ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.36 by root, Mon Dec 8 15:40:13 2008 UTC vs.
Revision 1.42 by root, Sat Dec 20 02:32:31 2008 UTC

22 */ 22 */
23 23
24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */ 24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
25 25
26#include <global.h> 26#include <global.h>
27#include <math.h> 27#include <cmath>
28
29/* Distance must be less than this for the object to be blocked.
30 * An object is 1.0 wide, so if set to 0.5, it means the object
31 * that blocks half the view (0.0 is complete block) will
32 * block view in our tables.
33 * .4 or less lets you see through walls. .5 is about right.
34 */
35
36#define SPACE_BLOCK 0.5
37
38typedef struct blstr
39{
40 int x[4], y[4];
41 int index;
42} blocks;
43
44// 31/32 == a speed hack
45// we would like to use 32 for speed, but the code loops endlessly
46// then, reason not yet identified, so only make the array use 32,
47// not the define's.
48blocks block[MAP_CLIENT_X][MAP_CLIENT_Y == 31 ? 32 : MAP_CLIENT_Y];
49 28
50static void expand_lighted_sight (object *op); 29static void expand_lighted_sight (object *op);
51 30
52/* 31enum {
53 * Used to initialise the array used by the LOS routines. 32 LOS_XI = 0x01,
54 * What this sets if that x,y blocks the view of bx,by 33 LOS_YI = 0x02,
55 * This then sets up a relation - for example, something 34};
56 * at 5,4 blocks view at 5,3 which blocks view at 5,2
57 * etc. So when we check 5,4 and find it block, we have
58 * the data to know that 5,3 and 5,2 and 5,1 should also
59 * be blocked.
60 */
61 35
62static void 36struct los_info
63set_block (int x, int y, int bx, int by)
64{ 37{
65 int index = block[x][y].index, i; 38 sint8 xo, yo; // obscure angle
39 sint8 xe, ye; // angle deviation
40 uint8 culled;
41 uint8 queued;
42 uint8 visible;
43 uint8 flags;
44};
66 45
67 /* Due to flipping, we may get duplicates - better safe than sorry. 46// temporary storage for the los algorithm,
68 */ 47// one los_info for each lightable map space
69 for (i = 0; i < index; i++) 48static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
70 {
71 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
72 return;
73 }
74 49
75 block[x][y].x[index] = bx; 50struct point
76 block[x][y].y[index] = by;
77 block[x][y].index++;
78#ifdef LOS_DEBUG
79 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
80#endif
81}
82
83/*
84 * initialises the array used by the LOS routines.
85 */
86
87/* since we are only doing the upper left quadrant, only
88 * these spaces could possibly get blocked, since these
89 * are the only ones further out that are still possibly in the
90 * sightline.
91 */
92
93void
94init_block (void)
95{ 51{
96 int x, y, dx, dy, i;
97 static int block_x[3] = { -1, -1, 0 },
98 block_y[3] = { -1, 0, -1 };
99
100 for (x = 0; x < MAP_CLIENT_X; x++)
101 for (y = 0; y < MAP_CLIENT_Y; y++)
102 block[x][y].index = 0;
103
104
105 /* The table should be symmetric, so only do the upper left
106 * quadrant - makes the processing easier.
107 */
108 for (x = 1; x <= MAP_CLIENT_X / 2; x++)
109 {
110 for (y = 1; y <= MAP_CLIENT_Y / 2; y++)
111 {
112 for (i = 0; i < 3; i++)
113 {
114 dx = x + block_x[i];
115 dy = y + block_y[i];
116
117 /* center space never blocks */
118 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
119 continue;
120
121 /* If its a straight line, its blocked */
122 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
123 {
124 /* For simplicity, we mirror the coordinates to block the other
125 * quadrants.
126 */
127 set_block (x, y, dx, dy);
128 if (x == MAP_CLIENT_X / 2)
129 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
130 else if (y == MAP_CLIENT_Y / 2)
131 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
132 }
133 else
134 {
135 float d1, r, s, l;
136
137 /* We use the algorihm that found out how close the point
138 * (x,y) is to the line from dx,dy to the center of the viewable
139 * area. l is the distance from x,y to the line.
140 * r is more a curiosity - it lets us know what direction (left/right)
141 * the line is off
142 */
143
144 d1 = (float) (pow (MAP_CLIENT_X / 2 - dx, 2.f) + pow (MAP_CLIENT_Y / 2 - dy, 2.f));
145 r = (float) ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
146 s = (float) ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
147 l = FABS (sqrt (d1) * s);
148
149 if (l <= SPACE_BLOCK)
150 {
151 /* For simplicity, we mirror the coordinates to block the other
152 * quadrants.
153 */
154 set_block (x, y, dx, dy);
155 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
156 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
157 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
158 }
159 }
160 }
161 }
162 }
163}
164
165/*
166 * Used to initialise the array used by the LOS routines.
167 * x,y are indexes into the blocked[][] array.
168 * This recursively sets the blocked line of sight view.
169 * From the blocked[][] array, we know for example
170 * that if some particular space is blocked, it blocks
171 * the view of the spaces 'behind' it, and those blocked
172 * spaces behind it may block other spaces, etc.
173 * In this way, the chain of visibility is set.
174 */
175static void
176set_wall (object *op, int x, int y)
177{
178 int i;
179
180 for (i = 0; i < block[x][y].index; i++)
181 {
182 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
183
184 /* ax, ay are the values as adjusted to be in the
185 * socket look structure.
186 */
187 ax = dx - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
188 ay = dy - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
189
190 if (ax < 0 || ax >= op->contr->ns->mapx || ay < 0 || ay >= op->contr->ns->mapy)
191 continue;
192#if 0
193 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
194#endif
195 /* we need to adjust to the fact that the socket
196 * code wants the los to start from the 0,0
197 * and not be relative to middle of los array.
198 */
199 op->contr->blocked_los[ax][ay] = LOS_BLOCKED;
200 set_wall (op, dx, dy);
201 }
202}
203
204/*
205 * Used to initialise the array used by the LOS routines.
206 * op is the object, x and y values based on MAP_CLIENT_X and Y.
207 * this is because they index the blocked[][] arrays.
208 */
209
210static void
211check_wall (object *op, int x, int y)
212{
213 int ax, ay; 52 sint8 x, y;
53};
214 54
215 if (!block[x][y].index) 55// minimum size, but must be a power of two
216 return; 56#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
217 57
218 /* ax, ay are coordinates as indexed into the look window */ 58// a queue of spaces to calculate
219 ax = x - (MAP_CLIENT_X - op->contr->ns->mapx) / 2; 59static point queue [QUEUE_LENGTH];
220 ay = y - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2; 60static int q1, q2; // queue start, end
221
222 /* If the converted coordinates are outside the viewable
223 * area for the client, return now.
224 */
225 if (ax < 0 || ay < 0 || ax >= op->contr->ns->mapx || ay >= op->contr->ns->mapy)
226 return;
227
228#if 0
229 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
230 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
231#endif
232
233 /* If this space is already blocked, prune the processing - presumably
234 * whatever has set this space to be blocked has done the work and already
235 * done the dependency chain.
236 */
237 if (op->contr->blocked_los[ax][ay] == LOS_BLOCKED)
238 return;
239
240 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
241 set_wall (op, x, y);
242}
243 61
244/* 62/*
245 * Clears/initialises the los-array associated to the player 63 * Clears/initialises the los-array associated to the player
246 * controlling the object. 64 * controlling the object.
247 */ 65 */
248
249void 66void
250clear_los (player *pl) 67player::clear_los (sint8 value)
251{ 68{
252 /* This is safer than using the ns->mapx, mapy because 69 memset (los, value, sizeof (los));
253 * we index the blocked_los as a 2 way array, so clearing
254 * the first z spaces may not not cover the spaces we are
255 * actually going to use
256 */
257 memset (pl->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
258} 70}
259 71
260/* 72// enqueue a single mapspace, but only if it hasn't
261 * expand_sight goes through the array of what the given player is 73// been enqueued yet.
262 * able to see, and expands the visible area a bit, so the player will,
263 * to a certain degree, be able to see into corners.
264 * This is somewhat suboptimal, would be better to improve the formula.
265 */
266
267static void 74static void
268expand_sight (object *op) 75enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
269{ 76{
270 int i, x, y, dx, dy; 77 sint8 x = LOS_X0 + dx;
78 sint8 y = LOS_Y0 + dy;
271 79
272 for (x = 1; x < op->contr->ns->mapx - 1; x++) /* loop over inner squares */ 80 if (x < 0 || x >= MAP_CLIENT_X) return;
273 for (y = 1; y < op->contr->ns->mapy - 1; y++) 81 if (y < 0 || y >= MAP_CLIENT_Y) return;
82
83 los_info &l = los[x][y];
84
85 l.flags |= flags;
86
87 if (l.queued)
88 return;
89
90 l.queued = 1;
91
92 queue[q1].x = dx;
93 queue[q1].y = dy;
94
95 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
96}
97
98// run the los algorithm
99// this is a variant of a spiral los algorithm taken from
100// http://www.geocities.com/temerra/los_rays.html
101// which has been simplified and changed considerably, but
102// still is basically the same algorithm.
103static void
104do_los (object *op)
105{
106 player *pl = op->contr;
107
108 int max_radius = max (pl->ns->mapx, pl->ns->mapy) / 2;
109
110 memset (los, 0, sizeof (los));
111
112 q1 = 0; q2 = 0; // initialise queue, not strictly required
113 enqueue (0, 0); // enqueue center
114
115 // treat the origin specially
116 los[LOS_X0][LOS_Y0].visible = 1;
117 pl->los[LOS_X0][LOS_Y0] = 0;
118
119 // loop over all enqueued points until the queue is empty
120 // the order in which this is done ensures that we
121 // never touch a mapspace whose input spaces we haven't checked
122 // yet.
123 while (q1 != q2)
124 {
125 sint8 dx = queue[q2].x;
126 sint8 dy = queue[q2].y;
127
128 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
129
130 sint8 x = LOS_X0 + dx;
131 sint8 y = LOS_Y0 + dy;
132
133 //int distance = idistance (dx, dy); if (distance > max_radius) continue;//D
134 int distance = 0;//D
135
136 los_info &l = los[x][y];
137
138 if (expect_true (l.flags & (LOS_XI | LOS_YI)))
274 { 139 {
275 if (!op->contr->blocked_los[x][y] && 140 l.culled = 1;
276 !(get_map_flags (op->map, NULL, 141
277 op->x - op->contr->ns->mapx / 2 + x, 142 // check contributing spaces, first horizontal
278 op->y - op->contr->ns->mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))) 143 if (expect_true (l.flags & LOS_XI))
279 { 144 {
145 los_info *xi = &los[x - sign (dx)][y];
280 146
281 for (i = 1; i <= 8; i += 1) 147 // don't cull unless obscured
282 { /* mark all directions */ 148 l.culled &= !xi->visible;
283 dx = x + freearr_x[i]; 149
284 dy = y + freearr_y[i]; 150 /* merge input space */
285 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */ 151 if (expect_false (xi->xo || xi->yo))
286 op->contr->blocked_los[dx][dy] = -1; 152 {
153 // The X input can provide two main pieces of information:
154 // 1. Progressive X obscurity.
155 // 2. Recessive Y obscurity.
156
157 // Progressive X obscurity, favouring recessive input angle
158 if (xi->xe > 0 && l.xo == 0)
159 {
160 l.xe = xi->xe - xi->yo;
161 l.ye = xi->ye + xi->yo;
162 l.xo = xi->xo;
163 l.yo = xi->yo;
164 }
165
166 // Recessive Y obscurity
167 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
168 {
169 l.ye = xi->yo + xi->ye;
170 l.xe = xi->xe - xi->yo;
171 l.xo = xi->xo;
172 l.yo = xi->yo;
173 }
287 } 174 }
288 } 175 }
176
177 // check contributing spaces, last vertical, identical structure
178 if (expect_true (l.flags & LOS_YI))
179 {
180 los_info *yi = &los[x][y - sign (dy)];
181
182 // don't cull unless obscured
183 l.culled &= !yi->visible;
184
185 /* merge input space */
186 if (expect_false (yi->yo || yi->xo))
187 {
188 // The Y input can provide two main pieces of information:
189 // 1. Progressive Y obscurity.
190 // 2. Recessive X obscurity.
191
192 // Progressive Y obscurity, favouring recessive input angle
193 if (yi->ye > 0 && l.yo == 0)
194 {
195 l.ye = yi->ye - yi->xo;
196 l.xe = yi->xe + yi->xo;
197 l.yo = yi->yo;
198 l.xo = yi->xo;
199 }
200
201 // Recessive X obscurity
202 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
203 {
204 l.xe = yi->xo + yi->xe;
205 l.ye = yi->ye - yi->xo;
206 l.yo = yi->yo;
207 l.xo = yi->xo;
208 }
209 }
210 }
211
212 // check whether this space blocks the view
213 maptile *m = op->map;
214 sint16 nx = op->x + dx;
215 sint16 ny = op->y + dy;
216
217 if (expect_true (!xy_normalise (m, nx, ny))
218 || expect_false (m->at (nx, ny).flags () & P_BLOCKSVIEW))
219 {
220 l.xo = l.xe = abs (dx);
221 l.yo = l.ye = abs (dy);
222
223 // we obscure dependents, but might be visible
224 // copy the los from the square towards the player,
225 // so outward diagonal corners are lit.
226 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
227 l.visible = false;
228 }
229 else
230 {
231 // we are not blocked, so calculate visibility, by checking
232 // whether we are inside or outside the shadow
233 l.visible = (l.xe <= 0 || l.xe > l.xo)
234 && (l.ye <= 0 || l.ye > l.yo);
235
236 pl->los[x][y] = l.culled ? LOS_BLOCKED
237 : l.visible ? max (0, 2 - max_radius + distance)
238 : 3;
239 }
240
289 } 241 }
290 242
291 if (op->map->darkness > 0) /* player is on a dark map */ 243 // Expands by the unit length in each component's current direction.
292 expand_lighted_sight (op); 244 // If a component has no direction, then it is expanded in both of its
293 245 // positive and negative directions.
294 /* clear mark squares */ 246 if (!l.culled)
295 for (x = 0; x < op->contr->ns->mapx; x++) 247 {
296 for (y = 0; y < op->contr->ns->mapy; y++) 248 if (dx >= 0) enqueue (dx + 1, dy, LOS_XI);
297 if (op->contr->blocked_los[x][y] < 0) 249 if (dx <= 0) enqueue (dx - 1, dy, LOS_XI);
298 op->contr->blocked_los[x][y] = 0; 250 if (dy >= 0) enqueue (dx, dy + 1, LOS_YI);
251 if (dy <= 0) enqueue (dx, dy - 1, LOS_YI);
252 }
253 }
299} 254}
300 255
301/* returns true if op carries one or more lights 256/* returns true if op carries one or more lights
302 * This is a trivial function now days, but it used to 257 * This is a trivial function now days, but it used to
303 * be a bit longer. Probably better for callers to just 258 * be a bit longer. Probably better for callers to just
304 * check the op->glow_radius instead of calling this. 259 * check the op->glow_radius instead of calling this.
305 */ 260 */
306
307int 261int
308has_carried_lights (const object *op) 262has_carried_lights (const object *op)
309{ 263{
310 /* op may glow! */ 264 /* op may glow! */
311 if (op->glow_radius > 0) 265 if (op->glow_radius > 0)
335 : LOS_MAX - intensity; 289 : LOS_MAX - intensity;
336 } 290 }
337 } 291 }
338} darkness_init; 292} darkness_init;
339 293
294sint8
295los_brighten (sint8 b, sint8 l)
296{
297 return b == LOS_BLOCKED ? b : min (b, l);
298}
299
300sint8
301los_darken (sint8 b, sint8 l)
302{
303 return max (b, l);
304}
305
306template<sint8 change_it (sint8, sint8)>
340static void 307static void
341expand_lighted_sight (object *op) 308apply_light (object *op, int dx, int dy, int light, const sint8 *darkness_table)
342{ 309{
310 // min or max the circular area around basex, basey
311 player *pl = op->contr;
312
313 dx += LOS_X0;
314 dy += LOS_Y0;
315
316 int hx = op->contr->ns->mapx / 2;
317 int hy = op->contr->ns->mapy / 2;
318
319 int ax0 = max (LOS_X0 - hx, dx - light);
320 int ay0 = max (LOS_Y0 - hy, dy - light);
321 int ax1 = min (dx + light, LOS_X0 + hx);
322 int ay1 = min (dy + light, LOS_Y0 + hy);
323
324 for (int ax = ax0; ax <= ax1; ax++)
325 for (int ay = ay0; ay <= ay1; ay++)
326 pl->los[ax][ay] =
327 change_it (pl->los[ax][ay], darkness_table [idistance (ax - dx, ay - dy)]);
328}
329
330/* add light, by finding all (non-null) nearby light sources, then
331 * mark those squares specially.
332 */
333static void
334apply_lights (object *op)
335{
343 int x, y, darklevel, basex, basey, mflags, light, x1, y1; 336 int darklevel, mflags, light, x1, y1;
344 maptile *m = op->map; 337 maptile *m = op->map;
345 sint16 nx, ny; 338 sint16 nx, ny;
346 339
347 darklevel = m->darkness; 340 darklevel = m->darkness;
348 341
349 /* If the player can see in the dark, lower the darklevel for him */ 342 /* If the player can see in the dark, lower the darklevel for him */
350 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK)) 343 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK))
351 darklevel -= LOS_MAX / 2; 344 darklevel -= LOS_MAX / 2;
352
353 /* add light, by finding all (non-null) nearby light sources, then
354 * mark those squares specially. If the darklevel<1, there is no
355 * reason to do this, so we skip this function
356 */
357
358 if (darklevel < 1)
359 return;
360 345
361 /* Do a sanity check. If not valid, some code below may do odd 346 /* Do a sanity check. If not valid, some code below may do odd
362 * things. 347 * things.
363 */ 348 */
364 if (darklevel > MAX_DARKNESS) 349 if (darklevel > MAX_DARKNESS)
365 { 350 {
366 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel); 351 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel);
367 darklevel = MAX_DARKNESS; 352 darklevel = MAX_DARKNESS;
368 } 353 }
369 354
370 /* first, make everything totally dark */
371 for (x = 0; x < op->contr->ns->mapx; x++)
372 for (y = 0; y < op->contr->ns->mapy; y++)
373 if (op->contr->blocked_los[x][y] != LOS_BLOCKED)
374 op->contr->blocked_los[x][y] = LOS_MAX;
375
376 int half_x = op->contr->ns->mapx / 2; 355 int half_x = op->contr->ns->mapx / 2;
377 int half_y = op->contr->ns->mapy / 2; 356 int half_y = op->contr->ns->mapy / 2;
378 357
379 int min_x = op->x - half_x - MAX_LIGHT_RADIUS; 358 int min_x = op->x - half_x - MAX_LIGHT_RADIUS;
380 int min_y = op->y - half_y - MAX_LIGHT_RADIUS; 359 int min_y = op->y - half_y - MAX_LIGHT_RADIUS;
381 int max_x = op->x + half_x + MAX_LIGHT_RADIUS; 360 int max_x = op->x + half_x + MAX_LIGHT_RADIUS;
382 int max_y = op->y + half_y + MAX_LIGHT_RADIUS; 361 int max_y = op->y + half_y + MAX_LIGHT_RADIUS;
383 362
384 int pass2 = 0; // negative lights have an extra pass 363 int pass2 = 0; // negative lights have an extra pass
385 364
386 /* 365 if (darklevel < 1)
366 pass2 = 1;
367 else
368 {
369 /* first, make everything totally dark */
370 for (int dx = -half_x; dx <= half_x; dx++)
371 for (int dy = -half_x; dy <= half_y; dy++)
372 if (op->contr->los[dx + LOS_X0][dy + LOS_Y0] != LOS_BLOCKED)
373 op->contr->los[dx + LOS_X0][dy + LOS_Y0] = LOS_MAX;
374
375 /*
387 * Only process the area of interest. 376 * Only process the area of interest.
388 * the basex, basey values represent the position in the op->contr->blocked_los 377 * the basex, basey values represent the position in the op->contr->los
389 * array. Its easier to just increment them here (and start with the right 378 * array. Its easier to just increment them here (and start with the right
390 * value) than to recalculate them down below. 379 * value) than to recalculate them down below.
391 */ 380 */
392 for (int x = min_x, basex = -MAX_LIGHT_RADIUS; x <= max_x; x++, basex++) 381 for (int x = min_x; x <= max_x; x++)
393 for (int y = min_y, basey = -MAX_LIGHT_RADIUS; y <= max_y; y++, basey++) 382 for (int y = min_y; y <= max_y; y++)
383 {
384 maptile *m = op->map;
385 sint16 nx = x;
386 sint16 ny = y;
387
388 if (!xy_normalise (m, nx, ny))
389 continue;
390
391 mapspace &ms = m->at (nx, ny);
392 ms.update ();
393 sint8 light = ms.light;
394
395 if (expect_false (light))
396 if (light < 0)
397 pass2 = 1;
398 else
399 apply_light<los_brighten> (op, x - op->x, y - op->y, light, darkness [light + MAX_LIGHT_RADIUS]);
400 }
401
402 /* grant some vision to the player, based on the darklevel */
403 /* for outdoor maps, ensure some mininum visibility radius */
394 { 404 {
395 maptile *m = op->map; 405 int light = clamp (MAX_DARKNESS - darklevel, op->map->outdoor ? 2 : 0, MAX_LIGHT_RADIUS);
396 sint16 nx = x;
397 sint16 ny = y;
398 406
399 if (!xy_normalise (m, nx, ny)) 407 apply_light<los_brighten> (op, 0, 0, light, darkness [light + MAX_LIGHT_RADIUS]);
400 continue;
401
402 mapspace &ms = m->at (nx, ny);
403 ms.update ();
404 sint8 light = ms.light;
405
406 if (expect_false (light))
407 if (light < 0)
408 pass2 = 1;
409 else
410 {
411 /* This space is providing light, so we need to brighten up the
412 * spaces around here.
413 */
414 const sint8 *darkness_table = darkness [light + MAX_LIGHT_RADIUS];
415
416 for (int ax = max (0, basex - light); ax <= min (basex + light, op->contr->ns->mapx - 1); ax++)
417 for (int ay = max (0, basey - light); ay <= min (basey + light, op->contr->ns->mapy - 1); ay++)
418 if (op->contr->blocked_los[ax][ay] != LOS_BLOCKED)
419 min_it (op->contr->blocked_los[ax][ay], darkness_table [idistance (ax - basex, ay - basey)]);
420 }
421 } 408 }
409 }
422 410
423 // psosibly do 2nd pass for rare negative glow radii 411 // possibly do 2nd pass for rare negative glow radii
424 if (expect_false (pass2)) 412 // for effect, those are always considered to be stronger than anything else
425 for (x = min_x, basex = -MAX_LIGHT_RADIUS; x <= max_x; x++, basex++) 413 // but they can't darken a place completely
426 for (y = min_y, basey = -MAX_LIGHT_RADIUS; y <= max_y; y++, basey++) 414 if (pass2)
415 for (int x = min_x; x <= max_x; x++)
416 for (int y = min_y; y <= max_y; y++)
427 { 417 {
428 maptile *m = op->map; 418 maptile *m = op->map;
429 sint16 nx = x; 419 sint16 nx = x;
430 sint16 ny = y; 420 sint16 ny = y;
431 421
435 mapspace &ms = m->at (nx, ny); 425 mapspace &ms = m->at (nx, ny);
436 ms.update (); 426 ms.update ();
437 sint8 light = ms.light; 427 sint8 light = ms.light;
438 428
439 if (expect_false (light < 0)) 429 if (expect_false (light < 0))
440 { 430 apply_light<los_darken> (op, x - op->x, y - op->y, -light, darkness [light + MAX_LIGHT_RADIUS]);
441 const sint8 *darkness_table = darkness [light + MAX_LIGHT_RADIUS];
442
443 for (int ax = max (0, basex + light); ax <= min (basex - light, op->contr->ns->mapx - 1); ax++)
444 for (int ay = max (0, basey + light); ay <= min (basey - light, op->contr->ns->mapy - 1); ay++)
445 if (op->contr->blocked_los[ax][ay] != LOS_BLOCKED)
446 max_it (op->contr->blocked_los[ax][ay], darkness_table [idistance (ax - basex, ay - basey)]);
447 } 431 }
448 }
449
450 /* Outdoor should never really be completely pitch black dark like
451 * a dungeon, so let the player at least see a little around themselves
452 */
453 if (op->map->outdoor && darklevel > MAX_DARKNESS - 3)
454 {
455 if (op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] > (LOS_MAX - 3))
456 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = LOS_MAX - 3;
457
458 for (x = -1; x <= 1; x++)
459 for (y = -1; y <= 1; y++)
460 if (op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] > (LOS_MAX - 2))
461 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] = LOS_MAX - 2;
462 }
463
464 /* grant some vision to the player, based on the darklevel */
465 for (x = darklevel - MAX_DARKNESS; x < MAX_DARKNESS + 1 - darklevel; x++)
466 for (y = darklevel - MAX_DARKNESS; y < MAX_DARKNESS + 1 - darklevel; y++)
467 if (!(op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] == LOS_BLOCKED))
468 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] -=
469 max (0, 6 - darklevel - max (abs (x), abs (y)));
470} 432}
471 433
472/* blinded_sight() - sets all viewable squares to blocked except 434/* blinded_sight() - sets all viewable squares to blocked except
473 * for the one the central one that the player occupies. A little 435 * for the one the central one that the player occupies. A little
474 * odd that you can see yourself (and what your standing on), but 436 * odd that you can see yourself (and what your standing on), but
475 * really need for any reasonable game play. 437 * really need for any reasonable game play.
476 */ 438 */
477static void 439static void
478blinded_sight (object *op) 440blinded_sight (object *op)
479{ 441{
480 int x, y; 442 op->contr->los[LOS_X0][LOS_Y0] = 3;
481
482 for (x = 0; x < op->contr->ns->mapx; x++)
483 for (y = 0; y < op->contr->ns->mapy; y++)
484 op->contr->blocked_los[x][y] = LOS_BLOCKED;
485
486 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = 0;
487} 443}
488 444
489/* 445/*
490 * update_los() recalculates the array which specifies what is 446 * update_los() recalculates the array which specifies what is
491 * visible for the given player-object. 447 * visible for the given player-object.
492 */ 448 */
493void 449void
494update_los (object *op) 450update_los (object *op)
495{ 451{
496 int dx = op->contr->ns->mapx / 2, dy = op->contr->ns->mapy / 2, x, y;
497
498 if (QUERY_FLAG (op, FLAG_REMOVED)) 452 if (QUERY_FLAG (op, FLAG_REMOVED))
499 return; 453 return;
500 454
501 clear_los (op->contr); 455 op->contr->clear_los ();
502 456
503 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ ) 457 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ )
504 return; 458 memset (op->contr->los, 0, sizeof (op->contr->los));
505
506 /* For larger maps, this is more efficient than the old way which
507 * used the chaining of the block array. Since many space views could
508 * be blocked by different spaces in front, this mean that a lot of spaces
509 * could be examined multile times, as each path would be looked at.
510 */
511 for (x = (MAP_CLIENT_X - op->contr->ns->mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->ns->mapx) / 2 + 1; x++)
512 for (y = (MAP_CLIENT_Y - op->contr->ns->mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->ns->mapy) / 2 + 1; y++)
513 check_wall (op, x, y);
514
515 /* do the los of the player. 3 (potential) cases */
516 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */ 459 else if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
517 blinded_sight (op); 460 blinded_sight (op);
518 else 461 else
519 expand_sight (op); 462 {
463 do_los (op);
464 apply_lights (op);
465 }
520 466
521 //TODO: no range-checking whatsoever :(
522 if (QUERY_FLAG (op, FLAG_XRAYS)) 467 if (QUERY_FLAG (op, FLAG_XRAYS))
523 for (int x = -2; x <= 2; x++) 468 for (int dx = -2; dx <= 2; dx++)
524 for (int y = -2; y <= 2; y++) 469 for (int dy = -2; dy <= 2; dy++)
525 op->contr->blocked_los[dx + x][dy + y] = 0; 470 op->contr->los[dx + LOS_X0][dy + LOS_X0] = 0;
526} 471}
527 472
528/* update all_map_los is like update_all_los below, 473/* update all_map_los is like update_all_los below,
529 * but updates everyone on the map, no matter where they 474 * but updates everyone on the map, no matter where they
530 * are. This generally should not be used, as a per 475 * are. This generally should not be used, as a per
619 } 564 }
620 } 565 }
621} 566}
622 567
623/* 568/*
624 * Debug-routine which dumps the array which specifies the visible
625 * area of a player. Triggered by the z key in DM mode.
626 */
627void
628print_los (object *op)
629{
630 int x, y;
631 char buf[50], buf2[10];
632
633 strcpy (buf, " ");
634
635 for (x = 0; x < op->contr->ns->mapx; x++)
636 {
637 sprintf (buf2, "%2d", x);
638 strcat (buf, buf2);
639 }
640
641 new_draw_info (NDI_UNIQUE, 0, op, buf);
642
643 for (y = 0; y < op->contr->ns->mapy; y++)
644 {
645 sprintf (buf, "%2d:", y);
646
647 for (x = 0; x < op->contr->ns->mapx; x++)
648 {
649 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]);
650 strcat (buf, buf2);
651 }
652
653 new_draw_info (NDI_UNIQUE, 0, op, buf);
654 }
655}
656
657/*
658 * make_sure_seen: The object is supposed to be visible through walls, thus 569 * make_sure_seen: The object is supposed to be visible through walls, thus
659 * check if any players are nearby, and edit their LOS array. 570 * check if any players are nearby, and edit their LOS array.
660 */ 571 */
661
662void 572void
663make_sure_seen (const object *op) 573make_sure_seen (const object *op)
664{ 574{
665 for_all_players (pl) 575 for_all_players (pl)
666 if (pl->ob->map == op->map && 576 if (pl->ob->map == op->map &&
667 pl->ob->y - pl->ns->mapy / 2 <= op->y && 577 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
668 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x) 578 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
669 pl->blocked_los[pl->ns->mapx / 2 + op->x - pl->ob->x][pl->ns->mapy / 2 + op->y - pl->ob->y] = 0; 579 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_X0] = 0;
670} 580}
671 581
672/* 582/*
673 * make_sure_not_seen: The object which is supposed to be visible through 583 * make_sure_not_seen: The object which is supposed to be visible through
674 * walls has just been removed from the map, so update the los of any 584 * walls has just been removed from the map, so update the los of any
675 * players within its range 585 * players within its range
676 */ 586 */
677
678void 587void
679make_sure_not_seen (const object *op) 588make_sure_not_seen (const object *op)
680{ 589{
681 for_all_players (pl) 590 for_all_players (pl)
682 if (pl->ob->map == op->map && 591 if (pl->ob->map == op->map &&

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines