ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.34 by root, Thu Dec 4 03:52:00 2008 UTC vs.
Revision 1.75 by root, Wed Nov 16 23:41:59 2016 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 4 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
6 * Copyright (©) 1992,2007 Frank Tore Johansen
7 * 5 *
8 * Deliantra is free software: you can redistribute it and/or modify 6 * Deliantra is free software: you can redistribute it and/or modify it under
9 * it under the terms of the GNU General Public License as published by 7 * the terms of the Affero GNU General Public License as published by the
10 * the Free Software Foundation, either version 3 of the License, or 8 * Free Software Foundation, either version 3 of the License, or (at your
11 * (at your option) any later version. 9 * option) any later version.
12 * 10 *
13 * This program is distributed in the hope that it will be useful, 11 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details. 14 * GNU General Public License for more details.
17 * 15 *
18 * You should have received a copy of the GNU General Public License 16 * You should have received a copy of the Affero GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>. 17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
20 * 19 *
21 * The authors can be reached via e-mail to <support@deliantra.net> 20 * The authors can be reached via e-mail to <support@deliantra.net>
22 */ 21 */
23 22
24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
25
26#include <global.h> 23#include <global.h>
27#include <math.h> 24#include <cmath>
28 25
29/* Distance must be less than this for the object to be blocked. 26#define SEE_IN_DARK_RADIUS 2
30 * An object is 1.0 wide, so if set to 0.5, it means the object 27#define MAX_VISION 10 // maximum visible radius
31 * that blocks half the view (0.0 is complete block) will
32 * block view in our tables.
33 * .4 or less lets you see through walls. .5 is about right.
34 */
35 28
36#define SPACE_BLOCK 0.5 29// los flags
37#define MAX_DARKNESS_LOS 4 /* 4 == totally dark */ 30enum {
31 FLG_XI = 0x01, // we have an x-parent
32 FLG_YI = 0x02, // we have an y-parent
33 FLG_BLOCKED = 0x04, // this space blocks the view
34 FLG_QUEUED = 0x80 // already queued in queue, or border
35};
38 36
39typedef struct blstr 37// it is important for performance reasons that this structure
38// has a size easily computable by the cpu (*8 is perfect).
39// it is possible to move culled and visible into flags, at
40// some speed loss.
41struct los_info
40{ 42{
41 int x[4], y[4]; 43 uint8 flags; // FLG_xxx
42 int index; 44 uint8 culled; // culled from "tree"
43} blocks; 45 uint8 visible;
46 uint8 pad0;
44 47
45// 31/32 == a speed hack 48 sint8 xo, yo; // obscure angle
46// we would like to use 32 for speed, but the code loops endlessly 49 sint8 xe, ye; // angle deviation
47// then, reason not yet identified, so only make the array use 32, 50};
48// not the define's.
49blocks block[MAP_CLIENT_X][MAP_CLIENT_Y == 31 ? 32 : MAP_CLIENT_Y];
50 51
51static void expand_lighted_sight (object *op); 52// temporary storage for the los algorithm,
53// one los_info for each lightable map space
54static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
52 55
53/* 56struct point8
54 * Used to initialise the array used by the LOS routines.
55 * What this sets if that x,y blocks the view of bx,by
56 * This then sets up a relation - for example, something
57 * at 5,4 blocks view at 5,3 which blocks view at 5,2
58 * etc. So when we check 5,4 and find it block, we have
59 * the data to know that 5,3 and 5,2 and 5,1 should also
60 * be blocked.
61 */
62
63static void
64set_block (int x, int y, int bx, int by)
65{ 57{
66 int index = block[x][y].index, i;
67
68 /* Due to flipping, we may get duplicates - better safe than sorry.
69 */
70 for (i = 0; i < index; i++)
71 {
72 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
73 return;
74 }
75
76 block[x][y].x[index] = bx;
77 block[x][y].y[index] = by;
78 block[x][y].index++;
79#ifdef LOS_DEBUG
80 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
81#endif
82}
83
84/*
85 * initialises the array used by the LOS routines.
86 */
87
88/* since we are only doing the upper left quadrant, only
89 * these spaces could possibly get blocked, since these
90 * are the only ones further out that are still possibly in the
91 * sightline.
92 */
93
94void
95init_block (void)
96{
97 int x, y, dx, dy, i;
98 static int block_x[3] = { -1, -1, 0 },
99 block_y[3] = { -1, 0, -1 };
100
101 for (x = 0; x < MAP_CLIENT_X; x++)
102 for (y = 0; y < MAP_CLIENT_Y; y++)
103 block[x][y].index = 0;
104
105
106 /* The table should be symmetric, so only do the upper left
107 * quadrant - makes the processing easier.
108 */
109 for (x = 1; x <= MAP_CLIENT_X / 2; x++)
110 {
111 for (y = 1; y <= MAP_CLIENT_Y / 2; y++)
112 {
113 for (i = 0; i < 3; i++)
114 {
115 dx = x + block_x[i];
116 dy = y + block_y[i];
117
118 /* center space never blocks */
119 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
120 continue;
121
122 /* If its a straight line, its blocked */
123 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
124 {
125 /* For simplicity, we mirror the coordinates to block the other
126 * quadrants.
127 */
128 set_block (x, y, dx, dy);
129 if (x == MAP_CLIENT_X / 2)
130 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
131 else if (y == MAP_CLIENT_Y / 2)
132 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
133 }
134 else
135 {
136 float d1, r, s, l;
137
138 /* We use the algorihm that found out how close the point
139 * (x,y) is to the line from dx,dy to the center of the viewable
140 * area. l is the distance from x,y to the line.
141 * r is more a curiosity - it lets us know what direction (left/right)
142 * the line is off
143 */
144
145 d1 = (float) (pow (MAP_CLIENT_X / 2 - dx, 2.f) + pow (MAP_CLIENT_Y / 2 - dy, 2.f));
146 r = (float) ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
147 s = (float) ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
148 l = FABS (sqrt (d1) * s);
149
150 if (l <= SPACE_BLOCK)
151 {
152 /* For simplicity, we mirror the coordinates to block the other
153 * quadrants.
154 */
155 set_block (x, y, dx, dy);
156 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
157 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
158 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
159 }
160 }
161 }
162 }
163 }
164}
165
166/*
167 * Used to initialise the array used by the LOS routines.
168 * x,y are indexes into the blocked[][] array.
169 * This recursively sets the blocked line of sight view.
170 * From the blocked[][] array, we know for example
171 * that if some particular space is blocked, it blocks
172 * the view of the spaces 'behind' it, and those blocked
173 * spaces behind it may block other spaces, etc.
174 * In this way, the chain of visibility is set.
175 */
176static void
177set_wall (object *op, int x, int y)
178{
179 int i;
180
181 for (i = 0; i < block[x][y].index; i++)
182 {
183 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
184
185 /* ax, ay are the values as adjusted to be in the
186 * socket look structure.
187 */
188 ax = dx - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
189 ay = dy - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
190
191 if (ax < 0 || ax >= op->contr->ns->mapx || ay < 0 || ay >= op->contr->ns->mapy)
192 continue;
193#if 0
194 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
195#endif
196 /* we need to adjust to the fact that the socket
197 * code wants the los to start from the 0,0
198 * and not be relative to middle of los array.
199 */
200 op->contr->blocked_los[ax][ay] = 100;
201 set_wall (op, dx, dy);
202 }
203}
204
205/*
206 * Used to initialise the array used by the LOS routines.
207 * op is the object, x and y values based on MAP_CLIENT_X and Y.
208 * this is because they index the blocked[][] arrays.
209 */
210
211static void
212check_wall (object *op, int x, int y)
213{
214 int ax, ay; 58 sint8 x, y;
59};
215 60
216 if (!block[x][y].index) 61// minimum size, but must be a power of two
217 return; 62#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
218 63
219 /* ax, ay are coordinates as indexed into the look window */ 64// a queue of spaces to calculate
220 ax = x - (MAP_CLIENT_X - op->contr->ns->mapx) / 2; 65static point8 queue [QUEUE_LENGTH];
221 ay = y - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2; 66static int q1, q2; // queue start, end
222
223 /* If the converted coordinates are outside the viewable
224 * area for the client, return now.
225 */
226 if (ax < 0 || ay < 0 || ax >= op->contr->ns->mapx || ay >= op->contr->ns->mapy)
227 return;
228
229#if 0
230 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
231 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
232#endif
233
234 /* If this space is already blocked, prune the processing - presumably
235 * whatever has set this space to be blocked has done the work and already
236 * done the dependency chain.
237 */
238 if (op->contr->blocked_los[ax][ay] == 100)
239 return;
240
241
242 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
243 set_wall (op, x, y);
244}
245 67
246/* 68/*
247 * Clears/initialises the los-array associated to the player 69 * Clears/initialises the los-array associated to the player
248 * controlling the object. 70 * controlling the object.
249 */ 71 */
250
251void 72void
252clear_los (player *pl) 73player::clear_los (sint8 value)
253{ 74{
254 /* This is safer than using the ns->mapx, mapy because 75 memset (los, value, sizeof (los));
255 * we index the blocked_los as a 2 way array, so clearing
256 * the first z spaces may not not cover the spaces we are
257 * actually going to use
258 */
259 memset (pl->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
260} 76}
261 77
262/* 78// enqueue a single mapspace, but only if it hasn't
263 * expand_sight goes through the array of what the given player is 79// been enqueued yet.
264 * able to see, and expands the visible area a bit, so the player will,
265 * to a certain degree, be able to see into corners.
266 * This is somewhat suboptimal, would be better to improve the formula.
267 */
268
269static void 80static void
270expand_sight (object *op) 81enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
271{ 82{
272 int i, x, y, dx, dy; 83 sint8 x = LOS_X0 + dx;
84 sint8 y = LOS_Y0 + dy;
273 85
274 for (x = 1; x < op->contr->ns->mapx - 1; x++) /* loop over inner squares */ 86 los_info &l = los[x][y];
275 for (y = 1; y < op->contr->ns->mapy - 1; y++) 87
88 l.flags |= flags;
89
90 if (expect_false (l.flags & FLG_QUEUED))
91 return;
92
93 l.flags |= FLG_QUEUED;
94
95 queue[q1].x = dx;
96 queue[q1].y = dy;
97
98 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
99}
100
101// run the los algorithm
102// this is a variant of a spiral los algorithm taken from
103// http://www.geocities.com/temerra/los_rays.html
104// which has been simplified and changed considerably, but
105// still is basically the same algorithm.
106static void
107calculate_los (player *pl)
108{
109 {
110 memset (los, 0, sizeof (los));
111
112 // we keep one line for ourselves, for the border flag
113 // so the client area is actually MAP_CLIENT_(X|Y) - 2
114 int half_x = min (LOS_X0 - 1, pl->ns->mapx / 2);
115 int half_y = min (LOS_Y0 - 1, pl->ns->mapy / 2);
116
117 // create borders, the corners are not touched
118 for (int dx = -half_x; dx <= half_x; ++dx)
119 los [dx + LOS_X0][LOS_Y0 - (half_y + 1)].flags =
120 los [dx + LOS_X0][LOS_Y0 + (half_y + 1)].flags = FLG_QUEUED;
121
122 for (int dy = -half_y; dy <= half_y; ++dy)
123 los [LOS_X0 - (half_x + 1)][dy + LOS_Y0].flags =
124 los [LOS_X0 + (half_x + 1)][dy + LOS_Y0].flags = FLG_QUEUED;
125
126 // now reset the los area and also add blocked flags
127 // which supposedly is faster than doing it inside the
128 // spiral path algorithm below, except when very little
129 // area is visible, in which case it is slower. which evens
130 // out los calculation times between large and small los maps.
131 // apply_lights also iterates over this area, maybe these
132 // two passes could be combined somehow.
133 unordered_mapwalk (mapwalk_buf, pl->viewpoint, -half_x, -half_y, half_x, half_y)
276 { 134 {
277 if (!op->contr->blocked_los[x][y] && 135 los_info &l = los [LOS_X0 + dx][LOS_Y0 + dy];
278 !(get_map_flags (op->map, NULL, 136 l.flags = m->at (nx, ny).flags () & P_BLOCKSVIEW ? FLG_BLOCKED : 0;
279 op->x - op->contr->ns->mapx / 2 + x,
280 op->y - op->contr->ns->mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP)))
281 {
282
283 for (i = 1; i <= 8; i += 1)
284 { /* mark all directions */
285 dx = x + freearr_x[i];
286 dy = y + freearr_y[i];
287 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */
288 op->contr->blocked_los[dx][dy] = -1;
289 }
290 }
291 } 137 }
138 }
292 139
293 if (op->map->darkness > 0) /* player is on a dark map */ 140 q1 = 0; q2 = 0; // initialise queue, not strictly required
294 expand_lighted_sight (op); 141 enqueue (0, 0); // enqueue center
295 142
296 /* clear mark squares */ 143 // treat the origin specially
297 for (x = 0; x < op->contr->ns->mapx; x++) 144 los[LOS_X0][LOS_Y0].visible = 1;
298 for (y = 0; y < op->contr->ns->mapy; y++) 145 pl->los[LOS_X0][LOS_Y0] = 0;
299 if (op->contr->blocked_los[x][y] < 0)
300 op->contr->blocked_los[x][y] = 0;
301}
302 146
303/* returns true if op carries one or more lights 147 // loop over all enqueued points until the queue is empty
304 * This is a trivial function now days, but it used to 148 // the order in which this is done ensures that we
305 * be a bit longer. Probably better for callers to just 149 // never touch a mapspace whose input spaces we haven't checked
306 * check the op->glow_radius instead of calling this. 150 // yet.
307 */ 151 while (q1 != q2)
152 {
153 sint8 dx = queue[q2].x;
154 sint8 dy = queue[q2].y;
308 155
309int 156 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
310has_carried_lights (const object *op)
311{
312 /* op may glow! */
313 if (op->glow_radius > 0)
314 return 1;
315 157
316 return 0; 158 sint8 x = LOS_X0 + dx;
159 sint8 y = LOS_Y0 + dy;
160
161 los_info &l = los[x][y];
162
163 if (expect_true (l.flags & (FLG_XI | FLG_YI)))
164 {
165 l.culled = 1;
166 l.xo = l.yo = l.xe = l.ye = 0;
167
168 // check contributing spaces, first horizontal
169 if (expect_true (l.flags & FLG_XI))
170 {
171 los_info *xi = &los[x - sign (dx)][y];
172
173 // don't cull unless obscured
174 l.culled &= !xi->visible;
175
176 /* merge input space */
177 if (expect_false (xi->xo || xi->yo))
178 {
179 // The X input can provide two main pieces of information:
180 // 1. Progressive X obscurity.
181 // 2. Recessive Y obscurity.
182
183 // Progressive X obscurity, favouring recessive input angle
184 if (xi->xe > 0 && l.xo == 0)
185 {
186 l.xe = xi->xe - xi->yo;
187 l.ye = xi->ye + xi->yo;
188 l.xo = xi->xo;
189 l.yo = xi->yo;
190 }
191
192 // Recessive Y obscurity
193 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
194 {
195 l.ye = xi->yo + xi->ye;
196 l.xe = xi->xe - xi->yo;
197 l.xo = xi->xo;
198 l.yo = xi->yo;
199 }
200 }
201 }
202
203 // check contributing spaces, last vertical, identical structure
204 if (expect_true (l.flags & FLG_YI))
205 {
206 los_info *yi = &los[x][y - sign (dy)];
207
208 // don't cull unless obscured
209 l.culled &= !yi->visible;
210
211 /* merge input space */
212 if (expect_false (yi->yo || yi->xo))
213 {
214 // The Y input can provide two main pieces of information:
215 // 1. Progressive Y obscurity.
216 // 2. Recessive X obscurity.
217
218 // Progressive Y obscurity, favouring recessive input angle
219 if (yi->ye > 0 && l.yo == 0)
220 {
221 l.ye = yi->ye - yi->xo;
222 l.xe = yi->xe + yi->xo;
223 l.yo = yi->yo;
224 l.xo = yi->xo;
225 }
226
227 // Recessive X obscurity
228 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
229 {
230 l.xe = yi->xo + yi->xe;
231 l.ye = yi->ye - yi->xo;
232 l.yo = yi->yo;
233 l.xo = yi->xo;
234 }
235 }
236 }
237
238 if (l.flags & FLG_BLOCKED)
239 {
240 l.xo = l.xe = abs (dx);
241 l.yo = l.ye = abs (dy);
242
243 // we obscure dependents, but might be visible
244 // copy the los from the square towards the player,
245 // so outward diagonal corners are lit.
246 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
247
248 l.visible = false;
249 }
250 else
251 {
252 // we are not blocked, so calculate visibility, by checking
253 // whether we are inside or outside the shadow
254 l.visible = (l.xe <= 0 || l.xe > l.xo)
255 && (l.ye <= 0 || l.ye > l.yo);
256
257 pl->los[x][y] = l.culled ? LOS_BLOCKED
258 : l.visible ? 0
259 : 3;
260 }
261
262 }
263
264 // Expands by the unit length in each component's current direction.
265 // If a component has no direction, then it is expanded in both of its
266 // positive and negative directions.
267 if (!l.culled)
268 {
269 if (dx >= 0) enqueue (dx + 1, dy, FLG_XI);
270 if (dx <= 0) enqueue (dx - 1, dy, FLG_XI);
271 if (dy >= 0) enqueue (dx, dy + 1, FLG_YI);
272 if (dy <= 0) enqueue (dx, dy - 1, FLG_YI);
273 }
274 }
317} 275}
318 276
319/* radius, distance => lightness adjust */ 277/* radius, distance => lightness adjust */
320static sint8 darkness[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS + 1]; 278static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
279static sint8 vision_atten[MAX_VISION + 1][MAX_VISION * 3 / 2 + 1];
321 280
322static struct darkness_init 281static struct los_init
323{ 282{
324 darkness_init () 283 los_init ()
325 { 284 {
285 assert (("QUEUE_LENGTH, MAP_CLIENT_X and MAP_CLIENT_Y *must* be powers of two",
286 !(QUEUE_LENGTH & (QUEUE_LENGTH - 1))));
287
288 /* for lights */
326 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius) 289 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
327 for (int distance = 0; distance <= MAX_LIGHT_RADIUS; ++distance) 290 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
328 { 291 {
329 // max intensity 292 // max intensity
330 int intensity = min (MAX_DARKNESS_LOS, abs (radius) + 1); 293 int intensity = min (LOS_MAX, abs (radius) + 1);
331 294
332 // actual intensity 295 // actual intensity
333 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0)); 296 intensity = max (0, lerp_ru (distance, 0, abs (radius) + 1, intensity, 0));
334 297
335 darkness [radius + MAX_LIGHT_RADIUS][distance] = radius < 0 298 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
336 ? intensity 299 ? min (3, intensity)
337 : MAX_DARKNESS_LOS - intensity; 300 : LOS_MAX - intensity;
338 } 301 }
302
303 /* for general vision */
304 for (int radius = 0; radius <= MAX_VISION; ++radius)
305 for (int distance = 0; distance <= MAX_VISION * 3 / 2; ++distance)
306 vision_atten [radius][distance] = distance <= radius ? clamp (lerp (radius, 0, MAX_DARKNESS, 3, 0), 0, 3) : 4;
339 } 307 }
340} darkness_init; 308} los_init;
341 309
310// the following functions cannot be static, due to c++ stupidity :/
311namespace {
312 // brighten area, ignore los
313 sint8
314 los_brighten_nolos (sint8 b, sint8 l)
315 {
316 return min (b, l);
317 }
318
319 // brighten area, but respect los
320 sint8
321 los_brighten (sint8 b, sint8 l)
322 {
323 return b == LOS_BLOCKED ? b : min (b, l);
324 }
325
326 // darken area, respect los
327 sint8
328 los_darken (sint8 b, sint8 l)
329 {
330 return max (b, l);
331 }
332};
333
334template<sint8 change_it (sint8, sint8)>
342static void 335static void
343expand_lighted_sight (object *op) 336apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
344{ 337{
345 int x, y, darklevel, basex, basey, mflags, light, x1, y1; 338 // min or max the circular area around basex, basey
346 maptile *m = op->map; 339 dx += LOS_X0;
347 sint16 nx, ny; 340 dy += LOS_Y0;
348 341
349 darklevel = m->darkness; 342 int hx = pl->ns->mapx / 2;
343 int hy = pl->ns->mapy / 2;
350 344
351 /* If the player can see in the dark, lower the darklevel for him */ 345 int ax0 = max (LOS_X0 - hx, dx - light);
352 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK)) 346 int ay0 = max (LOS_Y0 - hy, dy - light);
353 darklevel -= MAX_DARKNESS_LOS / 2; 347 int ax1 = min (dx + light, LOS_X0 + hx);
348 int ay1 = min (dy + light, LOS_Y0 + hy);
354 349
350 for (int ax = ax0; ax <= ax1; ax++)
351 for (int ay = ay0; ay <= ay1; ay++)
352 pl->los[ax][ay] =
353 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
354}
355
355 /* add light, by finding all (non-null) nearby light sources, then 356/* add light, by finding all (non-null) nearby light sources, then
356 * mark those squares specially. If the darklevel<1, there is no 357 * mark those squares specially.
357 * reason to do this, so we skip this function
358 */ 358 */
359static void
360apply_lights (player *pl)
361{
362 object *op = pl->viewpoint;
363 int darklevel = op->map->darklevel ();
359 364
365 int half_x = pl->ns->mapx / 2;
366 int half_y = pl->ns->mapy / 2;
367
368 int pass2 = 0; // negative lights have an extra pass
369
370 maprect *rects = pl->viewpoint->map->split_to_tiles (
371 mapwalk_buf,
372 pl->viewpoint->x - half_x - MAX_LIGHT_RADIUS,
373 pl->viewpoint->y - half_y - MAX_LIGHT_RADIUS,
374 pl->viewpoint->x + half_x + MAX_LIGHT_RADIUS + 1,
375 pl->viewpoint->y + half_y + MAX_LIGHT_RADIUS + 1
376 );
377
378 /* If the player can see in the dark, increase light/vision radius */
379 int bonus = op->flag [FLAG_SEE_IN_DARK] ? SEE_IN_DARK_RADIUS : 0;
380
360 if (darklevel < 1) 381 if (!darklevel)
361 return; 382 pass2 = 1;
362 383 else
363 /* Do a sanity check. If not valid, some code below may do odd
364 * things.
365 */
366 if (darklevel > MAX_DARKNESS)
367 { 384 {
368 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel); 385 /* first, make everything totally dark */
369 darklevel = MAX_DARKNESS; 386 for (int dx = -half_x; dx <= half_x; dx++)
387 for (int dy = -half_x; dy <= half_y; dy++)
388 max_it (pl->los[dx + LOS_X0][dy + LOS_Y0], LOS_MAX);
389
390 /*
391 * Only process the area of interest.
392 * the basex, basey values represent the position in the op->contr->los
393 * array. Its easier to just increment them here (and start with the right
394 * value) than to recalculate them down below.
395 */
396 for (maprect *r = rects; r->m; ++r)
397 rect_mapwalk (r, 0, 0)
398 {
399 mapspace &ms = m->at (nx, ny);
400 ms.update ();
401 sint8 light = ms.light;
402
403 if (expect_false (light))
404 if (light < 0)
405 pass2 = 1;
406 else
407 {
408 light = clamp (light + bonus, 0, MAX_LIGHT_RADIUS);
409 apply_light<los_brighten> (pl, dx - pl->viewpoint->x, dy - pl->viewpoint->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
410 }
411 }
412
413 /* grant some vision to the player, based on outside, outdoor, and darklevel */
414 {
415 int light;
416
417 if (!op->map->outdoor) // not outdoor, darkness becomes light radius
418 light = MAX_DARKNESS - op->map->darkness;
419 else if (op->map->darkness > 0) // outdoor and darkness > 0 => use darkness as max radius
420 light = lerp_rd (maptile::outdoor_darkness + 0, 0, MAX_DARKNESS, MAX_DARKNESS - op->map->darkness, 0);
421 else // outdoor and darkness <= 0 => start wide and decrease quickly
422 light = lerp (maptile::outdoor_darkness + op->map->darkness, 0, MAX_DARKNESS, MAX_VISION, 2);
423
424 light = clamp (light + bonus, 0, MAX_VISION);
425
426 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
427 }
370 } 428 }
371 429
372 /* first, make everything totally dark */ 430 // when we fly high, we have some minimum viewable area around us, like x-ray
373 for (x = 0; x < op->contr->ns->mapx; x++) 431 if (op->move_type & MOVE_FLY_HIGH)
374 for (y = 0; y < op->contr->ns->mapy; y++) 432 apply_light<los_brighten_nolos> (pl, 0, 0, 9, vision_atten [9]);
375 if (op->contr->blocked_los[x][y] != 100)
376 op->contr->blocked_los[x][y] = MAX_DARKNESS_LOS;
377 433
378 int half_x = op->contr->ns->mapx / 2;
379 int half_y = op->contr->ns->mapy / 2;
380
381 int min_x = op->x - half_x - MAX_LIGHT_RADIUS;
382 int min_y = op->y - half_y - MAX_LIGHT_RADIUS;
383 int max_x = op->x + half_x + MAX_LIGHT_RADIUS;
384 int max_y = op->y + half_y + MAX_LIGHT_RADIUS;
385
386 int pass2 = 0; // negative lights have an extra pass
387
388 /*
389 * Only process the area of interest.
390 * the basex, basey values represent the position in the op->contr->blocked_los
391 * array. Its easier to just increment them here (and start with the right
392 * value) than to recalculate them down below.
393 */
394 for (int x = min_x, basex = -MAX_LIGHT_RADIUS; x <= max_x; x++, basex++)
395 for (int y = min_y, basey = -MAX_LIGHT_RADIUS; y <= max_y; y++, basey++)
396 {
397 maptile *m = op->map;
398 sint16 nx = x;
399 sint16 ny = y;
400
401 if (!xy_normalise (m, nx, ny))
402 continue;
403
404 mapspace &ms = m->at (nx, ny);
405 ms.update ();
406 sint8 light = ms.light;
407
408 if (expect_false (light))
409 if (light < 0)
410 pass2 = 1;
411 else
412 {
413 /* This space is providing light, so we need to brighten up the
414 * spaces around here.
415 */
416 const sint8 *darkness_table = darkness [light + MAX_LIGHT_RADIUS];
417
418 for (int ax = max (0, basex - light); ax <= min (basex + light, op->contr->ns->mapx - 1); ax++)
419 for (int ay = max (0, basey - light); ay <= min (basey + light, op->contr->ns->mapy - 1); ay++)
420 if (op->contr->blocked_los[ax][ay] != 100)
421 min_it (op->contr->blocked_los[ax][ay], darkness_table [idistance (ax - basex, ay - basey)]);
422 }
423 }
424
425 // psosibly do 2nd pass for rare negative glow radii 434 // possibly do 2nd pass for rare negative glow radii
426 if (expect_false (pass2)) 435 // for effect, those are always considered to be stronger than anything else
427 for (x = min_x, basex = -MAX_LIGHT_RADIUS; x <= max_x; x++, basex++) 436 // but they can't darken a place completely
428 for (y = min_y, basey = -MAX_LIGHT_RADIUS; y <= max_y; y++, basey++) 437 if (pass2)
438 for (maprect *r = rects; r->m; ++r)
439 rect_mapwalk (r, 0, 0)
429 { 440 {
430 maptile *m = op->map;
431 sint16 nx = x;
432 sint16 ny = y;
433
434 if (!xy_normalise (m, nx, ny))
435 continue;
436
437 mapspace &ms = m->at (nx, ny); 441 mapspace &ms = m->at (nx, ny);
438 ms.update (); 442 ms.update ();
439 sint8 light = ms.light; 443 sint8 light = ms.light;
440 444
441 if (expect_false (light < 0)) 445 if (expect_false (light < 0))
442 { 446 {
443 const sint8 *darkness_table = darkness [light + MAX_LIGHT_RADIUS]; 447 light = clamp (light - bonus, 0, MAX_DARKNESS);
444 448 apply_light<los_darken> (pl, dx - pl->viewpoint->x, dy - pl->viewpoint->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
445 for (int ax = max (0, basex + light); ax <= min (basex - light, op->contr->ns->mapx - 1); ax++)
446 for (int ay = max (0, basey + light); ay <= min (basey - light, op->contr->ns->mapy - 1); ay++)
447 if (op->contr->blocked_los[ax][ay] != 100)
448 max_it (op->contr->blocked_los[ax][ay], darkness_table [idistance (ax - basex, ay - basey)]);
449 } 449 }
450 } 450 }
451
452 /* Outdoor should never really be completely pitch black dark like
453 * a dungeon, so let the player at least see a little around themselves
454 */
455 if (op->map->outdoor && darklevel > MAX_DARKNESS - 3)
456 {
457 if (op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] > (MAX_DARKNESS - 3))
458 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = MAX_DARKNESS - 3;
459
460 for (x = -1; x <= 1; x++)
461 for (y = -1; y <= 1; y++)
462 {
463 if (op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] > (MAX_DARKNESS - 2))
464 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] = MAX_DARKNESS - 2;
465 }
466 }
467
468 /* grant some vision to the player, based on the darklevel */
469 for (x = darklevel - MAX_DARKNESS; x < MAX_DARKNESS + 1 - darklevel; x++)
470 for (y = darklevel - MAX_DARKNESS; y < MAX_DARKNESS + 1 - darklevel; y++)
471 if (!(op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] == 100))
472 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] -=
473 max (0, 6 - darklevel - max (abs (x), abs (y)));
474} 451}
475 452
476/* blinded_sight() - sets all viewable squares to blocked except 453/* blinded_sight() - sets all viewable squares to blocked except
477 * for the one the central one that the player occupies. A little 454 * for the one the central one that the player occupies. A little
478 * odd that you can see yourself (and what your standing on), but 455 * odd that you can see yourself (and what your standing on), but
479 * really need for any reasonable game play. 456 * really need for any reasonable game play.
480 */ 457 */
481static void 458static void
482blinded_sight (object *op) 459blinded_sight (player *pl)
483{ 460{
484 int x, y; 461 pl->los[LOS_X0][LOS_Y0] = 1;
485
486 for (x = 0; x < op->contr->ns->mapx; x++)
487 for (y = 0; y < op->contr->ns->mapy; y++)
488 op->contr->blocked_los[x][y] = 100;
489
490 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = 0;
491} 462}
492 463
493/* 464/*
494 * update_los() recalculates the array which specifies what is 465 * update_los() recalculates the array which specifies what is
495 * visible for the given player-object. 466 * visible for the given player-object.
496 */ 467 */
497void 468void
498update_los (object *op) 469player::update_los ()
499{ 470{
500 int dx = op->contr->ns->mapx / 2, dy = op->contr->ns->mapy / 2, x, y; 471 if (ob->flag [FLAG_REMOVED])//D really needed?
501
502 if (QUERY_FLAG (op, FLAG_REMOVED))
503 return; 472 return;
504 473
505 clear_los (op->contr); 474 if (ob->flag [FLAG_WIZLOOK])
506 475 clear_los (0);
507 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ ) 476 else if (viewpoint->flag [FLAG_BLIND]) /* player is blind */
508 return; 477 {
509 478 clear_los ();
510 /* For larger maps, this is more efficient than the old way which
511 * used the chaining of the block array. Since many space views could
512 * be blocked by different spaces in front, this mean that a lot of spaces
513 * could be examined multile times, as each path would be looked at.
514 */
515 for (x = (MAP_CLIENT_X - op->contr->ns->mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->ns->mapx) / 2 + 1; x++)
516 for (y = (MAP_CLIENT_Y - op->contr->ns->mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->ns->mapy) / 2 + 1; y++)
517 check_wall (op, x, y);
518
519 /* do the los of the player. 3 (potential) cases */
520 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
521 blinded_sight (op); 479 blinded_sight (this);
480 }
522 else 481 else
523 expand_sight (op); 482 {
483 clear_los ();
484 calculate_los (this);
485 apply_lights (this);
486 }
524 487
525 //TODO: no range-checking whatsoever :( 488 if (viewpoint->flag [FLAG_XRAYS])
526 if (QUERY_FLAG (op, FLAG_XRAYS))
527 for (int x = -2; x <= 2; x++) 489 for (int dx = -2; dx <= 2; dx++)
528 for (int y = -2; y <= 2; y++) 490 for (int dy = -2; dy <= 2; dy++)
529 op->contr->blocked_los[dx + x][dy + y] = 0; 491 min_it (los[dx + LOS_X0][dy + LOS_Y0], 1);
530} 492}
531 493
532/* update all_map_los is like update_all_los below, 494/* update all_map_los is like update_all_los below,
533 * but updates everyone on the map, no matter where they 495 * but updates everyone on the map, no matter where they
534 * are. This generally should not be used, as a per 496 * are. This generally should not be used, as a per
541 * change_map_light function 503 * change_map_light function
542 */ 504 */
543void 505void
544update_all_map_los (maptile *map) 506update_all_map_los (maptile *map)
545{ 507{
546 for_all_players (pl) 508 for_all_players_on_map (pl, map)
547 if (pl->ob && pl->ob->map == map)
548 pl->do_los = 1; 509 pl->do_los = 1;
549} 510}
550 511
551/* 512/*
552 * This function makes sure that update_los() will be called for all 513 * This function makes sure that update_los() will be called for all
553 * players on the given map within the next frame. 514 * players on the given map within the next frame.
561 * map is the map that changed, x and y are the coordinates. 522 * map is the map that changed, x and y are the coordinates.
562 */ 523 */
563void 524void
564update_all_los (const maptile *map, int x, int y) 525update_all_los (const maptile *map, int x, int y)
565{ 526{
527 map->at (x, y).invalidate ();
528
566 for_all_players (pl) 529 for_all_players (pl)
567 { 530 {
568 /* Player should not have a null map, but do this 531 /* Player should not have a null map, but do this
569 * check as a safety 532 * check as a safety
570 */ 533 */
571 if (!pl->ob || !pl->ob->map || !pl->ns) 534 if (!pl->ob || !pl->ob->map || !pl->ns)
572 continue; 535 continue;
573 536
574 /* Same map is simple case - see if pl is close enough. 537 rv_vector rv;
575 * Note in all cases, we did the check for same map first, 538
576 * and then see if the player is close enough and update 539 get_rangevector_from_mapcoord (pl->ob->map, x, y, pl->ob, &rv);
577 * los if that is the case. If the player is on the
578 * corresponding map, but not close enough, then the
579 * player can't be on another map that may be closer,
580 * so by setting it up this way, we trim processing
581 * some.
582 */ 540
583 if (pl->ob->map == map) 541 if ((abs (rv.distance_x) <= pl->ns->mapx / 2) && (abs (rv.distance_y) <= pl->ns->mapy / 2))
584 {
585 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
586 pl->do_los = 1; 542 pl->do_los = 1;
587 }
588
589 /* Now we check to see if player is on adjacent
590 * maps to the one that changed and also within
591 * view. The tile_maps[] could be null, but in that
592 * case it should never match the pl->ob->map, so
593 * we want ever try to dereference any of the data in it.
594 *
595 * The logic for 0 and 3 is to see how far the player is
596 * from the edge of the map (height/width) - pl->ob->(x,y)
597 * and to add current position on this map - that gives a
598 * distance.
599 * For 1 and 2, we check to see how far the given
600 * coordinate (x,y) is from the corresponding edge,
601 * and then add the players location, which gives
602 * a distance.
603 */
604 else if (pl->ob->map == map->tile_map[0])
605 {
606 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
607 pl->do_los = 1;
608 }
609 else if (pl->ob->map == map->tile_map[2])
610 {
611 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
612 pl->do_los = 1;
613 }
614 else if (pl->ob->map == map->tile_map[1])
615 {
616 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
617 pl->do_los = 1;
618 }
619 else if (pl->ob->map == map->tile_map[3])
620 {
621 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
622 pl->do_los = 1;
623 }
624 } 543 }
625} 544}
626 545
546static const int season_darkness[5][HOURS_PER_DAY] = {
547 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
548 { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
549 { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
550 { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
551 { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
552 { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
553};
554
627/* 555/*
628 * Debug-routine which dumps the array which specifies the visible 556 * Tell players the time and compute the darkness level for all maps in the game.
629 * area of a player. Triggered by the z key in DM mode. 557 * MUST be called exactly once per hour.
630 */ 558 */
631void 559void
632print_los (object *op) 560maptile::adjust_daylight ()
633{ 561{
634 int x, y; 562 timeofday_t tod;
635 char buf[50], buf2[10];
636 563
637 strcpy (buf, " "); 564 get_tod (&tod);
638 565
639 for (x = 0; x < op->contr->ns->mapx; x++) 566 // log the time to log-1 every hour, and to chat every day
640 { 567 {
641 sprintf (buf2, "%2d", x); 568 char todbuf[512];
642 strcat (buf, buf2); 569
570 format_tod (todbuf, sizeof (todbuf), &tod);
571
572 for_all_players (pl)
573 pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
643 } 574 }
644 575
645 new_draw_info (NDI_UNIQUE, 0, op, buf); 576 /* If the light level isn't changing, no reason to do all
577 * the work below.
578 */
579 sint8 new_darkness = season_darkness[tod.season][tod.hour];
646 580
647 for (y = 0; y < op->contr->ns->mapy; y++) 581 if (new_darkness == maptile::outdoor_darkness)
648 { 582 return;
649 sprintf (buf, "%2d:", y);
650 583
651 for (x = 0; x < op->contr->ns->mapx; x++) 584 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
652 { 585 new_darkness > maptile::outdoor_darkness
653 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]); 586 ? "It becomes darker."
654 strcat (buf, buf2); 587 : "It becomes brighter.");
655 }
656 588
657 new_draw_info (NDI_UNIQUE, 0, op, buf); 589 maptile::outdoor_darkness = new_darkness;
658 } 590
591 // we simply update the los for all players, which is unnecessarily
592 // costly, but should do for the moment.
593 for_all_players (pl)
594 pl->do_los = 1;
659} 595}
660 596
661/* 597/*
662 * make_sure_seen: The object is supposed to be visible through walls, thus 598 * make_sure_seen: The object is supposed to be visible through walls, thus
663 * check if any players are nearby, and edit their LOS array. 599 * check if any players are nearby, and edit their LOS array.
664 */ 600 */
665
666void 601void
667make_sure_seen (const object *op) 602make_sure_seen (const object *op)
668{ 603{
669 for_all_players (pl) 604 for_all_players (pl)
670 if (pl->ob->map == op->map && 605 if (pl->ob->map == op->map &&
671 pl->ob->y - pl->ns->mapy / 2 <= op->y && 606 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
672 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x) 607 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
673 pl->blocked_los[pl->ns->mapx / 2 + op->x - pl->ob->x][pl->ns->mapy / 2 + op->y - pl->ob->y] = 0; 608 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_Y0] = 0;
674} 609}
675 610
676/* 611/*
677 * make_sure_not_seen: The object which is supposed to be visible through 612 * make_sure_not_seen: The object which is supposed to be visible through
678 * walls has just been removed from the map, so update the los of any 613 * walls has just been removed from the map, so update the los of any
679 * players within its range 614 * players within its range
680 */ 615 */
681
682void 616void
683make_sure_not_seen (const object *op) 617make_sure_not_seen (const object *op)
684{ 618{
685 for_all_players (pl) 619 for_all_players (pl)
686 if (pl->ob->map == op->map && 620 if (pl->ob->map == op->map &&
687 pl->ob->y - pl->ns->mapy / 2 <= op->y && 621 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
688 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x) 622 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
689 pl->do_los = 1; 623 pl->do_los = 1;
690} 624}
625

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines