ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.4 by root, Sun Sep 10 16:00:23 2006 UTC vs.
Revision 1.66 by root, Fri Nov 6 13:03:34 2009 UTC

1
2/* 1/*
3 * static char *rcsid_los_c = 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
4 * "$Id: los.C,v 1.4 2006/09/10 16:00:23 root Exp $"; 3 *
5 */ 4 * Copyright (©) 2005,2006,2007,2008,2009 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
6 5 *
7/* 6 * Deliantra is free software: you can redistribute it and/or modify it under
8 CrossFire, A Multiplayer game for X-windows
9
10 Copyright (C) 2002 Mark Wedel & Crossfire Development Team
11 Copyright (C) 1992 Frank Tore Johansen
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by 7 * the terms of the Affero GNU General Public License as published by the
15 the Free Software Foundation; either version 2 of the License, or 8 * Free Software Foundation, either version 3 of the License, or (at your
16 (at your option) any later version. 9 * option) any later version.
17 10 *
18 This program is distributed in the hope that it will be useful, 11 * This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details. 14 * GNU General Public License for more details.
22 15 *
23 You should have received a copy of the GNU General Public License 16 * You should have received a copy of the Affero GNU General Public License
24 along with this program; if not, write to the Free Software 17 * and the GNU General Public License along with this program. If not, see
25 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 18 * <http://www.gnu.org/licenses/>.
26 19 *
27 The authors can be reached via e-mail at crossfire-devel@real-time.com 20 * The authors can be reached via e-mail to <support@deliantra.net>
28*/ 21 */
29
30/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
31 22
32#include <global.h> 23#include <global.h>
33#include <funcpoint.h>
34#include <math.h> 24#include <cmath>
35 25
26#define SEE_IN_DARK_RADIUS 2
27#define MAX_VISION 10 // maximum visible radius
36 28
37/* Distance must be less than this for the object to be blocked. 29// los flags
38 * An object is 1.0 wide, so if set to 0.5, it means the object 30enum {
39 * that blocks half the view (0.0 is complete block) will 31 FLG_XI = 0x01, // we have an x-parent
40 * block view in our tables. 32 FLG_YI = 0x02, // we have an y-parent
41 * .4 or less lets you see through walls. .5 is about right. 33 FLG_BLOCKED = 0x04, // this space blocks the view
42 */ 34 FLG_QUEUED = 0x80 // already queued in queue, or border
35};
43 36
44#define SPACE_BLOCK 0.5 37struct los_info
45
46typedef struct blstr
47{ 38{
48 int x[4], y[4]; 39 uint8 flags; // FLG_xxx
49 int index; 40 uint8 culled; // culled from "tree"
50} blocks; 41 uint8 visible;
42 uint8 pad0;
51 43
44 sint8 xo, yo; // obscure angle
45 sint8 xe, ye; // angle deviation
46};
47
48// temporary storage for the los algorithm,
49// one los_info for each lightable map space
52blocks block[MAP_CLIENT_X][MAP_CLIENT_Y]; 50static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
53 51
54static void expand_lighted_sight (object *op); 52struct point
55
56/*
57 * Used to initialise the array used by the LOS routines.
58 * What this sets if that x,y blocks the view of bx,by
59 * This then sets up a relation - for example, something
60 * at 5,4 blocks view at 5,3 which blocks view at 5,2
61 * etc. So when we check 5,4 and find it block, we have
62 * the data to know that 5,3 and 5,2 and 5,1 should also
63 * be blocked.
64 */
65
66static void
67set_block (int x, int y, int bx, int by)
68{ 53{
69 int index = block[x][y].index, i;
70
71 /* Due to flipping, we may get duplicates - better safe than sorry.
72 */
73 for (i = 0; i < index; i++)
74 {
75 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
76 return;
77 }
78
79 block[x][y].x[index] = bx;
80 block[x][y].y[index] = by;
81 block[x][y].index++;
82#ifdef LOS_DEBUG
83 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
84#endif
85}
86
87/*
88 * initialises the array used by the LOS routines.
89 */
90
91/* since we are only doing the upper left quadrant, only
92 * these spaces could possibly get blocked, since these
93 * are the only ones further out that are still possibly in the
94 * sightline.
95 */
96
97void
98init_block (void)
99{
100 int x, y, dx, dy, i;
101 static int block_x[3] = { -1, -1, 0 }, block_y[3] =
102 {
103 -1, 0, -1};
104
105 for (x = 0; x < MAP_CLIENT_X; x++)
106 for (y = 0; y < MAP_CLIENT_Y; y++)
107 {
108 block[x][y].index = 0;
109 }
110
111
112 /* The table should be symmetric, so only do the upper left
113 * quadrant - makes the processing easier.
114 */
115 for (x = 1; x <= MAP_CLIENT_X / 2; x++)
116 {
117 for (y = 1; y <= MAP_CLIENT_Y / 2; y++)
118 {
119 for (i = 0; i < 3; i++)
120 {
121 dx = x + block_x[i];
122 dy = y + block_y[i];
123
124 /* center space never blocks */
125 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
126 continue;
127
128 /* If its a straight line, its blocked */
129 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
130 {
131 /* For simplicity, we mirror the coordinates to block the other
132 * quadrants.
133 */
134 set_block (x, y, dx, dy);
135 if (x == MAP_CLIENT_X / 2)
136 {
137 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
138 }
139 else if (y == MAP_CLIENT_Y / 2)
140 {
141 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
142 }
143 }
144 else
145 {
146 float d1, r, s, l;
147
148 /* We use the algorihm that found out how close the point
149 * (x,y) is to the line from dx,dy to the center of the viewable
150 * area. l is the distance from x,y to the line.
151 * r is more a curiosity - it lets us know what direction (left/right)
152 * the line is off
153 */
154
155 d1 = (float) (pow (MAP_CLIENT_X / 2 - dx, 2) + pow (MAP_CLIENT_Y / 2 - dy, 2));
156 r = (float) ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
157 s = (float) ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
158 l = FABS (sqrt (d1) * s);
159
160 if (l <= SPACE_BLOCK)
161 {
162 /* For simplicity, we mirror the coordinates to block the other
163 * quadrants.
164 */
165 set_block (x, y, dx, dy);
166 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
167 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
168 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
169 }
170 }
171 }
172 }
173 }
174}
175
176/*
177 * Used to initialise the array used by the LOS routines.
178 * x,y are indexes into the blocked[][] array.
179 * This recursively sets the blocked line of sight view.
180 * From the blocked[][] array, we know for example
181 * that if some particular space is blocked, it blocks
182 * the view of the spaces 'behind' it, and those blocked
183 * spaces behind it may block other spaces, etc.
184 * In this way, the chain of visibility is set.
185 */
186
187static void
188set_wall (object *op, int x, int y)
189{
190 int i;
191
192 for (i = 0; i < block[x][y].index; i++)
193 {
194 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
195
196 /* ax, ay are the values as adjusted to be in the
197 * socket look structure.
198 */
199 ax = dx - (MAP_CLIENT_X - op->contr->socket.mapx) / 2;
200 ay = dy - (MAP_CLIENT_Y - op->contr->socket.mapy) / 2;
201
202 if (ax < 0 || ax >= op->contr->socket.mapx || ay < 0 || ay >= op->contr->socket.mapy)
203 continue;
204#if 0
205 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
206#endif
207 /* we need to adjust to the fact that the socket
208 * code wants the los to start from the 0,0
209 * and not be relative to middle of los array.
210 */
211 op->contr->blocked_los[ax][ay] = 100;
212 set_wall (op, dx, dy);
213 }
214}
215
216/*
217 * Used to initialise the array used by the LOS routines.
218 * op is the object, x and y values based on MAP_CLIENT_X and Y.
219 * this is because they index the blocked[][] arrays.
220 */
221
222static void
223check_wall (object *op, int x, int y)
224{
225 int ax, ay; 54 sint8 x, y;
55};
226 56
227 if (!block[x][y].index) 57// minimum size, but must be a power of two
228 return; 58#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
229 59
230 /* ax, ay are coordinates as indexed into the look window */ 60// a queue of spaces to calculate
231 ax = x - (MAP_CLIENT_X - op->contr->socket.mapx) / 2; 61static point queue [QUEUE_LENGTH];
232 ay = y - (MAP_CLIENT_Y - op->contr->socket.mapy) / 2; 62static int q1, q2; // queue start, end
233
234 /* If the converted coordinates are outside the viewable
235 * area for the client, return now.
236 */
237 if (ax < 0 || ay < 0 || ax >= op->contr->socket.mapx || ay >= op->contr->socket.mapy)
238 return;
239
240#if 0
241 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
242 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
243#endif
244
245 /* If this space is already blocked, prune the processing - presumably
246 * whatever has set this space to be blocked has done the work and already
247 * done the dependency chain.
248 */
249 if (op->contr->blocked_los[ax][ay] == 100)
250 return;
251
252
253 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
254 set_wall (op, x, y);
255}
256 63
257/* 64/*
258 * Clears/initialises the los-array associated to the player 65 * Clears/initialises the los-array associated to the player
259 * controlling the object. 66 * controlling the object.
260 */ 67 */
261
262void 68void
263clear_los (object *op) 69player::clear_los (sint8 value)
264{ 70{
265 /* This is safer than using the socket->mapx, mapy because 71 memset (los, value, sizeof (los));
266 * we index the blocked_los as a 2 way array, so clearing
267 * the first z spaces may not not cover the spaces we are
268 * actually going to use
269 */
270 (void) memset ((void *) op->contr->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
271} 72}
272 73
273/* 74// enqueue a single mapspace, but only if it hasn't
274 * expand_sight goes through the array of what the given player is 75// been enqueued yet.
275 * able to see, and expands the visible area a bit, so the player will,
276 * to a certain degree, be able to see into corners.
277 * This is somewhat suboptimal, would be better to improve the formula.
278 */
279
280static void 76static void
281expand_sight (object *op) 77enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
282{ 78{
283 int i, x, y, dx, dy; 79 sint8 x = LOS_X0 + dx;
80 sint8 y = LOS_Y0 + dy;
284 81
285 for (x = 1; x < op->contr->socket.mapx - 1; x++) /* loop over inner squares */ 82 los_info &l = los[x][y];
286 for (y = 1; y < op->contr->socket.mapy - 1; y++) 83
84 l.flags |= flags;
85
86 if (l.flags & FLG_QUEUED)
87 return;
88
89 l.flags |= FLG_QUEUED;
90
91 queue[q1].x = dx;
92 queue[q1].y = dy;
93
94 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
95}
96
97// run the los algorithm
98// this is a variant of a spiral los algorithm taken from
99// http://www.geocities.com/temerra/los_rays.html
100// which has been simplified and changed considerably, but
101// still is basically the same algorithm.
102static void
103calculate_los (player *pl)
104{
105 {
106 memset (los, 0, sizeof (los));
107
108 // we keep one line for ourselves, for the border flag
109 // so the client area is actually MAP_CLIENT_(X|Y) - 2
110 int half_x = min (LOS_X0 - 1, pl->ns->mapx / 2);
111 int half_y = min (LOS_Y0 - 1, pl->ns->mapy / 2);
112
113 // create borders, the corners are not touched
114 for (int dx = -half_x; dx <= half_x; ++dx)
115 los [dx + LOS_X0][LOS_Y0 - (half_y + 1)].flags =
116 los [dx + LOS_X0][LOS_Y0 + (half_y + 1)].flags = FLG_QUEUED;
117
118 for (int dy = -half_y; dy <= half_y; ++dy)
119 los [LOS_X0 - (half_x + 1)][dy + LOS_Y0].flags =
120 los [LOS_X0 + (half_x + 1)][dy + LOS_Y0].flags = FLG_QUEUED;
121
122 // now reset the los area and also add blocked flags
123 // which supposedly is faster than doing it inside the
124 // spiral path algorithm below, except when very little
125 // area is visible, in which case it is slower. which evens
126 // out los calculation times between large and small los maps.
127 // apply_lights also iterates over this area, maybe these
128 // two passes could be combined somehow.
129 unordered_mapwalk (pl->viewpoint, -half_x, -half_y, half_x, half_y)
287 { 130 {
288 if (!op->contr->blocked_los[x][y] && 131 los_info &l = los [LOS_X0 + dx][LOS_Y0 + dy];
289 !(get_map_flags (op->map, NULL, 132 l.flags = m->at (nx, ny).flags () & P_BLOCKSVIEW ? FLG_BLOCKED : 0;
290 op->x - op->contr->socket.mapx / 2 + x, 133 }
291 op->y - op->contr->socket.mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))) 134 }
135
136 q1 = 0; q2 = 0; // initialise queue, not strictly required
137 enqueue (0, 0); // enqueue center
138
139 // treat the origin specially
140 los[LOS_X0][LOS_Y0].visible = 1;
141 pl->los[LOS_X0][LOS_Y0] = 0;
142
143 // loop over all enqueued points until the queue is empty
144 // the order in which this is done ensures that we
145 // never touch a mapspace whose input spaces we haven't checked
146 // yet.
147 while (q1 != q2)
148 {
149 sint8 dx = queue[q2].x;
150 sint8 dy = queue[q2].y;
151
152 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
153
154 sint8 x = LOS_X0 + dx;
155 sint8 y = LOS_Y0 + dy;
156
157 los_info &l = los[x][y];
158
159 if (expect_true (l.flags & (FLG_XI | FLG_YI)))
160 {
161 l.culled = 1;
162 l.xo = l.yo = l.xe = l.ye = 0;
163
164 // check contributing spaces, first horizontal
165 if (expect_true (l.flags & FLG_XI))
166 {
167 los_info *xi = &los[x - sign (dx)][y];
168
169 // don't cull unless obscured
170 l.culled &= !xi->visible;
171
172 /* merge input space */
173 if (expect_false (xi->xo || xi->yo))
174 {
175 // The X input can provide two main pieces of information:
176 // 1. Progressive X obscurity.
177 // 2. Recessive Y obscurity.
178
179 // Progressive X obscurity, favouring recessive input angle
180 if (xi->xe > 0 && l.xo == 0)
181 {
182 l.xe = xi->xe - xi->yo;
183 l.ye = xi->ye + xi->yo;
184 l.xo = xi->xo;
185 l.yo = xi->yo;
186 }
187
188 // Recessive Y obscurity
189 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
190 {
191 l.ye = xi->yo + xi->ye;
192 l.xe = xi->xe - xi->yo;
193 l.xo = xi->xo;
194 l.yo = xi->yo;
195 }
196 }
197 }
198
199 // check contributing spaces, last vertical, identical structure
200 if (expect_true (l.flags & FLG_YI))
201 {
202 los_info *yi = &los[x][y - sign (dy)];
203
204 // don't cull unless obscured
205 l.culled &= !yi->visible;
206
207 /* merge input space */
208 if (expect_false (yi->yo || yi->xo))
209 {
210 // The Y input can provide two main pieces of information:
211 // 1. Progressive Y obscurity.
212 // 2. Recessive X obscurity.
213
214 // Progressive Y obscurity, favouring recessive input angle
215 if (yi->ye > 0 && l.yo == 0)
216 {
217 l.ye = yi->ye - yi->xo;
218 l.xe = yi->xe + yi->xo;
219 l.yo = yi->yo;
220 l.xo = yi->xo;
221 }
222
223 // Recessive X obscurity
224 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
225 {
226 l.xe = yi->xo + yi->xe;
227 l.ye = yi->ye - yi->xo;
228 l.yo = yi->yo;
229 l.xo = yi->xo;
230 }
231 }
232 }
233
234 if (l.flags & FLG_BLOCKED)
235 {
236 l.xo = l.xe = abs (dx);
237 l.yo = l.ye = abs (dy);
238
239 // we obscure dependents, but might be visible
240 // copy the los from the square towards the player,
241 // so outward diagonal corners are lit.
242 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
243
244 l.visible = false;
245 }
246 else
247 {
248 // we are not blocked, so calculate visibility, by checking
249 // whether we are inside or outside the shadow
250 l.visible = (l.xe <= 0 || l.xe > l.xo)
251 && (l.ye <= 0 || l.ye > l.yo);
252
253 pl->los[x][y] = l.culled ? LOS_BLOCKED
254 : l.visible ? 0
255 : 3;
256 }
257
258 }
259
260 // Expands by the unit length in each component's current direction.
261 // If a component has no direction, then it is expanded in both of its
262 // positive and negative directions.
263 if (!l.culled)
264 {
265 if (dx >= 0) enqueue (dx + 1, dy, FLG_XI);
266 if (dx <= 0) enqueue (dx - 1, dy, FLG_XI);
267 if (dy >= 0) enqueue (dx, dy + 1, FLG_YI);
268 if (dy <= 0) enqueue (dx, dy - 1, FLG_YI);
269 }
270 }
271}
272
273/* radius, distance => lightness adjust */
274static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
275static sint8 vision_atten[MAX_VISION + 1][MAX_VISION * 3 / 2 + 1];
276
277static struct los_init
278{
279 los_init ()
280 {
281 assert (("QUEUE_LENGTH, MAP_CLIENT_X and MAP_CLIENT_Y *must* be powers of two",
282 !(QUEUE_LENGTH & (QUEUE_LENGTH - 1))));
283
284 /* for lights */
285 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
286 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
287 {
288 // max intensity
289 int intensity = min (LOS_MAX, abs (radius) + 1);
290
291 // actual intensity
292 intensity = max (0, lerp_ru (distance, 0, abs (radius) + 1, intensity, 0));
293
294 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
295 ? min (3, intensity)
296 : LOS_MAX - intensity;
297 }
298
299 /* for general vision */
300 for (int radius = 0; radius <= MAX_VISION; ++radius)
301 for (int distance = 0; distance <= MAX_VISION * 3 / 2; ++distance)
302 vision_atten [radius][distance] = distance <= radius ? clamp (lerp (radius, 0, MAX_DARKNESS, 3, 0), 0, 3) : 4;
303 }
304} los_init;
305
306// the following functions cannot be static, due to c++ stupidity :/
307namespace {
308 // brighten area, ignore los
309 sint8
310 los_brighten_nolos (sint8 b, sint8 l)
311 {
312 return min (b, l);
313 }
314
315 // brighten area, but respect los
316 sint8
317 los_brighten (sint8 b, sint8 l)
318 {
319 return b == LOS_BLOCKED ? b : min (b, l);
320 }
321
322 // darken area, respect los
323 sint8
324 los_darken (sint8 b, sint8 l)
325 {
326 return max (b, l);
327 }
328};
329
330template<sint8 change_it (sint8, sint8)>
331static void
332apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
333{
334 // min or max the circular area around basex, basey
335 dx += LOS_X0;
336 dy += LOS_Y0;
337
338 int hx = pl->ns->mapx / 2;
339 int hy = pl->ns->mapy / 2;
340
341 int ax0 = max (LOS_X0 - hx, dx - light);
342 int ay0 = max (LOS_Y0 - hy, dy - light);
343 int ax1 = min (dx + light, LOS_X0 + hx);
344 int ay1 = min (dy + light, LOS_Y0 + hy);
345
346 for (int ax = ax0; ax <= ax1; ax++)
347 for (int ay = ay0; ay <= ay1; ay++)
348 pl->los[ax][ay] =
349 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
350}
351
352/* add light, by finding all (non-null) nearby light sources, then
353 * mark those squares specially.
354 */
355static void
356apply_lights (player *pl)
357{
358 object *op = pl->viewpoint;
359 int darklevel = op->map->darklevel ();
360
361 int half_x = pl->ns->mapx / 2;
362 int half_y = pl->ns->mapy / 2;
363
364 int pass2 = 0; // negative lights have an extra pass
365
366 maprect *rects = pl->viewpoint->map->split_to_tiles (
367 pl->viewpoint->x - half_x - MAX_LIGHT_RADIUS,
368 pl->viewpoint->y - half_y - MAX_LIGHT_RADIUS,
369 pl->viewpoint->x + half_x + MAX_LIGHT_RADIUS + 1,
370 pl->viewpoint->y + half_y + MAX_LIGHT_RADIUS + 1
371 );
372
373 /* If the player can see in the dark, increase light/vision radius */
374 int bonus = op->flag [FLAG_SEE_IN_DARK] ? SEE_IN_DARK_RADIUS : 0;
375
376 if (!darklevel)
377 pass2 = 1;
378 else
379 {
380 /* first, make everything totally dark */
381 for (int dx = -half_x; dx <= half_x; dx++)
382 for (int dy = -half_x; dy <= half_y; dy++)
383 max_it (pl->los[dx + LOS_X0][dy + LOS_Y0], LOS_MAX);
384
385 /*
386 * Only process the area of interest.
387 * the basex, basey values represent the position in the op->contr->los
388 * array. Its easier to just increment them here (and start with the right
389 * value) than to recalculate them down below.
390 */
391 for (maprect *r = rects; r->m; ++r)
392 rect_mapwalk (r, 0, 0)
292 { 393 {
394 mapspace &ms = m->at (nx, ny);
395 ms.update ();
396 sint8 light = ms.light;
293 397
294 for (i = 1; i <= 8; i += 1) 398 if (expect_false (light))
295 { /* mark all directions */ 399 if (light < 0)
296 dx = x + freearr_x[i]; 400 pass2 = 1;
297 dy = y + freearr_y[i]; 401 else
298 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */ 402 {
299 op->contr->blocked_los[dx][dy] = -1; 403 light = clamp (light + bonus, 0, MAX_LIGHT_RADIUS);
404 apply_light<los_brighten> (pl, dx - pl->viewpoint->x, dy - pl->viewpoint->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
300 } 405 }
301 } 406 }
407
408 /* grant some vision to the player, based on outside, outdoor, and darklevel */
409 {
410 int light;
411
412 if (!op->map->outdoor) // not outdoor, darkness becomes light radius
413 light = MAX_DARKNESS - op->map->darkness;
414 else if (op->map->darkness > 0) // outdoor and darkness > 0 => use darkness as max radius
415 light = lerp_rd (maptile::outdoor_darkness + 0, 0, MAX_DARKNESS, MAX_DARKNESS - op->map->darkness, 0);
416 else // outdoor and darkness <= 0 => start wide and decrease quickly
417 light = lerp (maptile::outdoor_darkness + op->map->darkness, 0, MAX_DARKNESS, MAX_VISION, 2);
418
419 light = clamp (light + bonus, 0, MAX_VISION);
420
421 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
302 } 422 }
303
304 if (MAP_DARKNESS (op->map) > 0) /* player is on a dark map */
305 expand_lighted_sight (op);
306
307
308 /* clear mark squares */
309 for (x = 0; x < op->contr->socket.mapx; x++)
310 for (y = 0; y < op->contr->socket.mapy; y++)
311 if (op->contr->blocked_los[x][y] < 0)
312 op->contr->blocked_los[x][y] = 0;
313}
314
315
316
317
318/* returns true if op carries one or more lights
319 * This is a trivial function now days, but it used to
320 * be a bit longer. Probably better for callers to just
321 * check the op->glow_radius instead of calling this.
322 */
323
324int
325has_carried_lights (const object *op)
326{
327 /* op may glow! */
328 if (op->glow_radius > 0)
329 return 1;
330
331 return 0;
332}
333
334static void
335expand_lighted_sight (object *op)
336{
337 int x, y, darklevel, ax, ay, basex, basey, mflags, light, x1, y1;
338 mapstruct *m = op->map;
339 sint16 nx, ny;
340
341 darklevel = MAP_DARKNESS (m);
342
343 /* If the player can see in the dark, lower the darklevel for him */
344 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK))
345 darklevel -= 2;
346
347 /* add light, by finding all (non-null) nearby light sources, then
348 * mark those squares specially. If the darklevel<1, there is no
349 * reason to do this, so we skip this function
350 */
351
352 if (darklevel < 1)
353 return;
354
355 /* Do a sanity check. If not valid, some code below may do odd
356 * things.
357 */
358 if (darklevel > MAX_DARKNESS)
359 {
360 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, op->map->path, darklevel);
361 darklevel = MAX_DARKNESS;
362 } 423 }
363 424
364 /* First, limit player furthest (unlighted) vision */ 425 // when we fly high, we have some minimum viewable area around us, like x-ray
365 for (x = 0; x < op->contr->socket.mapx; x++) 426 if (op->move_type & MOVE_FLY_HIGH)
366 for (y = 0; y < op->contr->socket.mapy; y++) 427 apply_light<los_brighten_nolos> (pl, 0, 0, 9, vision_atten [9]);
367 if (op->contr->blocked_los[x][y] != 100)
368 op->contr->blocked_los[x][y] = MAX_LIGHT_RADII;
369 428
370 /* the spaces[] darkness value contains the information we need. 429 // possibly do 2nd pass for rare negative glow radii
371 * Only process the area of interest. 430 // for effect, those are always considered to be stronger than anything else
372 * the basex, basey values represent the position in the op->contr->blocked_los 431 // but they can't darken a place completely
373 * array. Its easier to just increment them here (and start with the right 432 if (pass2)
374 * value) than to recalculate them down below. 433 for (maprect *r = rects; r->m; ++r)
375 */ 434 rect_mapwalk (r, 0, 0)
376 for (x = (op->x - op->contr->socket.mapx / 2 - MAX_LIGHT_RADII), basex = -MAX_LIGHT_RADII;
377 x <= (op->x + op->contr->socket.mapx / 2 + MAX_LIGHT_RADII); x++, basex++)
378 {
379
380 for (y = (op->y - op->contr->socket.mapy / 2 - MAX_LIGHT_RADII), basey = -MAX_LIGHT_RADII;
381 y <= (op->y + op->contr->socket.mapy / 2 + MAX_LIGHT_RADII); y++, basey++)
382 { 435 {
383 m = op->map; 436 mapspace &ms = m->at (nx, ny);
384 nx = x; 437 ms.update ();
385 ny = y; 438 sint8 light = ms.light;
386 439
387 mflags = get_map_flags (m, &m, nx, ny, &nx, &ny); 440 if (expect_false (light < 0))
388
389 if (mflags & P_OUT_OF_MAP)
390 continue;
391
392 /* This space is providing light, so we need to brighten up the
393 * spaces around here.
394 */
395 light = GET_MAP_LIGHT (m, nx, ny);
396 if (light != 0)
397 { 441 {
398#if 0 442 light = clamp (light - bonus, 0, MAX_DARKNESS);
399 LOG (llevDebug, "expand_lighted_sight: Found light at x=%d, y=%d, basex=%d, basey=%d\n", x, y, basex, basey); 443 apply_light<los_darken> (pl, dx - pl->viewpoint->x, dy - pl->viewpoint->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
400#endif
401 for (ax = basex - light; ax <= basex + light; ax++)
402 {
403 if (ax < 0 || ax >= op->contr->socket.mapx)
404 continue;
405 for (ay = basey - light; ay <= basey + light; ay++)
406 {
407 if (ay < 0 || ay >= op->contr->socket.mapy)
408 continue;
409
410 /* If the space is fully blocked, do nothing. Otherwise, we
411 * brighten the space. The further the light is away from the
412 * source (basex-x), the less effect it has. Though light used
413 * to dim in a square manner, it now dims in a circular manner
414 * using the the pythagorean theorem. glow_radius still
415 * represents the radius
416 */
417 if (op->contr->blocked_los[ax][ay] != 100)
418 {
419 x1 = abs (basex - ax) * abs (basex - ax);
420 y1 = abs (basey - ay) * abs (basey - ay);
421 if (light > 0)
422 op->contr->blocked_los[ax][ay] -= MAX ((light - isqrt (x1 + y1)), 0);
423 if (light < 0)
424 op->contr->blocked_los[ax][ay] -= MIN ((light + isqrt (x1 + y1)), 0);
425 }
426 } /* for ay */
427 } /* for ax */
428 } /* if this space is providing light */
429 } /* for y */
430 } /* for x */
431
432 /* Outdoor should never really be completely pitch black dark like
433 * a dungeon, so let the player at least see a little around themselves
434 */
435 if (op->map->outdoor && darklevel > (MAX_DARKNESS - 3))
436 {
437 if (op->contr->blocked_los[op->contr->socket.mapx / 2][op->contr->socket.mapy / 2] > (MAX_DARKNESS - 3))
438 op->contr->blocked_los[op->contr->socket.mapx / 2][op->contr->socket.mapy / 2] = MAX_DARKNESS - 3;
439
440 for (x = -1; x <= 1; x++)
441 for (y = -1; y <= 1; y++)
442 {
443 if (op->contr->blocked_los[x + op->contr->socket.mapx / 2][y + op->contr->socket.mapy / 2] > (MAX_DARKNESS - 2))
444 op->contr->blocked_los[x + op->contr->socket.mapx / 2][y + op->contr->socket.mapy / 2] = MAX_DARKNESS - 2;
445 } 444 }
446 } 445 }
447 /* grant some vision to the player, based on the darklevel */
448 for (x = darklevel - MAX_DARKNESS; x < MAX_DARKNESS + 1 - darklevel; x++)
449 for (y = darklevel - MAX_DARKNESS; y < MAX_DARKNESS + 1 - darklevel; y++)
450 if (!(op->contr->blocked_los[x + op->contr->socket.mapx / 2][y + op->contr->socket.mapy / 2] == 100))
451 op->contr->blocked_los[x + op->contr->socket.mapx / 2][y + op->contr->socket.mapy / 2] -=
452 MAX (0, 6 - darklevel - MAX (abs (x), abs (y)));
453} 446}
454 447
455/* blinded_sight() - sets all veiwable squares to blocked except 448/* blinded_sight() - sets all viewable squares to blocked except
456 * for the one the central one that the player occupies. A little 449 * for the one the central one that the player occupies. A little
457 * odd that you can see yourself (and what your standing on), but 450 * odd that you can see yourself (and what your standing on), but
458 * really need for any reasonable game play. 451 * really need for any reasonable game play.
459 */ 452 */
460
461static void 453static void
462blinded_sight (object *op) 454blinded_sight (player *pl)
463{ 455{
464 int x, y; 456 pl->los[LOS_X0][LOS_Y0] = 1;
465
466 for (x = 0; x < op->contr->socket.mapx; x++)
467 for (y = 0; y < op->contr->socket.mapy; y++)
468 op->contr->blocked_los[x][y] = 100;
469
470 op->contr->blocked_los[op->contr->socket.mapx / 2][op->contr->socket.mapy / 2] = 0;
471} 457}
472 458
473/* 459/*
474 * update_los() recalculates the array which specifies what is 460 * update_los() recalculates the array which specifies what is
475 * visible for the given player-object. 461 * visible for the given player-object.
476 */ 462 */
477
478void 463void
479update_los (object *op) 464player::update_los ()
480{ 465{
481 int dx = op->contr->socket.mapx / 2, dy = op->contr->socket.mapy / 2, x, y; 466 if (ob->flag [FLAG_REMOVED])//D really needed?
482
483 if (QUERY_FLAG (op, FLAG_REMOVED))
484 return; 467 return;
485 468
469 if (ob->flag [FLAG_WIZLOOK])
486 clear_los (op); 470 clear_los (0);
487 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ ) 471 else if (viewpoint->flag [FLAG_BLIND]) /* player is blind */
488 return; 472 {
489 473 clear_los ();
490 /* For larger maps, this is more efficient than the old way which
491 * used the chaining of the block array. Since many space views could
492 * be blocked by different spaces in front, this mean that a lot of spaces
493 * could be examined multile times, as each path would be looked at.
494 */
495 for (x = (MAP_CLIENT_X - op->contr->socket.mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->socket.mapx) / 2 + 1; x++)
496 for (y = (MAP_CLIENT_Y - op->contr->socket.mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->socket.mapy) / 2 + 1; y++)
497 check_wall (op, x, y);
498
499
500 /* do the los of the player. 3 (potential) cases */
501 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
502 blinded_sight (op); 474 blinded_sight (this);
475 }
503 else 476 else
504 expand_sight (op);
505
506 if (QUERY_FLAG (op, FLAG_XRAYS))
507 { 477 {
508 int x, y; 478 clear_los ();
509 479 calculate_los (this);
510 for (x = -2; x <= 2; x++) 480 apply_lights (this);
511 for (y = -2; y <= 2; y++)
512 op->contr->blocked_los[dx + x][dy + y] = 0;
513 } 481 }
482
483 if (viewpoint->flag [FLAG_XRAYS])
484 for (int dx = -2; dx <= 2; dx++)
485 for (int dy = -2; dy <= 2; dy++)
486 min_it (los[dx + LOS_X0][dy + LOS_Y0], 1);
514} 487}
515 488
516/* update all_map_los is like update_all_los below, 489/* update all_map_los is like update_all_los below,
517 * but updates everyone on the map, no matter where they 490 * but updates everyone on the map, no matter where they
518 * are. This generally should not be used, as a per 491 * are. This generally should not be used, as a per
519 * specific map change doesn't make much sense when tiling 492 * specific map change doesn't make much sense when tiling
520 * is considered (lowering darkness would certainly be a 493 * is considered (lowering darkness would certainly be a
521 * strange effect if done on a tile map, as it makes 494 * strange effect if done on a tile map, as it makes
522 * the distinction between maps much more obvious to the 495 * the distinction between maps much more obvious to the
523 * players, which is should not be. 496 * players, which is should not be.
524 * Currently, this function is called from the 497 * Currently, this function is called from the
525 * change_map_light function 498 * change_map_light function
526 */ 499 */
527void 500void
528update_all_map_los (mapstruct *map) 501update_all_map_los (maptile *map)
529{ 502{
530 player *pl; 503 for_all_players_on_map (pl, map)
531
532 for (pl = first_player; pl != NULL; pl = pl->next)
533 {
534 if (pl->ob->map == map)
535 pl->do_los = 1; 504 pl->do_los = 1;
536 }
537} 505}
538
539 506
540/* 507/*
541 * This function makes sure that update_los() will be called for all 508 * This function makes sure that update_los() will be called for all
542 * players on the given map within the next frame. 509 * players on the given map within the next frame.
543 * It is triggered by removal or inserting of objects which blocks 510 * It is triggered by removal or inserting of objects which blocks
547 * means that just being on the same map is not sufficient - the 514 * means that just being on the same map is not sufficient - the
548 * space that changes must be withing your viewable area. 515 * space that changes must be withing your viewable area.
549 * 516 *
550 * map is the map that changed, x and y are the coordinates. 517 * map is the map that changed, x and y are the coordinates.
551 */ 518 */
552
553void 519void
554update_all_los (const mapstruct *map, int x, int y) 520update_all_los (const maptile *map, int x, int y)
555{ 521{
556 player *pl; 522 map->at (x, y).invalidate ();
557 523
558 for (pl = first_player; pl != NULL; pl = pl->next) 524 for_all_players (pl)
559 { 525 {
560 /* Player should not have a null map, but do this 526 /* Player should not have a null map, but do this
561 * check as a safety 527 * check as a safety
562 */ 528 */
563 if (!pl->ob->map) 529 if (!pl->ob || !pl->ob->map || !pl->ns)
564 continue; 530 continue;
565 531
566 /* Same map is simple case - see if pl is close enough. 532 rv_vector rv;
567 * Note in all cases, we did the check for same map first, 533
568 * and then see if the player is close enough and update 534 get_rangevector_from_mapcoord (map, x, y, pl->ob, &rv);
569 * los if that is the case. If the player is on the
570 * corresponding map, but not close enough, then the
571 * player can't be on another map that may be closer,
572 * so by setting it up this way, we trim processing
573 * some.
574 */ 535
575 if (pl->ob->map == map) 536 if ((abs (rv.distance_x) <= pl->ns->mapx / 2) && (abs (rv.distance_y) <= pl->ns->mapy / 2))
576 {
577 if ((abs (pl->ob->x - x) <= pl->socket.mapx / 2) && (abs (pl->ob->y - y) <= pl->socket.mapy / 2))
578 pl->do_los = 1; 537 pl->do_los = 1;
579 }
580 /* Now we check to see if player is on adjacent
581 * maps to the one that changed and also within
582 * view. The tile_maps[] could be null, but in that
583 * case it should never match the pl->ob->map, so
584 * we want ever try to dereference any of the data in it.
585 */
586
587 /* The logic for 0 and 3 is to see how far the player is
588 * from the edge of the map (height/width) - pl->ob->(x,y)
589 * and to add current position on this map - that gives a
590 * distance.
591 * For 1 and 2, we check to see how far the given
592 * coordinate (x,y) is from the corresponding edge,
593 * and then add the players location, which gives
594 * a distance.
595 */
596 else if (pl->ob->map == map->tile_map[0])
597 {
598 if ((abs (pl->ob->x - x) <= pl->socket.mapx / 2) && (abs (y + MAP_HEIGHT (map->tile_map[0]) - pl->ob->y) <= pl->socket.mapy / 2))
599 pl->do_los = 1;
600 }
601 else if (pl->ob->map == map->tile_map[2])
602 {
603 if ((abs (pl->ob->x - x) <= pl->socket.mapx / 2) && (abs (pl->ob->y + MAP_HEIGHT (map) - y) <= pl->socket.mapy / 2))
604 pl->do_los = 1;
605 }
606 else if (pl->ob->map == map->tile_map[1])
607 {
608 if ((abs (pl->ob->x + MAP_WIDTH (map) - x) <= pl->socket.mapx / 2) && (abs (pl->ob->y - y) <= pl->socket.mapy / 2))
609 pl->do_los = 1;
610 }
611 else if (pl->ob->map == map->tile_map[3])
612 {
613 if ((abs (x + MAP_WIDTH (map->tile_map[3]) - pl->ob->x) <= pl->socket.mapx / 2) && (abs (pl->ob->y - y) <= pl->socket.mapy / 2))
614 pl->do_los = 1;
615 }
616 } 538 }
617} 539}
618 540
541static const int season_darkness[5][HOURS_PER_DAY] = {
542 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
543 { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
544 { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
545 { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
546 { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
547 { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
548};
549
619/* 550/*
620 * Debug-routine which dumps the array which specifies the visible 551 * Tell players the time and compute the darkness level for all maps in the game.
621 * area of a player. Triggered by the z key in DM mode. 552 * MUST be called exactly once per hour.
622 */ 553 */
623
624void 554void
625print_los (object *op) 555maptile::adjust_daylight ()
626{ 556{
627 int x, y; 557 timeofday_t tod;
628 char buf[50], buf2[10];
629 558
630 strcpy (buf, " "); 559 get_tod (&tod);
631 for (x = 0; x < op->contr->socket.mapx; x++) 560
561 // log the time to log-1 every hour, and to chat every day
632 { 562 {
633 sprintf (buf2, "%2d", x); 563 char todbuf[512];
634 strcat (buf, buf2); 564
565 format_tod (todbuf, sizeof (todbuf), &tod);
566
567 for_all_players (pl)
568 pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
635 } 569 }
636 new_draw_info (NDI_UNIQUE, 0, op, buf); 570
637 for (y = 0; y < op->contr->socket.mapy; y++) 571 /* If the light level isn't changing, no reason to do all
638 { 572 * the work below.
639 sprintf (buf, "%2d:", y); 573 */
640 for (x = 0; x < op->contr->socket.mapx; x++) 574 sint8 new_darkness = season_darkness[tod.season][tod.hour];
641 { 575
642 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]); 576 if (new_darkness == maptile::outdoor_darkness)
643 strcat (buf, buf2); 577 return;
644 } 578
645 new_draw_info (NDI_UNIQUE, 0, op, buf); 579 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
646 } 580 new_darkness > maptile::outdoor_darkness
581 ? "It becomes darker."
582 : "It becomes brighter.");
583
584 maptile::outdoor_darkness = new_darkness;
585
586 // we simply update the los for all players, which is unnecessarily
587 // costly, but should do for the moment.
588 for_all_players (pl)
589 pl->do_los = 1;
647} 590}
648 591
649/* 592/*
650 * make_sure_seen: The object is supposed to be visible through walls, thus 593 * make_sure_seen: The object is supposed to be visible through walls, thus
651 * check if any players are nearby, and edit their LOS array. 594 * check if any players are nearby, and edit their LOS array.
652 */ 595 */
653
654void 596void
655make_sure_seen (const object *op) 597make_sure_seen (const object *op)
656{ 598{
657 player *pl; 599 for_all_players (pl)
658
659 for (pl = first_player; pl; pl = pl->next)
660 if (pl->ob->map == op->map && 600 if (pl->ob->map == op->map &&
661 pl->ob->y - pl->socket.mapy / 2 <= op->y && 601 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
662 pl->ob->y + pl->socket.mapy / 2 >= op->y && pl->ob->x - pl->socket.mapx / 2 <= op->x && pl->ob->x + pl->socket.mapx / 2 >= op->x) 602 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
663 pl->blocked_los[pl->socket.mapx / 2 + op->x - pl->ob->x][pl->socket.mapy / 2 + op->y - pl->ob->y] = 0; 603 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_Y0] = 0;
664} 604}
665 605
666/* 606/*
667 * make_sure_not_seen: The object which is supposed to be visible through 607 * make_sure_not_seen: The object which is supposed to be visible through
668 * walls has just been removed from the map, so update the los of any 608 * walls has just been removed from the map, so update the los of any
669 * players within its range 609 * players within its range
670 */ 610 */
671
672void 611void
673make_sure_not_seen (const object *op) 612make_sure_not_seen (const object *op)
674{ 613{
675 player *pl; 614 for_all_players (pl)
676
677 for (pl = first_player; pl; pl = pl->next)
678 if (pl->ob->map == op->map && 615 if (pl->ob->map == op->map &&
679 pl->ob->y - pl->socket.mapy / 2 <= op->y && 616 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
680 pl->ob->y + pl->socket.mapy / 2 >= op->y && pl->ob->x - pl->socket.mapx / 2 <= op->x && pl->ob->x + pl->socket.mapx / 2 >= op->x) 617 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
681 pl->do_los = 1; 618 pl->do_los = 1;
682} 619}
620

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines