ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.40 by root, Fri Dec 19 17:52:50 2008 UTC vs.
Revision 1.47 by root, Tue Dec 23 01:51:27 2008 UTC

22 */ 22 */
23 23
24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */ 24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
25 25
26#include <global.h> 26#include <global.h>
27#include <math.h> 27#include <cmath>
28
29/* Distance must be less than this for the object to be blocked.
30 * An object is 1.0 wide, so if set to 0.5, it means the object
31 * that blocks half the view (0.0 is complete block) will
32 * block view in our tables.
33 * .4 or less lets you see through walls. .5 is about right.
34 */
35#define SPACE_BLOCK 0.5
36
37typedef struct blstr
38{
39 int x[4], y[4];
40 int index;
41} blocks;
42
43// 31/32 == a speed hack
44// we would like to use 32 for speed, but the code loops endlessly
45// then, reason not yet identified, so only make the array use 32,
46// not the define's.
47blocks block[MAP_CLIENT_X][MAP_CLIENT_Y == 31 ? 32 : MAP_CLIENT_Y];
48 28
49static void expand_lighted_sight (object *op); 29static void expand_lighted_sight (object *op);
50 30
51/* 31enum {
52 * Used to initialise the array used by the LOS routines. 32 LOS_XI = 0x01,
53 * What this sets if that x,y blocks the view of bx,by 33 LOS_YI = 0x02,
54 * This then sets up a relation - for example, something 34};
55 * at 5,4 blocks view at 5,3 which blocks view at 5,2
56 * etc. So when we check 5,4 and find it block, we have
57 * the data to know that 5,3 and 5,2 and 5,1 should also
58 * be blocked.
59 */
60 35
61static void 36struct los_info
62set_block (int x, int y, int bx, int by)
63{ 37{
64 int index = block[x][y].index, i; 38 sint8 xo, yo; // obscure angle
39 sint8 xe, ye; // angle deviation
40 uint8 culled; // culled from "tree"
41 uint8 queued; // already queued
42 uint8 visible;
43 uint8 flags; // LOS_XI/YI
44};
65 45
66 /* Due to flipping, we may get duplicates - better safe than sorry. 46// temporary storage for the los algorithm,
67 */ 47// one los_info for each lightable map space
68 for (i = 0; i < index; i++) 48static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
69 {
70 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
71 return;
72 }
73 49
74 block[x][y].x[index] = bx; 50struct point
75 block[x][y].y[index] = by;
76 block[x][y].index++;
77#ifdef LOS_DEBUG
78 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
79#endif
80}
81
82/*
83 * initialises the array used by the LOS routines.
84 */
85
86/* since we are only doing the upper left quadrant, only
87 * these spaces could possibly get blocked, since these
88 * are the only ones further out that are still possibly in the
89 * sightline.
90 */
91void
92init_block (void)
93{ 51{
94 static int block_x[3] = { -1, -1, 0 },
95 block_y[3] = { -1, 0, -1 };
96
97 for (int x = 0; x < MAP_CLIENT_X; x++)
98 for (int y = 0; y < MAP_CLIENT_Y; y++)
99 block[x][y].index = 0;
100
101 /* The table should be symmetric, so only do the upper left
102 * quadrant - makes the processing easier.
103 */
104 for (int x = 1; x <= MAP_CLIENT_X / 2; x++)
105 {
106 for (int y = 1; y <= MAP_CLIENT_Y / 2; y++)
107 {
108 for (int i = 0; i < 3; i++)
109 {
110 int dx = x + block_x[i];
111 int dy = y + block_y[i];
112
113 /* center space never blocks */
114 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
115 continue;
116
117 /* If its a straight line, its blocked */
118 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
119 {
120 /* For simplicity, we mirror the coordinates to block the other
121 * quadrants.
122 */
123 set_block (x, y, dx, dy);
124 if (x == MAP_CLIENT_X / 2)
125 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
126 else if (y == MAP_CLIENT_Y / 2)
127 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
128 }
129 else
130 {
131 float d1, r, s, l;
132
133 /* We use the algorithm that found out how close the point
134 * (x,y) is to the line from dx,dy to the center of the viewable
135 * area. l is the distance from x,y to the line.
136 * r is more a curiosity - it lets us know what direction (left/right)
137 * the line is off
138 */
139
140 d1 = (powf (MAP_CLIENT_X / 2 - dx, 2.f) + powf (MAP_CLIENT_Y / 2 - dy, 2.f));
141 r = ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
142 s = ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
143 l = fabs (sqrtf (d1) * s);
144
145 if (l <= SPACE_BLOCK)
146 {
147 /* For simplicity, we mirror the coordinates to block the other
148 * quadrants.
149 */
150 set_block (x, y, dx, dy);
151 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
152 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
153 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
154 }
155 }
156 }
157 }
158 }
159}
160
161/*
162 * Used to initialise the array used by the LOS routines.
163 * x,y are indexes into the blocked[][] array.
164 * This recursively sets the blocked line of sight view.
165 * From the blocked[][] array, we know for example
166 * that if some particular space is blocked, it blocks
167 * the view of the spaces 'behind' it, and those blocked
168 * spaces behind it may block other spaces, etc.
169 * In this way, the chain of visibility is set.
170 */
171static void
172set_wall (object *op, int x, int y)
173{
174 for (int i = 0; i < block[x][y].index; i++)
175 {
176 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
177
178 /* ax, ay are the values as adjusted to be in the
179 * socket look structure.
180 */
181 ax = dx - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
182 ay = dy - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
183
184 if (ax < 0 || ax >= op->contr->ns->mapx || ay < 0 || ay >= op->contr->ns->mapy)
185 continue;
186#if 0
187 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
188#endif
189 /* we need to adjust to the fact that the socket
190 * code wants the los to start from the 0,0
191 * and not be relative to middle of los array.
192 */
193 op->contr->blocked_los[ax][ay] = LOS_BLOCKED;
194 set_wall (op, dx, dy);
195 }
196}
197
198/*
199 * Used to initialise the array used by the LOS routines.
200 * op is the object, x and y values based on MAP_CLIENT_X and Y.
201 * this is because they index the blocked[][] arrays.
202 */
203static void
204check_wall (object *op, int x, int y)
205{
206 int ax, ay; 52 sint8 x, y;
53};
207 54
208 if (!block[x][y].index) 55// minimum size, but must be a power of two
209 return; 56#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
210 57
211 /* ax, ay are coordinates as indexed into the look window */ 58// a queue of spaces to calculate
212 ax = x - (MAP_CLIENT_X - op->contr->ns->mapx) / 2; 59static point queue [QUEUE_LENGTH];
213 ay = y - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2; 60static int q1, q2; // queue start, end
214
215 /* If the converted coordinates are outside the viewable
216 * area for the client, return now.
217 */
218 if (ax < 0 || ay < 0 || ax >= op->contr->ns->mapx || ay >= op->contr->ns->mapy)
219 return;
220
221#if 0
222 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
223 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
224#endif
225
226 /* If this space is already blocked, prune the processing - presumably
227 * whatever has set this space to be blocked has done the work and already
228 * done the dependency chain.
229 */
230 if (op->contr->blocked_los[ax][ay] == LOS_BLOCKED)
231 return;
232
233 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
234 set_wall (op, x, y);
235}
236 61
237/* 62/*
238 * Clears/initialises the los-array associated to the player 63 * Clears/initialises the los-array associated to the player
239 * controlling the object. 64 * controlling the object.
240 */ 65 */
241
242void 66void
243clear_los (player *pl) 67player::clear_los (sint8 value)
244{ 68{
245 /* This is safer than using the ns->mapx, mapy because 69 memset (los, value, sizeof (los));
246 * we index the blocked_los as a 2 way array, so clearing
247 * the first z spaces may not not cover the spaces we are
248 * actually going to use
249 */
250 memset (pl->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
251} 70}
252 71
253/* 72// enqueue a single mapspace, but only if it hasn't
254 * expand_sight goes through the array of what the given player is 73// been enqueued yet.
255 * able to see, and expands the visible area a bit, so the player will,
256 * to a certain degree, be able to see into corners.
257 * This is somewhat suboptimal, would be better to improve the formula.
258 */
259static void 74static void
260expand_sight (object *op) 75enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
261{ 76{
262 for (int x = 1; x < op->contr->ns->mapx - 1; x++) /* loop over inner squares */ 77 sint8 x = LOS_X0 + dx;
263 for (int y = 1; y < op->contr->ns->mapy - 1; y++) 78 sint8 y = LOS_Y0 + dy;
264 if (!op->contr->blocked_los[x][y] && 79
265 !(get_map_flags (op->map, NULL, 80 if (x < 0 || x >= MAP_CLIENT_X) return;
266 op->x - op->contr->ns->mapx / 2 + x, 81 if (y < 0 || y >= MAP_CLIENT_Y) return;
267 op->y - op->contr->ns->mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))) 82
83 los_info &l = los[x][y];
84
85 l.flags |= flags;
86
87 if (l.queued)
88 return;
89
90 l.queued = 1;
91
92 queue[q1].x = dx;
93 queue[q1].y = dy;
94
95 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
96}
97
98// run the los algorithm
99// this is a variant of a spiral los algorithm taken from
100// http://www.geocities.com/temerra/los_rays.html
101// which has been simplified and changed considerably, but
102// still is basically the same algorithm.
103static void
104do_los (object *op)
105{
106 player *pl = op->contr;
107
108 int max_radius = max (pl->ns->mapx, pl->ns->mapy) / 2;
109
110 memset (los, 0, sizeof (los));
111
112 q1 = 0; q2 = 0; // initialise queue, not strictly required
113 enqueue (0, 0); // enqueue center
114
115 // treat the origin specially
116 los[LOS_X0][LOS_Y0].visible = 1;
117 pl->los[LOS_X0][LOS_Y0] = 0;
118
119 // loop over all enqueued points until the queue is empty
120 // the order in which this is done ensures that we
121 // never touch a mapspace whose input spaces we haven't checked
122 // yet.
123 while (q1 != q2)
124 {
125 sint8 dx = queue[q2].x;
126 sint8 dy = queue[q2].y;
127
128 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
129
130 sint8 x = LOS_X0 + dx;
131 sint8 y = LOS_Y0 + dy;
132
133 //int distance = idistance (dx, dy); if (distance > max_radius) continue;//D
134 int distance = 0;//D
135
136 los_info &l = los[x][y];
137
138 if (expect_true (l.flags & (LOS_XI | LOS_YI)))
139 {
140 l.culled = 1;
141
142 // check contributing spaces, first horizontal
143 if (expect_true (l.flags & LOS_XI))
268 { 144 {
269 for (int i = 1; i <= 8; i += 1) 145 los_info *xi = &los[x - sign (dx)][y];
270 { /* mark all directions */
271 int dx = x + freearr_x[i];
272 int dy = y + freearr_y[i];
273 146
274 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */ 147 // don't cull unless obscured
275 op->contr->blocked_los[dx][dy] = -1; 148 l.culled &= !xi->visible;
149
150 /* merge input space */
151 if (expect_false (xi->xo || xi->yo))
152 {
153 // The X input can provide two main pieces of information:
154 // 1. Progressive X obscurity.
155 // 2. Recessive Y obscurity.
156
157 // Progressive X obscurity, favouring recessive input angle
158 if (xi->xe > 0 && l.xo == 0)
159 {
160 l.xe = xi->xe - xi->yo;
161 l.ye = xi->ye + xi->yo;
162 l.xo = xi->xo;
163 l.yo = xi->yo;
164 }
165
166 // Recessive Y obscurity
167 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
168 {
169 l.ye = xi->yo + xi->ye;
170 l.xe = xi->xe - xi->yo;
171 l.xo = xi->xo;
172 l.yo = xi->yo;
173 }
174 }
276 } 175 }
176
177 // check contributing spaces, last vertical, identical structure
178 if (expect_true (l.flags & LOS_YI))
179 {
180 los_info *yi = &los[x][y - sign (dy)];
181
182 // don't cull unless obscured
183 l.culled &= !yi->visible;
184
185 /* merge input space */
186 if (expect_false (yi->yo || yi->xo))
187 {
188 // The Y input can provide two main pieces of information:
189 // 1. Progressive Y obscurity.
190 // 2. Recessive X obscurity.
191
192 // Progressive Y obscurity, favouring recessive input angle
193 if (yi->ye > 0 && l.yo == 0)
194 {
195 l.ye = yi->ye - yi->xo;
196 l.xe = yi->xe + yi->xo;
197 l.yo = yi->yo;
198 l.xo = yi->xo;
199 }
200
201 // Recessive X obscurity
202 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
203 {
204 l.xe = yi->xo + yi->xe;
205 l.ye = yi->ye - yi->xo;
206 l.yo = yi->yo;
207 l.xo = yi->xo;
208 }
209 }
210 }
211
212 // check whether this space blocks the view
213 maptile *m = op->map;
214 sint16 nx = op->x + dx;
215 sint16 ny = op->y + dy;
216
217 if (expect_true (!xy_normalise (m, nx, ny))
218 || expect_false (m->at (nx, ny).flags () & P_BLOCKSVIEW))
219 {
220 l.xo = l.xe = abs (dx);
221 l.yo = l.ye = abs (dy);
222
223 // we obscure dependents, but might be visible
224 // copy the los from the square towards the player,
225 // so outward diagonal corners are lit.
226 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
227 l.visible = false;
228 }
229 else
230 {
231 // we are not blocked, so calculate visibility, by checking
232 // whether we are inside or outside the shadow
233 l.visible = (l.xe <= 0 || l.xe > l.xo)
234 && (l.ye <= 0 || l.ye > l.yo);
235
236 pl->los[x][y] = l.culled ? LOS_BLOCKED
237 : l.visible ? max (0, 2 - max_radius + distance)
238 : 3;
239 }
240
241 }
242
243 // Expands by the unit length in each component's current direction.
244 // If a component has no direction, then it is expanded in both of its
245 // positive and negative directions.
246 if (!l.culled)
277 } 247 {
278 248 if (dx >= 0) enqueue (dx + 1, dy, LOS_XI);
279 expand_lighted_sight (op); 249 if (dx <= 0) enqueue (dx - 1, dy, LOS_XI);
280 250 if (dy >= 0) enqueue (dx, dy + 1, LOS_YI);
281 /* clear mark squares */ 251 if (dy <= 0) enqueue (dx, dy - 1, LOS_YI);
282 for (int x = 0; x < op->contr->ns->mapx; x++) 252 }
283 for (int y = 0; y < op->contr->ns->mapy; y++) 253 }
284 if (op->contr->blocked_los[x][y] < 0)
285 op->contr->blocked_los[x][y] = 0;
286} 254}
287 255
288/* returns true if op carries one or more lights 256/* returns true if op carries one or more lights
289 * This is a trivial function now days, but it used to 257 * This is a trivial function now days, but it used to
290 * be a bit longer. Probably better for callers to just 258 * be a bit longer. Probably better for callers to just
299 267
300 return 0; 268 return 0;
301} 269}
302 270
303/* radius, distance => lightness adjust */ 271/* radius, distance => lightness adjust */
304static sint8 darkness[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1]; 272static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
273static sint8 vision_atten[MAX_DARKNESS + 1][MAX_DARKNESS * 3 / 2 + 1];
305 274
306static struct darkness_init 275static struct los_init
307{ 276{
308 darkness_init () 277 los_init ()
309 { 278 {
279 /* for lights */
310 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius) 280 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
311 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance) 281 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
312 { 282 {
313 // max intensity 283 // max intensity
314 int intensity = min (LOS_MAX, abs (radius) + 1); 284 int intensity = min (LOS_MAX, abs (radius) + 1);
315 285
316 // actual intensity 286 // actual intensity
317 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0)); 287 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
318 288
319 darkness [radius + MAX_LIGHT_RADIUS][distance] = radius < 0 289 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
320 ? min (3, intensity) 290 ? min (3, intensity)
321 : LOS_MAX - intensity; 291 : LOS_MAX - intensity;
322 } 292 }
293
294 /* for general vision */
295 for (int radius = 0; radius <= MAX_DARKNESS; ++radius)
296 for (int distance = 0; distance <= MAX_DARKNESS * 3 / 2; ++distance)
297 {
298 vision_atten [radius][distance] = distance <= radius ? 3 : 4;
299 }
323 } 300 }
324} darkness_init; 301} los_init;
325 302
326sint8 303sint8
327los_brighten (sint8 b, sint8 l) 304los_brighten (sint8 b, sint8 l)
328{ 305{
329 return b == LOS_BLOCKED ? b : min (b, l); 306 return b == LOS_BLOCKED ? b : min (b, l);
335 return max (b, l); 312 return max (b, l);
336} 313}
337 314
338template<sint8 change_it (sint8, sint8)> 315template<sint8 change_it (sint8, sint8)>
339static void 316static void
340apply_light (object *op, int basex, int basey, int light, const sint8 *darkness_table) 317apply_light (object *op, int dx, int dy, int light, const sint8 *atten_table)
341{ 318{
342 // min or max the ciruclar area around basex, basey 319 // min or max the circular area around basex, basey
343 player *pl = op->contr; 320 player *pl = op->contr;
344 321
322 dx += LOS_X0;
323 dy += LOS_Y0;
324
325 int hx = op->contr->ns->mapx / 2;
326 int hy = op->contr->ns->mapy / 2;
327
345 int ax0 = max (0, basex - light); 328 int ax0 = max (LOS_X0 - hx, dx - light);
346 int ay0 = max (0, basey - light); 329 int ay0 = max (LOS_Y0 - hy, dy - light);
347 int ax1 = min (basex + light, pl->ns->mapx - 1); 330 int ax1 = min (dx + light, LOS_X0 + hx);
348 int ay1 = min (basey + light, pl->ns->mapy - 1); 331 int ay1 = min (dy + light, LOS_Y0 + hy);
349 332
350 for (int ax = ax0; ax <= ax1; ax++) 333 for (int ax = ax0; ax <= ax1; ax++)
351 for (int ay = ay0; ay <= ay1; ay++) 334 for (int ay = ay0; ay <= ay1; ay++)
352 pl->blocked_los[ax][ay] = 335 pl->los[ax][ay] =
353 change_it (pl->blocked_los[ax][ay], darkness_table [idistance (ax - basex, ay - basey)]); 336 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
354} 337}
355 338
356/* add light, by finding all (non-null) nearby light sources, then 339/* add light, by finding all (non-null) nearby light sources, then
357 * mark those squares specially. 340 * mark those squares specially.
358 */ 341 */
359static void 342static void
360expand_lighted_sight (object *op) 343apply_lights (object *op)
361{ 344{
362 int darklevel, mflags, light, x1, y1; 345 int darklevel, mflags, light, x1, y1;
363 maptile *m = op->map; 346 maptile *m = op->map;
364 sint16 nx, ny; 347 sint16 nx, ny;
365 348
366 darklevel = m->darkness; 349 darklevel = m->darklevel ();
367 350
368 /* If the player can see in the dark, lower the darklevel for him */ 351 /* If the player can see in the dark, lower the darklevel for him */
369 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK)) 352 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK))
370 darklevel -= LOS_MAX / 2; 353 darklevel -= 2;
371 354
372 /* Do a sanity check. If not valid, some code below may do odd 355 /* Do a sanity check. If not valid, some code below may do odd
373 * things. 356 * things.
374 */ 357 */
375 if (darklevel > MAX_DARKNESS) 358 if (darklevel > MAX_DARKNESS)
391 if (darklevel < 1) 374 if (darklevel < 1)
392 pass2 = 1; 375 pass2 = 1;
393 else 376 else
394 { 377 {
395 /* first, make everything totally dark */ 378 /* first, make everything totally dark */
396 for (int x = 0; x < op->contr->ns->mapx; x++) 379 for (int dx = -half_x; dx <= half_x; dx++)
397 for (int y = 0; y < op->contr->ns->mapy; y++) 380 for (int dy = -half_x; dy <= half_y; dy++)
398 if (op->contr->blocked_los[x][y] != LOS_BLOCKED) 381 if (op->contr->los[dx + LOS_X0][dy + LOS_Y0] != LOS_BLOCKED)
399 op->contr->blocked_los[x][y] = LOS_MAX; 382 op->contr->los[dx + LOS_X0][dy + LOS_Y0] = LOS_MAX;
400 383
401 /* 384 /*
402 * Only process the area of interest. 385 * Only process the area of interest.
403 * the basex, basey values represent the position in the op->contr->blocked_los 386 * the basex, basey values represent the position in the op->contr->los
404 * array. Its easier to just increment them here (and start with the right 387 * array. Its easier to just increment them here (and start with the right
405 * value) than to recalculate them down below. 388 * value) than to recalculate them down below.
406 */ 389 */
407 for (int x = min_x, basex = -MAX_LIGHT_RADIUS; x <= max_x; x++, basex++) 390 for (int x = min_x; x <= max_x; x++)
408 for (int y = min_y, basey = -MAX_LIGHT_RADIUS; y <= max_y; y++, basey++) 391 for (int y = min_y; y <= max_y; y++)
409 { 392 {
410 maptile *m = op->map; 393 maptile *m = op->map;
411 sint16 nx = x; 394 sint16 nx = x;
412 sint16 ny = y; 395 sint16 ny = y;
413 396
420 403
421 if (expect_false (light)) 404 if (expect_false (light))
422 if (light < 0) 405 if (light < 0)
423 pass2 = 1; 406 pass2 = 1;
424 else 407 else
425 apply_light<los_brighten> (op, basex, basey, light, darkness [light + MAX_LIGHT_RADIUS]); 408 apply_light<los_brighten> (op, x - op->x, y - op->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
426 } 409 }
427 410
428 /* grant some vision to the player, based on the darklevel */ 411 /* grant some vision to the player, based on the darklevel */
429 /* for outdoor maps, ensure some mininum visibility radius */
430 { 412 {
431 int light = clamp (MAX_DARKNESS - darklevel, op->map->outdoor ? 2 : 0, MAX_LIGHT_RADIUS); 413 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_DARKNESS);
432 414
433 apply_light<los_brighten> (op, half_x, half_y, light, darkness [light + MAX_LIGHT_RADIUS]); 415 apply_light<los_brighten> (op, 0, 0, light, vision_atten [light]);
434 } 416 }
435 } 417 }
436 418
437 // possibly do 2nd pass for rare negative glow radii 419 // possibly do 2nd pass for rare negative glow radii
438 // for effect, those are always considered to be stronger than anything else 420 // for effect, those are always considered to be stronger than anything else
439 // but they can't darken a place completely 421 // but they can't darken a place completely
440 if (pass2) 422 if (pass2)
441 for (int x = min_x, basex = -MAX_LIGHT_RADIUS; x <= max_x; x++, basex++) 423 for (int x = min_x; x <= max_x; x++)
442 for (int y = min_y, basey = -MAX_LIGHT_RADIUS; y <= max_y; y++, basey++) 424 for (int y = min_y; y <= max_y; y++)
443 { 425 {
444 maptile *m = op->map; 426 maptile *m = op->map;
445 sint16 nx = x; 427 sint16 nx = x;
446 sint16 ny = y; 428 sint16 ny = y;
447 429
451 mapspace &ms = m->at (nx, ny); 433 mapspace &ms = m->at (nx, ny);
452 ms.update (); 434 ms.update ();
453 sint8 light = ms.light; 435 sint8 light = ms.light;
454 436
455 if (expect_false (light < 0)) 437 if (expect_false (light < 0))
456 apply_light<los_darken> (op, basex, basey, -light, darkness [light + MAX_LIGHT_RADIUS]); 438 apply_light<los_darken> (op, x - op->x, y - op->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
457 } 439 }
458} 440}
459 441
460/* blinded_sight() - sets all viewable squares to blocked except 442/* blinded_sight() - sets all viewable squares to blocked except
461 * for the one the central one that the player occupies. A little 443 * for the one the central one that the player occupies. A little
463 * really need for any reasonable game play. 445 * really need for any reasonable game play.
464 */ 446 */
465static void 447static void
466blinded_sight (object *op) 448blinded_sight (object *op)
467{ 449{
468 int x, y; 450 op->contr->los[LOS_X0][LOS_Y0] = 1;
469
470 for (x = 0; x < op->contr->ns->mapx; x++)
471 for (y = 0; y < op->contr->ns->mapy; y++)
472 op->contr->blocked_los[x][y] = LOS_BLOCKED;
473
474 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = 0;
475} 451}
476 452
477/* 453/*
478 * update_los() recalculates the array which specifies what is 454 * update_los() recalculates the array which specifies what is
479 * visible for the given player-object. 455 * visible for the given player-object.
480 */ 456 */
481void 457void
482update_los (object *op) 458update_los (object *op)
483{ 459{
484 int dx = op->contr->ns->mapx / 2, dy = op->contr->ns->mapy / 2, x, y;
485
486 if (QUERY_FLAG (op, FLAG_REMOVED)) 460 if (QUERY_FLAG (op, FLAG_REMOVED))
487 return; 461 return;
488 462
489 clear_los (op->contr); 463 op->contr->clear_los ();
490 464
491 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ ) 465 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ )
492 return; 466 memset (op->contr->los, 0, sizeof (op->contr->los));
493
494 /* For larger maps, this is more efficient than the old way which
495 * used the chaining of the block array. Since many space views could
496 * be blocked by different spaces in front, this mean that a lot of spaces
497 * could be examined multile times, as each path would be looked at.
498 */
499 for (x = (MAP_CLIENT_X - op->contr->ns->mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->ns->mapx) / 2 + 1; x++)
500 for (y = (MAP_CLIENT_Y - op->contr->ns->mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->ns->mapy) / 2 + 1; y++)
501 check_wall (op, x, y);
502
503 /* do the los of the player. 3 (potential) cases */
504 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */ 467 else if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
505 blinded_sight (op); 468 blinded_sight (op);
506 else 469 else
507 expand_sight (op); 470 {
471 do_los (op);
472 apply_lights (op);
473 }
508 474
509 //TODO: no range-checking whatsoever :(
510 if (QUERY_FLAG (op, FLAG_XRAYS)) 475 if (QUERY_FLAG (op, FLAG_XRAYS))
511 for (int x = -2; x <= 2; x++) 476 for (int dx = -2; dx <= 2; dx++)
512 for (int y = -2; y <= 2; y++) 477 for (int dy = -2; dy <= 2; dy++)
513 op->contr->blocked_los[dx + x][dy + y] = 0; 478 min_it (op->contr->los[dx + LOS_X0][dy + LOS_X0], 1);
514} 479}
515 480
516/* update all_map_los is like update_all_los below, 481/* update all_map_los is like update_all_los below,
517 * but updates everyone on the map, no matter where they 482 * but updates everyone on the map, no matter where they
518 * are. This generally should not be used, as a per 483 * are. This generally should not be used, as a per
525 * change_map_light function 490 * change_map_light function
526 */ 491 */
527void 492void
528update_all_map_los (maptile *map) 493update_all_map_los (maptile *map)
529{ 494{
530 for_all_players (pl) 495 for_all_players_on_map (pl, map)
531 if (pl->ob && pl->ob->map == map)
532 pl->do_los = 1; 496 pl->do_los = 1;
533} 497}
534 498
535/* 499/*
536 * This function makes sure that update_los() will be called for all 500 * This function makes sure that update_los() will be called for all
537 * players on the given map within the next frame. 501 * players on the given map within the next frame.
545 * map is the map that changed, x and y are the coordinates. 509 * map is the map that changed, x and y are the coordinates.
546 */ 510 */
547void 511void
548update_all_los (const maptile *map, int x, int y) 512update_all_los (const maptile *map, int x, int y)
549{ 513{
514 map->at (x, y).invalidate ();
515
550 for_all_players (pl) 516 for_all_players (pl)
551 { 517 {
552 /* Player should not have a null map, but do this 518 /* Player should not have a null map, but do this
553 * check as a safety 519 * check as a safety
554 */ 520 */
606 pl->do_los = 1; 572 pl->do_los = 1;
607 } 573 }
608 } 574 }
609} 575}
610 576
577static const int season_timechange[5][HOURS_PER_DAY] = {
578 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
579 { 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1},
580 { 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0},
581 { 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0},
582 { 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0},
583 { 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0}
584};
585
586void
587maptile::set_darkness_map ()
588{
589 timeofday_t tod;
590
591 if (!outdoor)
592 return;
593
594 get_tod (&tod);
595 darkness = 0;
596
597 for (int i = HOURS_PER_DAY / 2; i < HOURS_PER_DAY; i++)
598 change_map_light (season_timechange[tod.season][i]);
599
600 for (int i = 0; i <= tod.hour; i++)
601 change_map_light (season_timechange[tod.season][i]);
602}
603
611/* 604/*
612 * Debug-routine which dumps the array which specifies the visible 605 * Compute the darkness level for all maps in the game. Requires the
613 * area of a player. Triggered by the z key in DM mode. 606 * time of day as an argument.
607 */
608
609static void
610dawn_to_dusk (const timeofday_t * tod)
611{
612 /* If the light level isn't changing, no reason to do all
613 * the work below.
614 */ 614 */
615void 615 if (season_timechange[tod->season][tod->hour] == 0)
616print_los (object *op) 616 return;
617{
618 int x, y;
619 char buf[50], buf2[10];
620 617
621 strcpy (buf, " "); 618 maptile::change_all_map_light (season_timechange[tod->season][tod->hour]);
619}
622 620
623 for (x = 0; x < op->contr->ns->mapx; x++) 621void
624 { 622adjust_daylight ()
625 sprintf (buf2, "%2d", x); 623{
626 strcat (buf, buf2); 624 timeofday_t tod;
627 }
628 625
629 new_draw_info (NDI_UNIQUE, 0, op, buf); 626 get_tod (&tod);
630 627 dawn_to_dusk (&tod);
631 for (y = 0; y < op->contr->ns->mapy; y++)
632 {
633 sprintf (buf, "%2d:", y);
634
635 for (x = 0; x < op->contr->ns->mapx; x++)
636 {
637 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]);
638 strcat (buf, buf2);
639 }
640
641 new_draw_info (NDI_UNIQUE, 0, op, buf);
642 }
643} 628}
644 629
645/* 630/*
646 * make_sure_seen: The object is supposed to be visible through walls, thus 631 * make_sure_seen: The object is supposed to be visible through walls, thus
647 * check if any players are nearby, and edit their LOS array. 632 * check if any players are nearby, and edit their LOS array.
648 */ 633 */
649
650void 634void
651make_sure_seen (const object *op) 635make_sure_seen (const object *op)
652{ 636{
653 for_all_players (pl) 637 for_all_players (pl)
654 if (pl->ob->map == op->map && 638 if (pl->ob->map == op->map &&
655 pl->ob->y - pl->ns->mapy / 2 <= op->y && 639 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
656 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x) 640 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
657 pl->blocked_los[pl->ns->mapx / 2 + op->x - pl->ob->x][pl->ns->mapy / 2 + op->y - pl->ob->y] = 0; 641 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_X0] = 0;
658} 642}
659 643
660/* 644/*
661 * make_sure_not_seen: The object which is supposed to be visible through 645 * make_sure_not_seen: The object which is supposed to be visible through
662 * walls has just been removed from the map, so update the los of any 646 * walls has just been removed from the map, so update the los of any
663 * players within its range 647 * players within its range
664 */ 648 */
665
666void 649void
667make_sure_not_seen (const object *op) 650make_sure_not_seen (const object *op)
668{ 651{
669 for_all_players (pl) 652 for_all_players (pl)
670 if (pl->ob->map == op->map && 653 if (pl->ob->map == op->map &&

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines