[x][y] < 0)
299 op->contr->blocked_los[x][y] = 0;
300}
301 142
302/* returns true if op carries one or more lights 143 // loop over all enqueued points until the queue is empty
303 * This is a trivial function now days, but it used to 144 // the order in which this is done ensures that we
304 * be a bit longer. Probably better for callers to just 145 // never touch a mapspace whose input spaces we haven't checked
305 * check the op->glow_radius instead of calling this. 146 // yet.
306 */ 147 while (q1 != q2)
307
308int
309has_carried_lights (const object *op)
310{
311 /* op may glow! */
312 if (op->glow_radius > 0)
313 return 1;
314
315 return 0;
316}
317
318static void
319expand_lighted_sight (object *op)
320{
321 int x, y, darklevel, ax, ay, basex, basey, mflags, light, x1, y1;
322 maptile *m = op->map;
323 sint16 nx, ny;
324
325 darklevel = m->darkness;
326
327 /* If the player can see in the dark, lower the darklevel for him */
328 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK))
329 darklevel -= 2;
330
331 /* add light, by finding all (non-null) nearby light sources, then
332 * mark those squares specially. If the darklevel<1, there is no
333 * reason to do this, so we skip this function
334 */
335
336 if (darklevel < 1)
337 return;
338
339 /* Do a sanity check. If not valid, some code below may do odd
340 * things.
341 */
342 if (darklevel > MAX_DARKNESS)
343 { 148 {
344 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel); 149 sint8 dx = queue[q2].x;
345 darklevel = MAX_DARKNESS; 150 sint8 dy = queue[q2].y;
346 }
347 151
348 /* First, limit player furthest (unlighted) vision */ 152 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
349 for (x = 0; x < op->contr->ns->mapx; x++)
350 for (y = 0; y < op->contr->ns->mapy; y++)
351 if (op->contr->blocked_los[x][y] != 100)
352 op->contr->blocked_los[x][y] = MAX_LIGHT_RADII;
353 153
354 /* the spaces[] darkness value contains the information we need. 154 sint8 x = LOS_X0 + dx;
355 * Only process the area of interest. 155 sint8 y = LOS_Y0 + dy;
356 * the basex, basey values represent the position in the op->contr->blocked_los
357 * array. Its easier to just increment them here (and start with the right
358 * value) than to recalculate them down below.
359 */
360 for (x = (op->x - op->contr->ns->mapx / 2 - MAX_LIGHT_RADII), basex = -MAX_LIGHT_RADII;
361 x <= (op->x + op->contr->ns->mapx / 2 + MAX_LIGHT_RADII); x++, basex++)
362 {
363 156
364 for (y = (op->y - op->contr->ns->mapy / 2 - MAX_LIGHT_RADII), basey = -MAX_LIGHT_RADII; 157 los_info &l = los[x][y];
365 y <= (op->y + op->contr->ns->mapy / 2 + MAX_LIGHT_RADII); y++, basey++) 158
159 if (expect_true (l.flags & (FLG_XI | FLG_YI)))
366 { 160 {
367 m = op->map; 161 l.culled = 1;
368 nx = x; 162 l.xo = l.yo = l.xe = l.ye = 0;
369 ny = y;
370 163
371 mflags = get_map_flags (m, &m, nx, ny, &nx, &ny); 164 // check contributing spaces, first horizontal
372 165 if (expect_true (l.flags & FLG_XI))
373 if (mflags & P_OUT_OF_MAP)
374 continue;
375
376 /* This space is providing light, so we need to brighten up the
377 * spaces around here.
378 */
379 light = GET_MAP_LIGHT (m, nx, ny);
380 if (light != 0)
381 { 166 {
382#if 0 167 los_info *xi = &los[x - sign (dx)][y];
383 LOG (llevDebug, "expand_lighted_sight: Found light at x=%d, y=%d, basex=%d, basey=%d\n", x, y, basex, basey); 168
384#endif 169 // don't cull unless obscured
385 for (ax = basex - light; ax <= basex + light; ax++) 170 l.culled &= !xi->visible;
171
172 /* merge input space */
173 if (expect_false (xi->xo || xi->yo))
386 { 174 {
387 if (ax < 0 || ax >= op->contr->ns->mapx) 175 // The X input can provide two main pieces of information:
388 continue; 176 // 1. Progressive X obscurity.
389 177 // 2. Recessive Y obscurity.
390 for (ay = basey - light; ay <= basey + light; ay++) 178
179 // Progressive X obscurity, favouring recessive input angle
180 if (xi->xe > 0 && l.xo == 0)
391 { 181 {
392 if (ay < 0 || ay >= op->contr->ns->mapy) 182 l.xe = xi->xe - xi->yo;
393 continue; 183 l.ye = xi->ye + xi->yo;
184 l.xo = xi->xo;
185 l.yo = xi->yo;
186 }
394 187
395 /* If the space is fully blocked, do nothing. Otherwise, we 188 // Recessive Y obscurity
396 * brighten the space. The further the light is away from the 189 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
397 * source (basex-x), the less effect it has. Though light used
398 * to dim in a square manner, it now dims in a circular manner
399 * using the the pythagorean theorem. glow_radius still
400 * represents the radius
401 */
402 if (op->contr->blocked_los[ax][ay] != 100)
403 {
404 x1 = abs (basex - ax) * abs (basex - ax);
405 y1 = abs (basey - ay) * abs (basey - ay);
406
407 if (light > 0) op->contr->blocked_los[ax][ay] -= max (light - isqrt (x1 + y1), 0);
408 if (light < 0) op->contr->blocked_los[ax][ay] -= min (light + isqrt (x1 + y1), 0);
409 }
410 } 190 {
191 l.ye = xi->yo + xi->ye;
192 l.xe = xi->xe - xi->yo;
193 l.xo = xi->xo;
194 l.yo = xi->yo;
195 }
411 } 196 }
412 } 197 }
198
199 // check contributing spaces, last vertical, identical structure
200 if (expect_true (l.flags & FLG_YI))
201 {
202 los_info *yi = &los[x][y - sign (dy)];
203
204 // don't cull unless obscured
205 l.culled &= !yi->visible;
206
207 /* merge input space */
208 if (expect_false (yi->yo || yi->xo))
209 {
210 // The Y input can provide two main pieces of information:
211 // 1. Progressive Y obscurity.
212 // 2. Recessive X obscurity.
213
214 // Progressive Y obscurity, favouring recessive input angle
215 if (yi->ye > 0 && l.yo == 0)
216 {
217 l.ye = yi->ye - yi->xo;
218 l.xe = yi->xe + yi->xo;
219 l.yo = yi->yo;
220 l.xo = yi->xo;
221 }
222
223 // Recessive X obscurity
224 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
225 {
226 l.xe = yi->xo + yi->xe;
227 l.ye = yi->ye - yi->xo;
228 l.yo = yi->yo;
229 l.xo = yi->xo;
230 }
231 }
232 }
233
234 if (l.flags & FLG_BLOCKED)
235 {
236 l.xo = l.xe = abs (dx);
237 l.yo = l.ye = abs (dy);
238
239 // we obscure dependents, but might be visible
240 // copy the los from the square towards the player,
241 // so outward diagonal corners are lit.
242 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
243
244 l.visible = false;
245 }
246 else
247 {
248 // we are not blocked, so calculate visibility, by checking
249 // whether we are inside or outside the shadow
250 l.visible = (l.xe <= 0 || l.xe > l.xo)
251 && (l.ye <= 0 || l.ye > l.yo);
252
253 pl->los[x][y] = l.culled ? LOS_BLOCKED
254 : l.visible ? 0
255 : 3;
256 }
257
413 } 258 }
259
260 // Expands by the unit length in each component's current direction.
261 // If a component has no direction, then it is expanded in both of its
262 // positive and negative directions.
263 if (!l.culled)
264 {
265 if (dx >= 0) enqueue (dx + 1, dy, FLG_XI);
266 if (dx <= 0) enqueue (dx - 1, dy, FLG_XI);
267 if (dy >= 0) enqueue (dx, dy + 1, FLG_YI);
268 if (dy <= 0) enqueue (dx, dy - 1, FLG_YI);
269 }
414 } 270 }
271}
415 272
416 /* Outdoor should never really be completely pitch black dark like 273/* radius, distance => lightness adjust */
417 * a dungeon, so let the player at least see a little around themselves 274static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
275static sint8 vision_atten[MAX_VISION + 1][MAX_VISION * 3 / 2 + 1];
276
277static struct los_init
278{
279 los_init ()
280 {
281 assert (("QUEUE_LENGTH, MAP_CLIENT_X and MAP_CLIENT_Y *must* be powers of two",
282 !(QUEUE_LENGTH & (QUEUE_LENGTH - 1))));
283
284 /* for lights */
285 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
286 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
287 {
288 // max intensity
289 int intensity = min (LOS_MAX, abs (radius) + 1);
290
291 // actual intensity
292 intensity = max (0, lerp_ru (distance, 0, abs (radius) + 1, intensity, 0));
293
294 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
295 ? min (3, intensity)
296 : LOS_MAX - intensity;
297 }
298
299 /* for general vision */
300 for (int radius = 0; radius <= MAX_VISION; ++radius)
301 for (int distance = 0; distance <= MAX_VISION * 3 / 2; ++distance)
302 vision_atten [radius][distance] = distance <= radius ? clamp (lerp (radius, 0, MAX_DARKNESS, 3, 0), 0, 3) : 4;
303 }
304} los_init;
305
306sint8
307los_brighten (sint8 b, sint8 l)
308{
309 return b == LOS_BLOCKED ? b : min (b, l);
310}
311
312sint8
313los_darken (sint8 b, sint8 l)
314{
315 return max (b, l);
316}
317
318template<sint8 change_it (sint8, sint8)>
319static void
320apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
321{
322 // min or max the circular area around basex, basey
323 dx += LOS_X0;
324 dy += LOS_Y0;
325
326 int hx = pl->ns->mapx / 2;
327 int hy = pl->ns->mapy / 2;
328
329 int ax0 = max (LOS_X0 - hx, dx - light);
330 int ay0 = max (LOS_Y0 - hy, dy - light);
331 int ax1 = min (dx + light, LOS_X0 + hx);
332 int ay1 = min (dy + light, LOS_Y0 + hy);
333
334 for (int ax = ax0; ax <= ax1; ax++)
335 for (int ay = ay0; ay <= ay1; ay++)
336 pl->los[ax][ay] =
337 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
338}
339
340/* add light, by finding all (non-null) nearby light sources, then
341 * mark those squares specially.
418 */ 342 */
419 if (op->map->outdoor && darklevel > (MAX_DARKNESS - 3)) 343static void
344apply_lights (player *pl)
345{
346 object *op = pl->observe;
347 int darklevel = op->map->darklevel ();
348
349 int half_x = pl->ns->mapx / 2;
350 int half_y = pl->ns->mapy / 2;
351
352 int pass2 = 0; // negative lights have an extra pass
353
354 maprect *rects = pl->observe->map->split_to_tiles (
355 pl->observe->x - half_x - MAX_LIGHT_RADIUS,
356 pl->observe->y - half_y - MAX_LIGHT_RADIUS,
357 pl->observe->x + half_x + MAX_LIGHT_RADIUS + 1,
358 pl->observe->y + half_y + MAX_LIGHT_RADIUS + 1
359 );
360
361 /* If the player can see in the dark, increase light/vision radius */
362 int bonus = op->flag [FLAG_SEE_IN_DARK] ? SEE_IN_DARK_RADIUS : 0;
363
364 if (!darklevel)
365 pass2 = 1;
366 else
420 { 367 {
421 if (op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] > (MAX_DARKNESS - 3)) 368 /* first, make everything totally dark */
422 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = MAX_DARKNESS - 3; 369 for (int dx = -half_x; dx <= half_x; dx++)
370 for (int dy = -half_x; dy <= half_y; dy++)
371 max_it (pl->los[dx + LOS_X0][dy + LOS_Y0], LOS_MAX);
423 372
424 for (x = -1; x <= 1; x++) 373 /*
425 for (y = -1; y <= 1; y++) 374 * Only process the area of interest.
375 * the basex, basey values represent the position in the op->contr->los
376 * array. Its easier to just increment them here (and start with the right
377 * value) than to recalculate them down below.
378 */
379 for (maprect *r = rects; r->m; ++r)
380 rect_mapwalk (r, 0, 0)
426 { 381 {
427 if (op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] > (MAX_DARKNESS - 2)) 382 mapspace &ms = m->at (nx, ny);
428 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] = MAX_DARKNESS - 2; 383 ms.update ();
384 sint8 light = ms.light;
385
386 if (expect_false (light))
387 if (light < 0)
388 pass2 = 1;
389 else
390 {
391 light = clamp (light + bonus, 0, MAX_LIGHT_RADIUS);
392 apply_light<los_brighten> (pl, dx - pl->observe->x, dy - pl->observe->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
393 }
429 } 394 }
395
396 /* grant some vision to the player, based on outside, outdoor, and darklevel */
397 {
398 int light;
399
400 if (!op->map->outdoor) // not outdoor, darkness becomes light radius
401 light = MAX_DARKNESS - op->map->darkness;
402 else if (op->map->darkness > 0) // outdoor and darkness > 0 => use darkness as max radius
403 light = lerp_rd (maptile::outdoor_darkness + 0, 0, MAX_DARKNESS, MAX_DARKNESS - op->map->darkness, 0);
404 else // outdoor and darkness <= 0 => start wide and decrease quickly
405 light = lerp (maptile::outdoor_darkness + op->map->darkness, 0, MAX_DARKNESS, MAX_VISION, 2);
406
407 light = clamp (light + bonus, 0, MAX_VISION);
408
409 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
410 }
430 } 411 }
431 412
432 /* grant some vision to the player, based on the darklevel */ 413 // possibly do 2nd pass for rare negative glow radii
433 for (x = darklevel - MAX_DARKNESS; x < MAX_DARKNESS + 1 - darklevel; x++) 414 // for effect, those are always considered to be stronger than anything else
434 for (y = darklevel - MAX_DARKNESS; y < MAX_DARKNESS + 1 - darklevel; y++) 415 // but they can't darken a place completely
435 if (!(op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] == 100)) 416 if (pass2)
436 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] -= 417 for (maprect *r = rects; r->m; ++r)
437 MAX (0, 6 - darklevel - MAX (abs (x), abs (y))); 418 rect_mapwalk (r, 0, 0)
438} 419 {
420 mapspace &ms = m->at (nx, ny);
421 ms.update ();
422 sint8 light = ms.light;
439 423
424 if (expect_false (light < 0))
425 {
426 light = clamp (light - bonus, 0, MAX_DARKNESS);
427 apply_light<los_darken> (pl, dx - pl->observe->x, dy - pl->observe->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
428 }
429 }
430}
431
440/* blinded_sight() - sets all veiwable squares to blocked except 432/* blinded_sight() - sets all viewable squares to blocked except
441 * for the one the central one that the player occupies. A little 433 * for the one the central one that the player occupies. A little
442 * odd that you can see yourself (and what your standing on), but 434 * odd that you can see yourself (and what your standing on), but
443 * really need for any reasonable game play. 435 * really need for any reasonable game play.
444 */ 436 */
445static void 437static void
446blinded_sight (object *op) 438blinded_sight (player *pl)
447{ 439{
448 int x, y; 440 pl->los[LOS_X0][LOS_Y0] = 1;
449
450 for (x = 0; x < op->contr->ns->mapx; x++)
451 for (y = 0; y < op->contr->ns->mapy; y++)
452 op->contr->blocked_los[x][y] = 100;
453
454 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = 0;
455} 441}
456 442
457/* 443/*
458 * update_los() recalculates the array which specifies what is 444 * update_los() recalculates the array which specifies what is
459 * visible for the given player-object. 445 * visible for the given player-object.
460 */ 446 */
461void 447void
462update_los (object *op) 448player::update_los ()
463{ 449{
464 int dx = op->contr->ns->mapx / 2, dy = op->contr->ns->mapy / 2, x, y; 450 if (ob->flag [FLAG_REMOVED])//D really needed?
465
466 if (QUERY_FLAG (op, FLAG_REMOVED))
467 return; 451 return;
468 452
469 clear_los (op->contr); 453 if (ob->flag [FLAG_WIZLOOK])
470 454 clear_los (0);
471 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ ) 455 else if (observe->flag [FLAG_BLIND]) /* player is blind */
472 return; 456 {
473 457 clear_los ();
474 /* For larger maps, this is more efficient than the old way which
475 * used the chaining of the block array. Since many space views could
476 * be blocked by different spaces in front, this mean that a lot of spaces
477 * could be examined multile times, as each path would be looked at.
478 */
479 for (x = (MAP_CLIENT_X - op->contr->ns->mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->ns->mapx) / 2 + 1; x++)
480 for (y = (MAP_CLIENT_Y - op->contr->ns->mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->ns->mapy) / 2 + 1; y++)
481 check_wall (op, x, y);
482
483 /* do the los of the player. 3 (potential) cases */
484 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
485 blinded_sight (op); 458 blinded_sight (this);
459 }
486 else 460 else
487 expand_sight (op); 461 {
462 clear_los ();
463 calculate_los (this);
464 apply_lights (this);
465 }
488 466
489 //TODO: no range-checking whatsoever :( 467 if (observe->flag [FLAG_XRAYS])
490 if (QUERY_FLAG (op, FLAG_XRAYS))
491 for (int x = -2; x <= 2; x++) 468 for (int dx = -2; dx <= 2; dx++)
492 for (int y = -2; y <= 2; y++) 469 for (int dy = -2; dy <= 2; dy++)
493 op->contr->blocked_los[dx + x][dy + y] = 0; 470 min_it (los[dx + LOS_X0][dy + LOS_Y0], 1);
494} 471}
495 472
496/* update all_map_los is like update_all_los below, 473/* update all_map_los is like update_all_los below,
497 * but updates everyone on the map, no matter where they 474 * but updates everyone on the map, no matter where they
498 * are. This generally should not be used, as a per 475 * are. This generally should not be used, as a per
505 * change_map_light function 482 * change_map_light function
506 */ 483 */
507void 484void
508update_all_map_los (maptile *map) 485update_all_map_los (maptile *map)
509{ 486{
510 for_all_players (pl) 487 for_all_players_on_map (pl, map)
511 if (pl->ob && pl->ob->map == map)
512 pl->do_los = 1; 488 pl->do_los = 1;
513} 489}
514 490
515/* 491/*
516 * This function makes sure that update_los() will be called for all 492 * This function makes sure that update_los() will be called for all
517 * players on the given map within the next frame. 493 * players on the given map within the next frame.
525 * map is the map that changed, x and y are the coordinates. 501 * map is the map that changed, x and y are the coordinates.
526 */ 502 */
527void 503void
528update_all_los (const maptile *map, int x, int y) 504update_all_los (const maptile *map, int x, int y)
529{ 505{
506 map->at (x, y).invalidate ();
507
530 for_all_players (pl) 508 for_all_players (pl)
531 { 509 {
532 /* Player should not have a null map, but do this 510 /* Player should not have a null map, but do this
533 * check as a safety 511 * check as a safety
534 */ 512 */
535 if (!pl->ob || !pl->ob->map || !pl->ns) 513 if (!pl->ob || !pl->ob->map || !pl->ns)
536 continue; 514 continue;
537 515
538 /* Same map is simple case - see if pl is close enough. 516 rv_vector rv;
539 * Note in all cases, we did the check for same map first, 517
540 * and then see if the player is close enough and update 518 get_rangevector_from_mapcoord (map, x, y, pl->ob, &rv);
541 * los if that is the case. If the player is on the
542 * corresponding map, but not close enough, then the
543 * player can't be on another map that may be closer,
544 * so by setting it up this way, we trim processing
545 * some.
546 */ 519
547 if (pl->ob->map == map) 520 if ((abs (rv.distance_x) <= pl->ns->mapx / 2) && (abs (rv.distance_y) <= pl->ns->mapy / 2))
548 {
549 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
550 pl->do_los = 1; 521 pl->do_los = 1;
551 }
552
553 /* Now we check to see if player is on adjacent
554 * maps to the one that changed and also within
555 * view. The tile_maps[] could be null, but in that
556 * case it should never match the pl->ob->map, so
557 * we want ever try to dereference any of the data in it.
558 *
559 * The logic for 0 and 3 is to see how far the player is
560 * from the edge of the map (height/width) - pl->ob->(x,y)
561 * and to add current position on this map - that gives a
562 * distance.
563 * For 1 and 2, we check to see how far the given
564 * coordinate (x,y) is from the corresponding edge,
565 * and then add the players location, which gives
566 * a distance.
567 */
568 else if (pl->ob->map == map->tile_map[0])
569 {
570 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
571 pl->do_los = 1;
572 }
573 else if (pl->ob->map == map->tile_map[2])
574 {
575 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
576 pl->do_los = 1;
577 }
578 else if (pl->ob->map == map->tile_map[1])
579 {
580 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
581 pl->do_los = 1;
582 }
583 else if (pl->ob->map == map->tile_map[3])
584 {
585 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
586 pl->do_los = 1;
587 }
588 } 522 }
589} 523}
590 524
525static const int season_darkness[5][HOURS_PER_DAY] = {
526 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
527 { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
528 { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
529 { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
530 { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
531 { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
532};
533
591/* 534/*
592 * Debug-routine which dumps the array which specifies the visible 535 * Tell players the time and compute the darkness level for all maps in the game.
593 * area of a player. Triggered by the z key in DM mode. 536 * MUST be called exactly once per hour.
594 */ 537 */
595void 538void
596print_los (object *op) 539maptile::adjust_daylight ()
597{ 540{
598 int x, y; 541 timeofday_t tod;
599 char buf[50], buf2[10];
600 542
601 strcpy (buf, " "); 543 get_tod (&tod);
602 544
603 for (x = 0; x < op->contr->ns->mapx; x++) 545 // log the time to log-1 every hour, and to chat every day
604 { 546 {
605 sprintf (buf2, "%2d", x); 547 char todbuf[512];
606 strcat (buf, buf2); 548
549 format_tod (todbuf, sizeof (todbuf), &tod);
550
551 for_all_players (pl)
552 pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
607 } 553 }
608 554
609 new_draw_info (NDI_UNIQUE, 0, op, buf); 555 /* If the light level isn't changing, no reason to do all
556 * the work below.
557 */
558 sint8 new_darkness = season_darkness[tod.season][tod.hour];
610 559
611 for (y = 0; y < op->contr->ns->mapy; y++) 560 if (new_darkness == maptile::outdoor_darkness)
612 { 561 return;
613 sprintf (buf, "%2d:", y);
614 562
615 for (x = 0; x < op->contr->ns->mapx; x++) 563 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
616 { 564 new_darkness > maptile::outdoor_darkness
617 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]); 565 ? "It becomes darker."
618 strcat (buf, buf2); 566 : "It becomes brighter.");
619 }
620 567
621 new_draw_info (NDI_UNIQUE, 0, op, buf); 568 maptile::outdoor_darkness = new_darkness;
622 } 569
570 // we simply update the los for all players, which is unnecessarily
571 // costly, but should do for the moment.
572 for_all_players (pl)
573 pl->do_los = 1;
623} 574}
624 575
625/* 576/*
626 * make_sure_seen: The object is supposed to be visible through walls, thus 577 * make_sure_seen: The object is supposed to be visible through walls, thus
627 * check if any players are nearby, and edit their LOS array. 578 * check if any players are nearby, and edit their LOS array.
628 */ 579 */
629
630void 580void
631make_sure_seen (const object *op) 581make_sure_seen (const object *op)
632{ 582{
633 for_all_players (pl) 583 for_all_players (pl)
634 if (pl->ob->map == op->map && 584 if (pl->ob->map == op->map &&
635 pl->ob->y - pl->ns->mapy / 2 <= op->y && 585 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
636 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x) 586 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
637 pl->blocked_los[pl->ns->mapx / 2 + op->x - pl->ob->x][pl->ns->mapy / 2 + op->y - pl->ob->y] = 0; 587 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_Y0] = 0;
638} 588}
639 589
640/* 590/*
641 * make_sure_not_seen: The object which is supposed to be visible through 591 * make_sure_not_seen: The object which is supposed to be visible through
642 * walls has just been removed from the map, so update the los of any 592 * walls has just been removed from the map, so update the los of any
643 * players within its range 593 * players within its range
644 */ 594 */
645
646void 595void
647make_sure_not_seen (const object *op) 596make_sure_not_seen (const object *op)
648{ 597{
649 for_all_players (pl) 598 for_all_players (pl)
650 if (pl->ob->map == op->map && 599 if (pl->ob->map == op->map &&
651 pl->ob->y - pl->ns->mapy / 2 <= op->y && 600 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
652 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x) 601 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
653 pl->do_los = 1; 602 pl->do_los = 1;
654} 603}
604

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines