ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.36 by root, Mon Dec 8 15:40:13 2008 UTC vs.
Revision 1.77 by root, Sat Nov 17 23:40:00 2018 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
6 * Copyright (©) 1992,2007 Frank Tore Johansen
7 * 6 *
8 * Deliantra is free software: you can redistribute it and/or modify 7 * Deliantra is free software: you can redistribute it and/or modify it under
9 * it under the terms of the GNU General Public License as published by 8 * the terms of the Affero GNU General Public License as published by the
10 * the Free Software Foundation, either version 3 of the License, or 9 * Free Software Foundation, either version 3 of the License, or (at your
11 * (at your option) any later version. 10 * option) any later version.
12 * 11 *
13 * This program is distributed in the hope that it will be useful, 12 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details. 15 * GNU General Public License for more details.
17 * 16 *
18 * You should have received a copy of the GNU General Public License 17 * You should have received a copy of the Affero GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 * and the GNU General Public License along with this program. If not, see
19 * <http://www.gnu.org/licenses/>.
20 * 20 *
21 * The authors can be reached via e-mail to <support@deliantra.net> 21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */ 22 */
23 23
24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
25
26#include <global.h> 24#include <global.h>
27#include <math.h> 25#include <cmath>
28 26
29/* Distance must be less than this for the object to be blocked. 27#define SEE_IN_DARK_RADIUS 2
30 * An object is 1.0 wide, so if set to 0.5, it means the object 28#define MAX_VISION 10 // maximum visible radius
31 * that blocks half the view (0.0 is complete block) will
32 * block view in our tables.
33 * .4 or less lets you see through walls. .5 is about right.
34 */
35 29
36#define SPACE_BLOCK 0.5 30// los flags
31enum {
32 FLG_XI = 0x01, // we have an x-parent
33 FLG_YI = 0x02, // we have an y-parent
34 FLG_BLOCKED = 0x04, // this space blocks the view
35 FLG_QUEUED = 0x80 // already queued in queue, or border
36};
37 37
38typedef struct blstr 38// it is important for performance reasons that this structure
39// has a size easily computable by the cpu (*8 is perfect).
40// it is possible to move culled and visible into flags, at
41// some speed loss.
42struct los_info
39{ 43{
40 int x[4], y[4]; 44 uint8 flags; // FLG_xxx
41 int index; 45 uint8 culled; // culled from "tree"
42} blocks; 46 uint8 visible;
47 uint8 pad0;
43 48
44// 31/32 == a speed hack 49 sint8 xo, yo; // obscure angle
45// we would like to use 32 for speed, but the code loops endlessly 50 sint8 xe, ye; // angle deviation
46// then, reason not yet identified, so only make the array use 32, 51};
47// not the define's.
48blocks block[MAP_CLIENT_X][MAP_CLIENT_Y == 31 ? 32 : MAP_CLIENT_Y];
49 52
50static void expand_lighted_sight (object *op); 53// temporary storage for the los algorithm,
54// one los_info for each lightable map space
55static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
51 56
52/* 57struct point8
53 * Used to initialise the array used by the LOS routines.
54 * What this sets if that x,y blocks the view of bx,by
55 * This then sets up a relation - for example, something
56 * at 5,4 blocks view at 5,3 which blocks view at 5,2
57 * etc. So when we check 5,4 and find it block, we have
58 * the data to know that 5,3 and 5,2 and 5,1 should also
59 * be blocked.
60 */
61
62static void
63set_block (int x, int y, int bx, int by)
64{ 58{
65 int index = block[x][y].index, i;
66
67 /* Due to flipping, we may get duplicates - better safe than sorry.
68 */
69 for (i = 0; i < index; i++)
70 {
71 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
72 return;
73 }
74
75 block[x][y].x[index] = bx;
76 block[x][y].y[index] = by;
77 block[x][y].index++;
78#ifdef LOS_DEBUG
79 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
80#endif
81}
82
83/*
84 * initialises the array used by the LOS routines.
85 */
86
87/* since we are only doing the upper left quadrant, only
88 * these spaces could possibly get blocked, since these
89 * are the only ones further out that are still possibly in the
90 * sightline.
91 */
92
93void
94init_block (void)
95{
96 int x, y, dx, dy, i;
97 static int block_x[3] = { -1, -1, 0 },
98 block_y[3] = { -1, 0, -1 };
99
100 for (x = 0; x < MAP_CLIENT_X; x++)
101 for (y = 0; y < MAP_CLIENT_Y; y++)
102 block[x][y].index = 0;
103
104
105 /* The table should be symmetric, so only do the upper left
106 * quadrant - makes the processing easier.
107 */
108 for (x = 1; x <= MAP_CLIENT_X / 2; x++)
109 {
110 for (y = 1; y <= MAP_CLIENT_Y / 2; y++)
111 {
112 for (i = 0; i < 3; i++)
113 {
114 dx = x + block_x[i];
115 dy = y + block_y[i];
116
117 /* center space never blocks */
118 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
119 continue;
120
121 /* If its a straight line, its blocked */
122 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
123 {
124 /* For simplicity, we mirror the coordinates to block the other
125 * quadrants.
126 */
127 set_block (x, y, dx, dy);
128 if (x == MAP_CLIENT_X / 2)
129 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
130 else if (y == MAP_CLIENT_Y / 2)
131 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
132 }
133 else
134 {
135 float d1, r, s, l;
136
137 /* We use the algorihm that found out how close the point
138 * (x,y) is to the line from dx,dy to the center of the viewable
139 * area. l is the distance from x,y to the line.
140 * r is more a curiosity - it lets us know what direction (left/right)
141 * the line is off
142 */
143
144 d1 = (float) (pow (MAP_CLIENT_X / 2 - dx, 2.f) + pow (MAP_CLIENT_Y / 2 - dy, 2.f));
145 r = (float) ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
146 s = (float) ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
147 l = FABS (sqrt (d1) * s);
148
149 if (l <= SPACE_BLOCK)
150 {
151 /* For simplicity, we mirror the coordinates to block the other
152 * quadrants.
153 */
154 set_block (x, y, dx, dy);
155 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
156 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
157 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
158 }
159 }
160 }
161 }
162 }
163}
164
165/*
166 * Used to initialise the array used by the LOS routines.
167 * x,y are indexes into the blocked[][] array.
168 * This recursively sets the blocked line of sight view.
169 * From the blocked[][] array, we know for example
170 * that if some particular space is blocked, it blocks
171 * the view of the spaces 'behind' it, and those blocked
172 * spaces behind it may block other spaces, etc.
173 * In this way, the chain of visibility is set.
174 */
175static void
176set_wall (object *op, int x, int y)
177{
178 int i;
179
180 for (i = 0; i < block[x][y].index; i++)
181 {
182 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
183
184 /* ax, ay are the values as adjusted to be in the
185 * socket look structure.
186 */
187 ax = dx - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
188 ay = dy - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
189
190 if (ax < 0 || ax >= op->contr->ns->mapx || ay < 0 || ay >= op->contr->ns->mapy)
191 continue;
192#if 0
193 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
194#endif
195 /* we need to adjust to the fact that the socket
196 * code wants the los to start from the 0,0
197 * and not be relative to middle of los array.
198 */
199 op->contr->blocked_los[ax][ay] = LOS_BLOCKED;
200 set_wall (op, dx, dy);
201 }
202}
203
204/*
205 * Used to initialise the array used by the LOS routines.
206 * op is the object, x and y values based on MAP_CLIENT_X and Y.
207 * this is because they index the blocked[][] arrays.
208 */
209
210static void
211check_wall (object *op, int x, int y)
212{
213 int ax, ay; 59 sint8 x, y;
60};
214 61
215 if (!block[x][y].index) 62// minimum size, but must be a power of two
216 return; 63#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
217 64
218 /* ax, ay are coordinates as indexed into the look window */ 65// a queue of spaces to calculate
219 ax = x - (MAP_CLIENT_X - op->contr->ns->mapx) / 2; 66static point8 queue [QUEUE_LENGTH];
220 ay = y - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2; 67static int q1, q2; // queue start, end
221
222 /* If the converted coordinates are outside the viewable
223 * area for the client, return now.
224 */
225 if (ax < 0 || ay < 0 || ax >= op->contr->ns->mapx || ay >= op->contr->ns->mapy)
226 return;
227
228#if 0
229 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
230 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
231#endif
232
233 /* If this space is already blocked, prune the processing - presumably
234 * whatever has set this space to be blocked has done the work and already
235 * done the dependency chain.
236 */
237 if (op->contr->blocked_los[ax][ay] == LOS_BLOCKED)
238 return;
239
240 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
241 set_wall (op, x, y);
242}
243 68
244/* 69/*
245 * Clears/initialises the los-array associated to the player 70 * Clears/initialises the los-array associated to the player
246 * controlling the object. 71 * controlling the object.
247 */ 72 */
248
249void 73void
250clear_los (player *pl) 74player::clear_los (sint8 value)
251{ 75{
252 /* This is safer than using the ns->mapx, mapy because 76 memset (los, value, sizeof (los));
253 * we index the blocked_los as a 2 way array, so clearing
254 * the first z spaces may not not cover the spaces we are
255 * actually going to use
256 */
257 memset (pl->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
258} 77}
259 78
260/* 79// enqueue a single mapspace, but only if it hasn't
261 * expand_sight goes through the array of what the given player is 80// been enqueued yet.
262 * able to see, and expands the visible area a bit, so the player will,
263 * to a certain degree, be able to see into corners.
264 * This is somewhat suboptimal, would be better to improve the formula.
265 */
266
267static void 81static void
268expand_sight (object *op) 82enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
269{ 83{
270 int i, x, y, dx, dy; 84 sint8 x = LOS_X0 + dx;
85 sint8 y = LOS_Y0 + dy;
271 86
272 for (x = 1; x < op->contr->ns->mapx - 1; x++) /* loop over inner squares */ 87 los_info &l = los[x][y];
273 for (y = 1; y < op->contr->ns->mapy - 1; y++) 88
89 l.flags |= flags;
90
91 if (expect_false (l.flags & FLG_QUEUED))
92 return;
93
94 l.flags |= FLG_QUEUED;
95
96 queue[q1].x = dx;
97 queue[q1].y = dy;
98
99 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
100}
101
102// run the los algorithm
103// this is a variant of a spiral los algorithm taken from
104// http://www.geocities.com/temerra/los_rays.html
105// which has been simplified and changed considerably, but
106// still is basically the same algorithm.
107static void
108calculate_los (player *pl)
109{
110 {
111 memset (los, 0, sizeof (los));
112
113 // we keep one line for ourselves, for the border flag
114 // so the client area is actually MAP_CLIENT_(X|Y) - 2
115 int half_x = min (LOS_X0 - 1, pl->ns->mapx / 2);
116 int half_y = min (LOS_Y0 - 1, pl->ns->mapy / 2);
117
118 // create borders, the corners are not touched
119 for (int dx = -half_x; dx <= half_x; ++dx)
120 los [dx + LOS_X0][LOS_Y0 - (half_y + 1)].flags =
121 los [dx + LOS_X0][LOS_Y0 + (half_y + 1)].flags = FLG_QUEUED;
122
123 for (int dy = -half_y; dy <= half_y; ++dy)
124 los [LOS_X0 - (half_x + 1)][dy + LOS_Y0].flags =
125 los [LOS_X0 + (half_x + 1)][dy + LOS_Y0].flags = FLG_QUEUED;
126
127 // now reset the los area and also add blocked flags
128 // which supposedly is faster than doing it inside the
129 // spiral path algorithm below, except when very little
130 // area is visible, in which case it is slower. which evens
131 // out los calculation times between large and small los maps.
132 // apply_lights also iterates over this area, maybe these
133 // two passes could be combined somehow.
134 unordered_mapwalk (mapwalk_buf, pl->viewpoint, -half_x, -half_y, half_x, half_y)
274 { 135 {
275 if (!op->contr->blocked_los[x][y] && 136 los_info &l = los [LOS_X0 + dx][LOS_Y0 + dy];
276 !(get_map_flags (op->map, NULL, 137 l.flags = m->at (nx, ny).flags () & P_BLOCKSVIEW ? FLG_BLOCKED : 0;
277 op->x - op->contr->ns->mapx / 2 + x,
278 op->y - op->contr->ns->mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP)))
279 {
280
281 for (i = 1; i <= 8; i += 1)
282 { /* mark all directions */
283 dx = x + freearr_x[i];
284 dy = y + freearr_y[i];
285 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */
286 op->contr->blocked_los[dx][dy] = -1;
287 }
288 }
289 } 138 }
139 }
290 140
291 if (op->map->darkness > 0) /* player is on a dark map */ 141 q1 = 0; q2 = 0; // initialise queue, not strictly required
292 expand_lighted_sight (op); 142 enqueue (0, 0); // enqueue center
293 143
294 /* clear mark squares */ 144 // treat the origin specially
295 for (x = 0; x < op->contr->ns->mapx; x++) 145 los[LOS_X0][LOS_Y0].visible = 1;
296 for (y = 0; y < op->contr->ns->mapy; y++) 146 pl->los[LOS_X0][LOS_Y0] = 0;
297 if (op->contr->blocked_los[x][y] < 0)
298 op->contr->blocked_los[x][y] = 0;
299}
300 147
301/* returns true if op carries one or more lights 148 // loop over all enqueued points until the queue is empty
302 * This is a trivial function now days, but it used to 149 // the order in which this is done ensures that we
303 * be a bit longer. Probably better for callers to just 150 // never touch a mapspace whose input spaces we haven't checked
304 * check the op->glow_radius instead of calling this. 151 // yet.
305 */ 152 while (q1 != q2)
153 {
154 sint8 dx = queue[q2].x;
155 sint8 dy = queue[q2].y;
306 156
307int 157 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
308has_carried_lights (const object *op)
309{
310 /* op may glow! */
311 if (op->glow_radius > 0)
312 return 1;
313 158
314 return 0; 159 sint8 x = LOS_X0 + dx;
160 sint8 y = LOS_Y0 + dy;
161
162 los_info &l = los[x][y];
163
164 if (expect_true (l.flags & (FLG_XI | FLG_YI)))
165 {
166 l.culled = 1;
167 l.xo = l.yo = l.xe = l.ye = 0;
168
169 // check contributing spaces, first horizontal
170 if (expect_true (l.flags & FLG_XI))
171 {
172 los_info *xi = &los[x - sign (dx)][y];
173
174 // don't cull unless obscured
175 l.culled &= !xi->visible;
176
177 /* merge input space */
178 if (expect_false (xi->xo || xi->yo))
179 {
180 // The X input can provide two main pieces of information:
181 // 1. Progressive X obscurity.
182 // 2. Recessive Y obscurity.
183
184 // Progressive X obscurity, favouring recessive input angle
185 if (xi->xe > 0 && l.xo == 0)
186 {
187 l.xe = xi->xe - xi->yo;
188 l.ye = xi->ye + xi->yo;
189 l.xo = xi->xo;
190 l.yo = xi->yo;
191 }
192
193 // Recessive Y obscurity
194 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
195 {
196 l.ye = xi->yo + xi->ye;
197 l.xe = xi->xe - xi->yo;
198 l.xo = xi->xo;
199 l.yo = xi->yo;
200 }
201 }
202 }
203
204 // check contributing spaces, last vertical, identical structure
205 if (expect_true (l.flags & FLG_YI))
206 {
207 los_info *yi = &los[x][y - sign (dy)];
208
209 // don't cull unless obscured
210 l.culled &= !yi->visible;
211
212 /* merge input space */
213 if (expect_false (yi->yo || yi->xo))
214 {
215 // The Y input can provide two main pieces of information:
216 // 1. Progressive Y obscurity.
217 // 2. Recessive X obscurity.
218
219 // Progressive Y obscurity, favouring recessive input angle
220 if (yi->ye > 0 && l.yo == 0)
221 {
222 l.ye = yi->ye - yi->xo;
223 l.xe = yi->xe + yi->xo;
224 l.yo = yi->yo;
225 l.xo = yi->xo;
226 }
227
228 // Recessive X obscurity
229 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
230 {
231 l.xe = yi->xo + yi->xe;
232 l.ye = yi->ye - yi->xo;
233 l.yo = yi->yo;
234 l.xo = yi->xo;
235 }
236 }
237 }
238
239 if (l.flags & FLG_BLOCKED)
240 {
241 l.xo = l.xe = abs (dx);
242 l.yo = l.ye = abs (dy);
243
244 // we obscure dependents, but might be visible
245 // copy the los from the square towards the player,
246 // so outward diagonal corners are lit.
247 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
248
249 l.visible = false;
250 }
251 else
252 {
253 // we are not blocked, so calculate visibility, by checking
254 // whether we are inside or outside the shadow
255 l.visible = (l.xe <= 0 || l.xe > l.xo)
256 && (l.ye <= 0 || l.ye > l.yo);
257
258 pl->los[x][y] = l.culled ? LOS_BLOCKED
259 : l.visible ? 0
260 : 3;
261 }
262
263 }
264
265 // Expands by the unit length in each component's current direction.
266 // If a component has no direction, then it is expanded in both of its
267 // positive and negative directions.
268 if (!l.culled)
269 {
270 if (dx >= 0) enqueue (dx + 1, dy, FLG_XI);
271 if (dx <= 0) enqueue (dx - 1, dy, FLG_XI);
272 if (dy >= 0) enqueue (dx, dy + 1, FLG_YI);
273 if (dy <= 0) enqueue (dx, dy - 1, FLG_YI);
274 }
275 }
315} 276}
316 277
317/* radius, distance => lightness adjust */ 278/* radius, distance => lightness adjust */
318static sint8 darkness[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1]; 279static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
280static sint8 vision_atten[MAX_VISION + 1][MAX_VISION * 3 / 2 + 1];
319 281
320static struct darkness_init 282static struct los_init
321{ 283{
322 darkness_init () 284 los_init ()
323 { 285 {
286 assert (("QUEUE_LENGTH, MAP_CLIENT_X and MAP_CLIENT_Y *must* be powers of two",
287 !(QUEUE_LENGTH & (QUEUE_LENGTH - 1))));
288
289 /* for lights */
324 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius) 290 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
325 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance) 291 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
326 { 292 {
327 // max intensity 293 // max intensity
328 int intensity = min (LOS_MAX, abs (radius) + 1); 294 int intensity = min (LOS_MAX, abs (radius) + 1);
329 295
330 // actual intensity 296 // actual intensity
331 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0)); 297 intensity = max (0, lerp_ru (distance, 0, abs (radius) + 1, intensity, 0));
332 298
333 darkness [radius + MAX_LIGHT_RADIUS][distance] = radius < 0 299 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
334 ? min (3, intensity) 300 ? min (3, intensity)
335 : LOS_MAX - intensity; 301 : LOS_MAX - intensity;
336 } 302 }
303
304 /* for general vision */
305 for (int radius = 0; radius <= MAX_VISION; ++radius)
306 for (int distance = 0; distance <= MAX_VISION * 3 / 2; ++distance)
307 vision_atten [radius][distance] = distance <= radius ? clamp (lerp (radius, 0, MAX_DARKNESS, 3, 0), 0, 3) : 4;
337 } 308 }
338} darkness_init; 309} los_init;
339 310
311// the following functions cannot be static, due to c++ stupidity :/
312namespace {
313 // brighten area, ignore los
314 sint8
315 los_brighten_nolos (sint8 b, sint8 l)
316 {
317 return min (b, l);
318 }
319
320 // brighten area, but respect los
321 sint8
322 los_brighten (sint8 b, sint8 l)
323 {
324 return b == LOS_BLOCKED ? b : min (b, l);
325 }
326
327 // darken area, respect los
328 sint8
329 los_darken (sint8 b, sint8 l)
330 {
331 return max (b, l);
332 }
333};
334
335template<sint8 change_it (sint8, sint8)>
340static void 336static void
341expand_lighted_sight (object *op) 337apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
342{ 338{
343 int x, y, darklevel, basex, basey, mflags, light, x1, y1; 339 // min or max the circular area around basex, basey
344 maptile *m = op->map; 340 dx += LOS_X0;
345 sint16 nx, ny; 341 dy += LOS_Y0;
346 342
347 darklevel = m->darkness; 343 int hx = pl->ns->mapx / 2;
344 int hy = pl->ns->mapy / 2;
348 345
349 /* If the player can see in the dark, lower the darklevel for him */ 346 int ax0 = max (LOS_X0 - hx, dx - light);
350 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK)) 347 int ay0 = max (LOS_Y0 - hy, dy - light);
351 darklevel -= LOS_MAX / 2; 348 int ax1 = min (dx + light, LOS_X0 + hx);
349 int ay1 = min (dy + light, LOS_Y0 + hy);
352 350
351 for (int ax = ax0; ax <= ax1; ax++)
352 for (int ay = ay0; ay <= ay1; ay++)
353 pl->los[ax][ay] =
354 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
355}
356
353 /* add light, by finding all (non-null) nearby light sources, then 357/* add light, by finding all (non-null) nearby light sources, then
354 * mark those squares specially. If the darklevel<1, there is no 358 * mark those squares specially.
355 * reason to do this, so we skip this function
356 */ 359 */
360static void
361apply_lights (player *pl)
362{
363 object *op = pl->viewpoint;
364 int darklevel = op->map->darklevel ();
357 365
366 int half_x = pl->ns->mapx / 2;
367 int half_y = pl->ns->mapy / 2;
368
369 int pass2 = 0; // negative lights have an extra pass
370
371 maprect *rects = pl->viewpoint->map->split_to_tiles (
372 mapwalk_buf,
373 pl->viewpoint->x - half_x - MAX_LIGHT_RADIUS,
374 pl->viewpoint->y - half_y - MAX_LIGHT_RADIUS,
375 pl->viewpoint->x + half_x + MAX_LIGHT_RADIUS + 1,
376 pl->viewpoint->y + half_y + MAX_LIGHT_RADIUS + 1
377 );
378
379 /* If the player can see in the dark, increase light/vision radius */
380 int bonus = op->flag [FLAG_SEE_IN_DARK] ? SEE_IN_DARK_RADIUS : 0;
381
358 if (darklevel < 1) 382 if (!darklevel)
359 return; 383 pass2 = 1;
360 384 else
361 /* Do a sanity check. If not valid, some code below may do odd
362 * things.
363 */
364 if (darklevel > MAX_DARKNESS)
365 { 385 {
366 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel); 386 /* first, make everything totally dark */
367 darklevel = MAX_DARKNESS; 387 for (int dx = -half_x; dx <= half_x; dx++)
388 for (int dy = -half_x; dy <= half_y; dy++)
389 max_it (pl->los[dx + LOS_X0][dy + LOS_Y0], LOS_MAX);
390
391 /*
392 * Only process the area of interest.
393 * the basex, basey values represent the position in the op->contr->los
394 * array. Its easier to just increment them here (and start with the right
395 * value) than to recalculate them down below.
396 */
397 for (maprect *r = rects; r->m; ++r)
398 rect_mapwalk (r, 0, 0)
399 {
400 mapspace &ms = m->at (nx, ny);
401 ms.update ();
402 sint8 light = ms.light;
403
404 if (expect_false (light))
405 if (light < 0)
406 pass2 = 1;
407 else
408 {
409 light = clamp (light + bonus, 0, MAX_LIGHT_RADIUS);
410 apply_light<los_brighten> (pl, dx - pl->viewpoint->x, dy - pl->viewpoint->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
411 }
412 }
413
414 /* grant some vision to the player, based on outside, outdoor, and darklevel */
415 {
416 int light;
417
418 if (!op->map->outdoor) // not outdoor, darkness becomes light radius
419 light = MAX_DARKNESS - op->map->darkness;
420 else if (op->map->darkness > 0) // outdoor and darkness > 0 => use darkness as max radius
421 light = lerp_rd (maptile::outdoor_darkness + 0, 0, MAX_DARKNESS, MAX_DARKNESS - op->map->darkness, 0);
422 else // outdoor and darkness <= 0 => start wide and decrease quickly
423 light = lerp (maptile::outdoor_darkness + op->map->darkness, 0, MAX_DARKNESS, MAX_VISION, 2);
424
425 light = clamp (light + bonus, 0, MAX_VISION);
426
427 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
428 }
368 } 429 }
369 430
370 /* first, make everything totally dark */ 431 // when we fly high, we have some minimum viewable area around us, like x-ray
371 for (x = 0; x < op->contr->ns->mapx; x++) 432 if (op->move_type & MOVE_FLY_HIGH)
372 for (y = 0; y < op->contr->ns->mapy; y++) 433 apply_light<los_brighten_nolos> (pl, 0, 0, 9, vision_atten [9]);
373 if (op->contr->blocked_los[x][y] != LOS_BLOCKED)
374 op->contr->blocked_los[x][y] = LOS_MAX;
375 434
376 int half_x = op->contr->ns->mapx / 2;
377 int half_y = op->contr->ns->mapy / 2;
378
379 int min_x = op->x - half_x - MAX_LIGHT_RADIUS;
380 int min_y = op->y - half_y - MAX_LIGHT_RADIUS;
381 int max_x = op->x + half_x + MAX_LIGHT_RADIUS;
382 int max_y = op->y + half_y + MAX_LIGHT_RADIUS;
383
384 int pass2 = 0; // negative lights have an extra pass
385
386 /*
387 * Only process the area of interest.
388 * the basex, basey values represent the position in the op->contr->blocked_los
389 * array. Its easier to just increment them here (and start with the right
390 * value) than to recalculate them down below.
391 */
392 for (int x = min_x, basex = -MAX_LIGHT_RADIUS; x <= max_x; x++, basex++)
393 for (int y = min_y, basey = -MAX_LIGHT_RADIUS; y <= max_y; y++, basey++)
394 {
395 maptile *m = op->map;
396 sint16 nx = x;
397 sint16 ny = y;
398
399 if (!xy_normalise (m, nx, ny))
400 continue;
401
402 mapspace &ms = m->at (nx, ny);
403 ms.update ();
404 sint8 light = ms.light;
405
406 if (expect_false (light))
407 if (light < 0)
408 pass2 = 1;
409 else
410 {
411 /* This space is providing light, so we need to brighten up the
412 * spaces around here.
413 */
414 const sint8 *darkness_table = darkness [light + MAX_LIGHT_RADIUS];
415
416 for (int ax = max (0, basex - light); ax <= min (basex + light, op->contr->ns->mapx - 1); ax++)
417 for (int ay = max (0, basey - light); ay <= min (basey + light, op->contr->ns->mapy - 1); ay++)
418 if (op->contr->blocked_los[ax][ay] != LOS_BLOCKED)
419 min_it (op->contr->blocked_los[ax][ay], darkness_table [idistance (ax - basex, ay - basey)]);
420 }
421 }
422
423 // psosibly do 2nd pass for rare negative glow radii 435 // possibly do 2nd pass for rare negative glow radii
424 if (expect_false (pass2)) 436 // for effect, those are always considered to be stronger than anything else
425 for (x = min_x, basex = -MAX_LIGHT_RADIUS; x <= max_x; x++, basex++) 437 // but they can't darken a place completely
426 for (y = min_y, basey = -MAX_LIGHT_RADIUS; y <= max_y; y++, basey++) 438 if (pass2)
439 for (maprect *r = rects; r->m; ++r)
440 rect_mapwalk (r, 0, 0)
427 { 441 {
428 maptile *m = op->map;
429 sint16 nx = x;
430 sint16 ny = y;
431
432 if (!xy_normalise (m, nx, ny))
433 continue;
434
435 mapspace &ms = m->at (nx, ny); 442 mapspace &ms = m->at (nx, ny);
436 ms.update (); 443 ms.update ();
437 sint8 light = ms.light; 444 sint8 light = ms.light;
438 445
439 if (expect_false (light < 0)) 446 if (expect_false (light < 0))
440 { 447 {
441 const sint8 *darkness_table = darkness [light + MAX_LIGHT_RADIUS]; 448 light = clamp (light - bonus, 0, MAX_DARKNESS);
442 449 apply_light<los_darken> (pl, dx - pl->viewpoint->x, dy - pl->viewpoint->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
443 for (int ax = max (0, basex + light); ax <= min (basex - light, op->contr->ns->mapx - 1); ax++)
444 for (int ay = max (0, basey + light); ay <= min (basey - light, op->contr->ns->mapy - 1); ay++)
445 if (op->contr->blocked_los[ax][ay] != LOS_BLOCKED)
446 max_it (op->contr->blocked_los[ax][ay], darkness_table [idistance (ax - basex, ay - basey)]);
447 } 450 }
448 } 451 }
449
450 /* Outdoor should never really be completely pitch black dark like
451 * a dungeon, so let the player at least see a little around themselves
452 */
453 if (op->map->outdoor && darklevel > MAX_DARKNESS - 3)
454 {
455 if (op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] > (LOS_MAX - 3))
456 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = LOS_MAX - 3;
457
458 for (x = -1; x <= 1; x++)
459 for (y = -1; y <= 1; y++)
460 if (op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] > (LOS_MAX - 2))
461 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] = LOS_MAX - 2;
462 }
463
464 /* grant some vision to the player, based on the darklevel */
465 for (x = darklevel - MAX_DARKNESS; x < MAX_DARKNESS + 1 - darklevel; x++)
466 for (y = darklevel - MAX_DARKNESS; y < MAX_DARKNESS + 1 - darklevel; y++)
467 if (!(op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] == LOS_BLOCKED))
468 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] -=
469 max (0, 6 - darklevel - max (abs (x), abs (y)));
470} 452}
471 453
472/* blinded_sight() - sets all viewable squares to blocked except 454/* blinded_sight() - sets all viewable squares to blocked except
473 * for the one the central one that the player occupies. A little 455 * for the one the central one that the player occupies. A little
474 * odd that you can see yourself (and what your standing on), but 456 * odd that you can see yourself (and what your standing on), but
475 * really need for any reasonable game play. 457 * really need for any reasonable game play.
476 */ 458 */
477static void 459static void
478blinded_sight (object *op) 460blinded_sight (player *pl)
479{ 461{
480 int x, y; 462 pl->los[LOS_X0][LOS_Y0] = 1;
481
482 for (x = 0; x < op->contr->ns->mapx; x++)
483 for (y = 0; y < op->contr->ns->mapy; y++)
484 op->contr->blocked_los[x][y] = LOS_BLOCKED;
485
486 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = 0;
487} 463}
488 464
489/* 465/*
490 * update_los() recalculates the array which specifies what is 466 * update_los() recalculates the array which specifies what is
491 * visible for the given player-object. 467 * visible for the given player-object.
492 */ 468 */
493void 469void
494update_los (object *op) 470player::update_los ()
495{ 471{
496 int dx = op->contr->ns->mapx / 2, dy = op->contr->ns->mapy / 2, x, y; 472 if (ob->flag [FLAG_REMOVED])//D really needed?
497
498 if (QUERY_FLAG (op, FLAG_REMOVED))
499 return; 473 return;
500 474
501 clear_los (op->contr); 475 if (ob->flag [FLAG_WIZLOOK])
502 476 clear_los (0);
503 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ ) 477 else if (viewpoint->flag [FLAG_BLIND]) /* player is blind */
504 return; 478 {
505 479 clear_los ();
506 /* For larger maps, this is more efficient than the old way which
507 * used the chaining of the block array. Since many space views could
508 * be blocked by different spaces in front, this mean that a lot of spaces
509 * could be examined multile times, as each path would be looked at.
510 */
511 for (x = (MAP_CLIENT_X - op->contr->ns->mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->ns->mapx) / 2 + 1; x++)
512 for (y = (MAP_CLIENT_Y - op->contr->ns->mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->ns->mapy) / 2 + 1; y++)
513 check_wall (op, x, y);
514
515 /* do the los of the player. 3 (potential) cases */
516 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
517 blinded_sight (op); 480 blinded_sight (this);
481 }
518 else 482 else
519 expand_sight (op); 483 {
484 clear_los ();
485 calculate_los (this);
486 apply_lights (this);
487 }
520 488
521 //TODO: no range-checking whatsoever :( 489 if (viewpoint->flag [FLAG_XRAYS])
522 if (QUERY_FLAG (op, FLAG_XRAYS))
523 for (int x = -2; x <= 2; x++) 490 for (int dx = -2; dx <= 2; dx++)
524 for (int y = -2; y <= 2; y++) 491 for (int dy = -2; dy <= 2; dy++)
525 op->contr->blocked_los[dx + x][dy + y] = 0; 492 min_it (los[dx + LOS_X0][dy + LOS_Y0], 1);
526} 493}
527 494
528/* update all_map_los is like update_all_los below, 495/* update all_map_los is like update_all_los below,
529 * but updates everyone on the map, no matter where they 496 * but updates everyone on the map, no matter where they
530 * are. This generally should not be used, as a per 497 * are. This generally should not be used, as a per
537 * change_map_light function 504 * change_map_light function
538 */ 505 */
539void 506void
540update_all_map_los (maptile *map) 507update_all_map_los (maptile *map)
541{ 508{
542 for_all_players (pl) 509 for_all_players_on_map (pl, map)
543 if (pl->ob && pl->ob->map == map)
544 pl->do_los = 1; 510 pl->do_los = 1;
545} 511}
546 512
547/* 513/*
548 * This function makes sure that update_los() will be called for all 514 * This function makes sure that update_los() will be called for all
549 * players on the given map within the next frame. 515 * players on the given map within the next frame.
557 * map is the map that changed, x and y are the coordinates. 523 * map is the map that changed, x and y are the coordinates.
558 */ 524 */
559void 525void
560update_all_los (const maptile *map, int x, int y) 526update_all_los (const maptile *map, int x, int y)
561{ 527{
528 map->at (x, y).invalidate ();
529
562 for_all_players (pl) 530 for_all_players (pl)
563 { 531 {
564 /* Player should not have a null map, but do this 532 /* Player should not have a null map, but do this
565 * check as a safety 533 * check as a safety
566 */ 534 */
567 if (!pl->ob || !pl->ob->map || !pl->ns) 535 if (!pl->ob || !pl->ob->map || !pl->ns)
568 continue; 536 continue;
569 537
570 /* Same map is simple case - see if pl is close enough. 538 rv_vector rv;
571 * Note in all cases, we did the check for same map first, 539
572 * and then see if the player is close enough and update 540 get_rangevector_from_mapcoord (pl->ob->map, x, y, pl->ob, &rv);
573 * los if that is the case. If the player is on the
574 * corresponding map, but not close enough, then the
575 * player can't be on another map that may be closer,
576 * so by setting it up this way, we trim processing
577 * some.
578 */ 541
579 if (pl->ob->map == map) 542 if ((abs (rv.distance_x) <= pl->ns->mapx / 2) && (abs (rv.distance_y) <= pl->ns->mapy / 2))
580 {
581 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
582 pl->do_los = 1; 543 pl->do_los = 1;
583 }
584
585 /* Now we check to see if player is on adjacent
586 * maps to the one that changed and also within
587 * view. The tile_maps[] could be null, but in that
588 * case it should never match the pl->ob->map, so
589 * we want ever try to dereference any of the data in it.
590 *
591 * The logic for 0 and 3 is to see how far the player is
592 * from the edge of the map (height/width) - pl->ob->(x,y)
593 * and to add current position on this map - that gives a
594 * distance.
595 * For 1 and 2, we check to see how far the given
596 * coordinate (x,y) is from the corresponding edge,
597 * and then add the players location, which gives
598 * a distance.
599 */
600 else if (pl->ob->map == map->tile_map[0])
601 {
602 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
603 pl->do_los = 1;
604 }
605 else if (pl->ob->map == map->tile_map[2])
606 {
607 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
608 pl->do_los = 1;
609 }
610 else if (pl->ob->map == map->tile_map[1])
611 {
612 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
613 pl->do_los = 1;
614 }
615 else if (pl->ob->map == map->tile_map[3])
616 {
617 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
618 pl->do_los = 1;
619 }
620 } 544 }
621} 545}
622 546
547static const int season_darkness[5][HOURS_PER_DAY] = {
548 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
549 { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
550 { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
551 { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
552 { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
553 { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
554};
555
623/* 556/*
624 * Debug-routine which dumps the array which specifies the visible 557 * Tell players the time and compute the darkness level for all maps in the game.
625 * area of a player. Triggered by the z key in DM mode. 558 * MUST be called exactly once per hour.
626 */ 559 */
627void 560void
628print_los (object *op) 561maptile::adjust_daylight ()
629{ 562{
630 int x, y; 563 timeofday_t tod;
631 char buf[50], buf2[10];
632 564
633 strcpy (buf, " "); 565 get_tod (&tod);
634 566
635 for (x = 0; x < op->contr->ns->mapx; x++) 567 // log the time to log-1 every hour, and to chat every day
636 { 568 {
637 sprintf (buf2, "%2d", x); 569 char todbuf[512];
638 strcat (buf, buf2); 570
571 format_tod (todbuf, sizeof (todbuf), &tod);
572
573 for_all_players (pl)
574 pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
639 } 575 }
640 576
641 new_draw_info (NDI_UNIQUE, 0, op, buf); 577 /* If the light level isn't changing, no reason to do all
578 * the work below.
579 */
580 sint8 new_darkness = season_darkness[tod.season][tod.hour];
642 581
643 for (y = 0; y < op->contr->ns->mapy; y++) 582 if (new_darkness == maptile::outdoor_darkness)
644 { 583 return;
645 sprintf (buf, "%2d:", y);
646 584
647 for (x = 0; x < op->contr->ns->mapx; x++) 585 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
648 { 586 new_darkness > maptile::outdoor_darkness
649 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]); 587 ? "It becomes darker."
650 strcat (buf, buf2); 588 : "It becomes brighter.");
651 }
652 589
653 new_draw_info (NDI_UNIQUE, 0, op, buf); 590 maptile::outdoor_darkness = new_darkness;
654 } 591
592 // we simply update the los for all players, which is unnecessarily
593 // costly, but should do for the moment.
594 for_all_players (pl)
595 pl->do_los = 1;
655} 596}
656 597
657/* 598/*
658 * make_sure_seen: The object is supposed to be visible through walls, thus 599 * make_sure_seen: The object is supposed to be visible through walls, thus
659 * check if any players are nearby, and edit their LOS array. 600 * check if any players are nearby, and edit their LOS array.
660 */ 601 */
661
662void 602void
663make_sure_seen (const object *op) 603make_sure_seen (const object *op)
664{ 604{
665 for_all_players (pl) 605 for_all_players (pl)
666 if (pl->ob->map == op->map && 606 if (pl->ob->map == op->map &&
667 pl->ob->y - pl->ns->mapy / 2 <= op->y && 607 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
668 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x) 608 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
669 pl->blocked_los[pl->ns->mapx / 2 + op->x - pl->ob->x][pl->ns->mapy / 2 + op->y - pl->ob->y] = 0; 609 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_Y0] = 0;
670} 610}
671 611
672/* 612/*
673 * make_sure_not_seen: The object which is supposed to be visible through 613 * make_sure_not_seen: The object which is supposed to be visible through
674 * walls has just been removed from the map, so update the los of any 614 * walls has just been removed from the map, so update the los of any
675 * players within its range 615 * players within its range
676 */ 616 */
677
678void 617void
679make_sure_not_seen (const object *op) 618make_sure_not_seen (const object *op)
680{ 619{
681 for_all_players (pl) 620 for_all_players (pl)
682 if (pl->ob->map == op->map && 621 if (pl->ob->map == op->map &&
683 pl->ob->y - pl->ns->mapy / 2 <= op->y && 622 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
684 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x) 623 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
685 pl->do_los = 1; 624 pl->do_los = 1;
686} 625}
626

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines