ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.40 by root, Fri Dec 19 17:52:50 2008 UTC vs.
Revision 1.48 by root, Tue Dec 23 06:58:23 2008 UTC

22 */ 22 */
23 23
24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */ 24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
25 25
26#include <global.h> 26#include <global.h>
27#include <math.h> 27#include <cmath>
28
29/* Distance must be less than this for the object to be blocked.
30 * An object is 1.0 wide, so if set to 0.5, it means the object
31 * that blocks half the view (0.0 is complete block) will
32 * block view in our tables.
33 * .4 or less lets you see through walls. .5 is about right.
34 */
35#define SPACE_BLOCK 0.5
36
37typedef struct blstr
38{
39 int x[4], y[4];
40 int index;
41} blocks;
42
43// 31/32 == a speed hack
44// we would like to use 32 for speed, but the code loops endlessly
45// then, reason not yet identified, so only make the array use 32,
46// not the define's.
47blocks block[MAP_CLIENT_X][MAP_CLIENT_Y == 31 ? 32 : MAP_CLIENT_Y];
48 28
49static void expand_lighted_sight (object *op); 29static void expand_lighted_sight (object *op);
50 30
51/* 31enum {
52 * Used to initialise the array used by the LOS routines. 32 LOS_XI = 0x01,
53 * What this sets if that x,y blocks the view of bx,by 33 LOS_YI = 0x02,
54 * This then sets up a relation - for example, something 34};
55 * at 5,4 blocks view at 5,3 which blocks view at 5,2
56 * etc. So when we check 5,4 and find it block, we have
57 * the data to know that 5,3 and 5,2 and 5,1 should also
58 * be blocked.
59 */
60 35
61static void 36struct los_info
62set_block (int x, int y, int bx, int by)
63{ 37{
64 int index = block[x][y].index, i; 38 sint8 xo, yo; // obscure angle
39 sint8 xe, ye; // angle deviation
40 uint8 culled; // culled from "tree"
41 uint8 queued; // already queued
42 uint8 visible;
43 uint8 flags; // LOS_XI/YI
44};
65 45
66 /* Due to flipping, we may get duplicates - better safe than sorry. 46// temporary storage for the los algorithm,
67 */ 47// one los_info for each lightable map space
68 for (i = 0; i < index; i++) 48static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
69 {
70 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
71 return;
72 }
73 49
74 block[x][y].x[index] = bx; 50struct point
75 block[x][y].y[index] = by;
76 block[x][y].index++;
77#ifdef LOS_DEBUG
78 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
79#endif
80}
81
82/*
83 * initialises the array used by the LOS routines.
84 */
85
86/* since we are only doing the upper left quadrant, only
87 * these spaces could possibly get blocked, since these
88 * are the only ones further out that are still possibly in the
89 * sightline.
90 */
91void
92init_block (void)
93{ 51{
94 static int block_x[3] = { -1, -1, 0 },
95 block_y[3] = { -1, 0, -1 };
96
97 for (int x = 0; x < MAP_CLIENT_X; x++)
98 for (int y = 0; y < MAP_CLIENT_Y; y++)
99 block[x][y].index = 0;
100
101 /* The table should be symmetric, so only do the upper left
102 * quadrant - makes the processing easier.
103 */
104 for (int x = 1; x <= MAP_CLIENT_X / 2; x++)
105 {
106 for (int y = 1; y <= MAP_CLIENT_Y / 2; y++)
107 {
108 for (int i = 0; i < 3; i++)
109 {
110 int dx = x + block_x[i];
111 int dy = y + block_y[i];
112
113 /* center space never blocks */
114 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
115 continue;
116
117 /* If its a straight line, its blocked */
118 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
119 {
120 /* For simplicity, we mirror the coordinates to block the other
121 * quadrants.
122 */
123 set_block (x, y, dx, dy);
124 if (x == MAP_CLIENT_X / 2)
125 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
126 else if (y == MAP_CLIENT_Y / 2)
127 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
128 }
129 else
130 {
131 float d1, r, s, l;
132
133 /* We use the algorithm that found out how close the point
134 * (x,y) is to the line from dx,dy to the center of the viewable
135 * area. l is the distance from x,y to the line.
136 * r is more a curiosity - it lets us know what direction (left/right)
137 * the line is off
138 */
139
140 d1 = (powf (MAP_CLIENT_X / 2 - dx, 2.f) + powf (MAP_CLIENT_Y / 2 - dy, 2.f));
141 r = ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
142 s = ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
143 l = fabs (sqrtf (d1) * s);
144
145 if (l <= SPACE_BLOCK)
146 {
147 /* For simplicity, we mirror the coordinates to block the other
148 * quadrants.
149 */
150 set_block (x, y, dx, dy);
151 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
152 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
153 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
154 }
155 }
156 }
157 }
158 }
159}
160
161/*
162 * Used to initialise the array used by the LOS routines.
163 * x,y are indexes into the blocked[][] array.
164 * This recursively sets the blocked line of sight view.
165 * From the blocked[][] array, we know for example
166 * that if some particular space is blocked, it blocks
167 * the view of the spaces 'behind' it, and those blocked
168 * spaces behind it may block other spaces, etc.
169 * In this way, the chain of visibility is set.
170 */
171static void
172set_wall (object *op, int x, int y)
173{
174 for (int i = 0; i < block[x][y].index; i++)
175 {
176 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
177
178 /* ax, ay are the values as adjusted to be in the
179 * socket look structure.
180 */
181 ax = dx - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
182 ay = dy - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
183
184 if (ax < 0 || ax >= op->contr->ns->mapx || ay < 0 || ay >= op->contr->ns->mapy)
185 continue;
186#if 0
187 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
188#endif
189 /* we need to adjust to the fact that the socket
190 * code wants the los to start from the 0,0
191 * and not be relative to middle of los array.
192 */
193 op->contr->blocked_los[ax][ay] = LOS_BLOCKED;
194 set_wall (op, dx, dy);
195 }
196}
197
198/*
199 * Used to initialise the array used by the LOS routines.
200 * op is the object, x and y values based on MAP_CLIENT_X and Y.
201 * this is because they index the blocked[][] arrays.
202 */
203static void
204check_wall (object *op, int x, int y)
205{
206 int ax, ay; 52 sint8 x, y;
53};
207 54
208 if (!block[x][y].index) 55// minimum size, but must be a power of two
209 return; 56#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
210 57
211 /* ax, ay are coordinates as indexed into the look window */ 58// a queue of spaces to calculate
212 ax = x - (MAP_CLIENT_X - op->contr->ns->mapx) / 2; 59static point queue [QUEUE_LENGTH];
213 ay = y - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2; 60static int q1, q2; // queue start, end
214
215 /* If the converted coordinates are outside the viewable
216 * area for the client, return now.
217 */
218 if (ax < 0 || ay < 0 || ax >= op->contr->ns->mapx || ay >= op->contr->ns->mapy)
219 return;
220
221#if 0
222 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
223 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
224#endif
225
226 /* If this space is already blocked, prune the processing - presumably
227 * whatever has set this space to be blocked has done the work and already
228 * done the dependency chain.
229 */
230 if (op->contr->blocked_los[ax][ay] == LOS_BLOCKED)
231 return;
232
233 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
234 set_wall (op, x, y);
235}
236 61
237/* 62/*
238 * Clears/initialises the los-array associated to the player 63 * Clears/initialises the los-array associated to the player
239 * controlling the object. 64 * controlling the object.
240 */ 65 */
241
242void 66void
243clear_los (player *pl) 67player::clear_los (sint8 value)
244{ 68{
245 /* This is safer than using the ns->mapx, mapy because 69 memset (los, value, sizeof (los));
246 * we index the blocked_los as a 2 way array, so clearing
247 * the first z spaces may not not cover the spaces we are
248 * actually going to use
249 */
250 memset (pl->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
251} 70}
252 71
253/* 72// enqueue a single mapspace, but only if it hasn't
254 * expand_sight goes through the array of what the given player is 73// been enqueued yet.
255 * able to see, and expands the visible area a bit, so the player will,
256 * to a certain degree, be able to see into corners.
257 * This is somewhat suboptimal, would be better to improve the formula.
258 */
259static void 74static void
260expand_sight (object *op) 75enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
261{ 76{
262 for (int x = 1; x < op->contr->ns->mapx - 1; x++) /* loop over inner squares */ 77 sint8 x = LOS_X0 + dx;
263 for (int y = 1; y < op->contr->ns->mapy - 1; y++) 78 sint8 y = LOS_Y0 + dy;
264 if (!op->contr->blocked_los[x][y] && 79
265 !(get_map_flags (op->map, NULL, 80 if (x < 0 || x >= MAP_CLIENT_X) return;
266 op->x - op->contr->ns->mapx / 2 + x, 81 if (y < 0 || y >= MAP_CLIENT_Y) return;
267 op->y - op->contr->ns->mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))) 82
83 los_info &l = los[x][y];
84
85 l.flags |= flags;
86
87 if (l.queued)
88 return;
89
90 l.queued = 1;
91
92 queue[q1].x = dx;
93 queue[q1].y = dy;
94
95 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
96}
97
98// run the los algorithm
99// this is a variant of a spiral los algorithm taken from
100// http://www.geocities.com/temerra/los_rays.html
101// which has been simplified and changed considerably, but
102// still is basically the same algorithm.
103static void
104calculate_los (player *pl)
105{
106 int max_radius = max (pl->ns->mapx, pl->ns->mapy) / 2;
107
108 memset (los, 0, sizeof (los));
109
110 q1 = 0; q2 = 0; // initialise queue, not strictly required
111 enqueue (0, 0); // enqueue center
112
113 // treat the origin specially
114 los[LOS_X0][LOS_Y0].visible = 1;
115 pl->los[LOS_X0][LOS_Y0] = 0;
116
117 // loop over all enqueued points until the queue is empty
118 // the order in which this is done ensures that we
119 // never touch a mapspace whose input spaces we haven't checked
120 // yet.
121 while (q1 != q2)
122 {
123 sint8 dx = queue[q2].x;
124 sint8 dy = queue[q2].y;
125
126 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
127
128 sint8 x = LOS_X0 + dx;
129 sint8 y = LOS_Y0 + dy;
130
131 //int distance = idistance (dx, dy); if (distance > max_radius) continue;//D
132 int distance = 0;//D
133
134 los_info &l = los[x][y];
135
136 if (expect_true (l.flags & (LOS_XI | LOS_YI)))
137 {
138 l.culled = 1;
139
140 // check contributing spaces, first horizontal
141 if (expect_true (l.flags & LOS_XI))
268 { 142 {
269 for (int i = 1; i <= 8; i += 1) 143 los_info *xi = &los[x - sign (dx)][y];
270 { /* mark all directions */
271 int dx = x + freearr_x[i];
272 int dy = y + freearr_y[i];
273 144
274 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */ 145 // don't cull unless obscured
275 op->contr->blocked_los[dx][dy] = -1; 146 l.culled &= !xi->visible;
147
148 /* merge input space */
149 if (expect_false (xi->xo || xi->yo))
150 {
151 // The X input can provide two main pieces of information:
152 // 1. Progressive X obscurity.
153 // 2. Recessive Y obscurity.
154
155 // Progressive X obscurity, favouring recessive input angle
156 if (xi->xe > 0 && l.xo == 0)
157 {
158 l.xe = xi->xe - xi->yo;
159 l.ye = xi->ye + xi->yo;
160 l.xo = xi->xo;
161 l.yo = xi->yo;
162 }
163
164 // Recessive Y obscurity
165 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
166 {
167 l.ye = xi->yo + xi->ye;
168 l.xe = xi->xe - xi->yo;
169 l.xo = xi->xo;
170 l.yo = xi->yo;
171 }
172 }
276 } 173 }
174
175 // check contributing spaces, last vertical, identical structure
176 if (expect_true (l.flags & LOS_YI))
177 {
178 los_info *yi = &los[x][y - sign (dy)];
179
180 // don't cull unless obscured
181 l.culled &= !yi->visible;
182
183 /* merge input space */
184 if (expect_false (yi->yo || yi->xo))
185 {
186 // The Y input can provide two main pieces of information:
187 // 1. Progressive Y obscurity.
188 // 2. Recessive X obscurity.
189
190 // Progressive Y obscurity, favouring recessive input angle
191 if (yi->ye > 0 && l.yo == 0)
192 {
193 l.ye = yi->ye - yi->xo;
194 l.xe = yi->xe + yi->xo;
195 l.yo = yi->yo;
196 l.xo = yi->xo;
197 }
198
199 // Recessive X obscurity
200 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
201 {
202 l.xe = yi->xo + yi->xe;
203 l.ye = yi->ye - yi->xo;
204 l.yo = yi->yo;
205 l.xo = yi->xo;
206 }
207 }
208 }
209
210 // check whether this space blocks the view
211 maptile *m = pl->observe->map;
212 sint16 nx = pl->observe->x + dx;
213 sint16 ny = pl->observe->y + dy;
214
215 if (expect_true (!xy_normalise (m, nx, ny))
216 || expect_false (m->at (nx, ny).flags () & P_BLOCKSVIEW))
217 {
218 l.xo = l.xe = abs (dx);
219 l.yo = l.ye = abs (dy);
220
221 // we obscure dependents, but might be visible
222 // copy the los from the square towards the player,
223 // so outward diagonal corners are lit.
224 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
225 l.visible = false;
226 }
227 else
228 {
229 // we are not blocked, so calculate visibility, by checking
230 // whether we are inside or outside the shadow
231 l.visible = (l.xe <= 0 || l.xe > l.xo)
232 && (l.ye <= 0 || l.ye > l.yo);
233
234 pl->los[x][y] = l.culled ? LOS_BLOCKED
235 : l.visible ? max (0, 2 - max_radius + distance)
236 : 3;
237 }
238
239 }
240
241 // Expands by the unit length in each component's current direction.
242 // If a component has no direction, then it is expanded in both of its
243 // positive and negative directions.
244 if (!l.culled)
277 } 245 {
278 246 if (dx >= 0) enqueue (dx + 1, dy, LOS_XI);
279 expand_lighted_sight (op); 247 if (dx <= 0) enqueue (dx - 1, dy, LOS_XI);
280 248 if (dy >= 0) enqueue (dx, dy + 1, LOS_YI);
281 /* clear mark squares */ 249 if (dy <= 0) enqueue (dx, dy - 1, LOS_YI);
282 for (int x = 0; x < op->contr->ns->mapx; x++) 250 }
283 for (int y = 0; y < op->contr->ns->mapy; y++) 251 }
284 if (op->contr->blocked_los[x][y] < 0)
285 op->contr->blocked_los[x][y] = 0;
286} 252}
287 253
288/* returns true if op carries one or more lights 254/* returns true if op carries one or more lights
289 * This is a trivial function now days, but it used to 255 * This is a trivial function now days, but it used to
290 * be a bit longer. Probably better for callers to just 256 * be a bit longer. Probably better for callers to just
299 265
300 return 0; 266 return 0;
301} 267}
302 268
303/* radius, distance => lightness adjust */ 269/* radius, distance => lightness adjust */
304static sint8 darkness[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1]; 270static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
271static sint8 vision_atten[MAX_DARKNESS + 1][MAX_DARKNESS * 3 / 2 + 1];
305 272
306static struct darkness_init 273static struct los_init
307{ 274{
308 darkness_init () 275 los_init ()
309 { 276 {
277 /* for lights */
310 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius) 278 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
311 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance) 279 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
312 { 280 {
313 // max intensity 281 // max intensity
314 int intensity = min (LOS_MAX, abs (radius) + 1); 282 int intensity = min (LOS_MAX, abs (radius) + 1);
315 283
316 // actual intensity 284 // actual intensity
317 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0)); 285 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
318 286
319 darkness [radius + MAX_LIGHT_RADIUS][distance] = radius < 0 287 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
320 ? min (3, intensity) 288 ? min (3, intensity)
321 : LOS_MAX - intensity; 289 : LOS_MAX - intensity;
322 } 290 }
291
292 /* for general vision */
293 for (int radius = 0; radius <= MAX_DARKNESS; ++radius)
294 for (int distance = 0; distance <= MAX_DARKNESS * 3 / 2; ++distance)
295 {
296 vision_atten [radius][distance] = distance <= radius ? 3 : 4;
297 }
323 } 298 }
324} darkness_init; 299} los_init;
325 300
326sint8 301sint8
327los_brighten (sint8 b, sint8 l) 302los_brighten (sint8 b, sint8 l)
328{ 303{
329 return b == LOS_BLOCKED ? b : min (b, l); 304 return b == LOS_BLOCKED ? b : min (b, l);
335 return max (b, l); 310 return max (b, l);
336} 311}
337 312
338template<sint8 change_it (sint8, sint8)> 313template<sint8 change_it (sint8, sint8)>
339static void 314static void
340apply_light (object *op, int basex, int basey, int light, const sint8 *darkness_table) 315apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
341{ 316{
342 // min or max the ciruclar area around basex, basey 317 // min or max the circular area around basex, basey
343 player *pl = op->contr; 318 dx += LOS_X0;
319 dy += LOS_Y0;
344 320
321 int hx = pl->ns->mapx / 2;
322 int hy = pl->ns->mapy / 2;
323
345 int ax0 = max (0, basex - light); 324 int ax0 = max (LOS_X0 - hx, dx - light);
346 int ay0 = max (0, basey - light); 325 int ay0 = max (LOS_Y0 - hy, dy - light);
347 int ax1 = min (basex + light, pl->ns->mapx - 1); 326 int ax1 = min (dx + light, LOS_X0 + hx);
348 int ay1 = min (basey + light, pl->ns->mapy - 1); 327 int ay1 = min (dy + light, LOS_Y0 + hy);
349 328
350 for (int ax = ax0; ax <= ax1; ax++) 329 for (int ax = ax0; ax <= ax1; ax++)
351 for (int ay = ay0; ay <= ay1; ay++) 330 for (int ay = ay0; ay <= ay1; ay++)
352 pl->blocked_los[ax][ay] = 331 pl->los[ax][ay] =
353 change_it (pl->blocked_los[ax][ay], darkness_table [idistance (ax - basex, ay - basey)]); 332 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
354} 333}
355 334
356/* add light, by finding all (non-null) nearby light sources, then 335/* add light, by finding all (non-null) nearby light sources, then
357 * mark those squares specially. 336 * mark those squares specially.
358 */ 337 */
359static void 338static void
360expand_lighted_sight (object *op) 339apply_lights (player *pl)
361{ 340{
362 int darklevel, mflags, light, x1, y1; 341 object *op = pl->observe;
363 maptile *m = op->map; 342 int darklevel = op->map->darklevel ();
364 sint16 nx, ny;
365
366 darklevel = m->darkness;
367 343
368 /* If the player can see in the dark, lower the darklevel for him */ 344 /* If the player can see in the dark, lower the darklevel for him */
369 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK)) 345 if (op->flag [FLAG_SEE_IN_DARK])
370 darklevel -= LOS_MAX / 2; 346 darklevel = max (0, darklevel - 2);
371 347
372 /* Do a sanity check. If not valid, some code below may do odd
373 * things.
374 */
375 if (darklevel > MAX_DARKNESS)
376 {
377 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel);
378 darklevel = MAX_DARKNESS;
379 }
380
381 int half_x = op->contr->ns->mapx / 2; 348 int half_x = pl->ns->mapx / 2;
382 int half_y = op->contr->ns->mapy / 2; 349 int half_y = pl->ns->mapy / 2;
383 350
384 int min_x = op->x - half_x - MAX_LIGHT_RADIUS; 351 int min_x = op->x - half_x - MAX_LIGHT_RADIUS;
385 int min_y = op->y - half_y - MAX_LIGHT_RADIUS; 352 int min_y = op->y - half_y - MAX_LIGHT_RADIUS;
386 int max_x = op->x + half_x + MAX_LIGHT_RADIUS; 353 int max_x = op->x + half_x + MAX_LIGHT_RADIUS;
387 int max_y = op->y + half_y + MAX_LIGHT_RADIUS; 354 int max_y = op->y + half_y + MAX_LIGHT_RADIUS;
388 355
389 int pass2 = 0; // negative lights have an extra pass 356 int pass2 = 0; // negative lights have an extra pass
390 357
391 if (darklevel < 1) 358 if (!darklevel)
392 pass2 = 1; 359 pass2 = 1;
393 else 360 else
394 { 361 {
395 /* first, make everything totally dark */ 362 /* first, make everything totally dark */
396 for (int x = 0; x < op->contr->ns->mapx; x++) 363 for (int dx = -half_x; dx <= half_x; dx++)
397 for (int y = 0; y < op->contr->ns->mapy; y++) 364 for (int dy = -half_x; dy <= half_y; dy++)
398 if (op->contr->blocked_los[x][y] != LOS_BLOCKED) 365 if (pl->los[dx + LOS_X0][dy + LOS_Y0] != LOS_BLOCKED)
399 op->contr->blocked_los[x][y] = LOS_MAX; 366 pl->los[dx + LOS_X0][dy + LOS_Y0] = LOS_MAX;
400 367
401 /* 368 /*
402 * Only process the area of interest. 369 * Only process the area of interest.
403 * the basex, basey values represent the position in the op->contr->blocked_los 370 * the basex, basey values represent the position in the op->contr->los
404 * array. Its easier to just increment them here (and start with the right 371 * array. Its easier to just increment them here (and start with the right
405 * value) than to recalculate them down below. 372 * value) than to recalculate them down below.
406 */ 373 */
407 for (int x = min_x, basex = -MAX_LIGHT_RADIUS; x <= max_x; x++, basex++) 374 for (int x = min_x; x <= max_x; x++)
408 for (int y = min_y, basey = -MAX_LIGHT_RADIUS; y <= max_y; y++, basey++) 375 for (int y = min_y; y <= max_y; y++)
409 { 376 {
410 maptile *m = op->map; 377 maptile *m = pl->observe->map;
411 sint16 nx = x; 378 sint16 nx = x;
412 sint16 ny = y; 379 sint16 ny = y;
413 380
414 if (!xy_normalise (m, nx, ny)) 381 if (!xy_normalise (m, nx, ny))
415 continue; 382 continue;
420 387
421 if (expect_false (light)) 388 if (expect_false (light))
422 if (light < 0) 389 if (light < 0)
423 pass2 = 1; 390 pass2 = 1;
424 else 391 else
425 apply_light<los_brighten> (op, basex, basey, light, darkness [light + MAX_LIGHT_RADIUS]); 392 apply_light<los_brighten> (pl, x - op->x, y - op->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
426 } 393 }
427 394
428 /* grant some vision to the player, based on the darklevel */ 395 /* grant some vision to the player, based on the darklevel */
429 /* for outdoor maps, ensure some mininum visibility radius */
430 { 396 {
431 int light = clamp (MAX_DARKNESS - darklevel, op->map->outdoor ? 2 : 0, MAX_LIGHT_RADIUS); 397 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_DARKNESS);
432 398
433 apply_light<los_brighten> (op, half_x, half_y, light, darkness [light + MAX_LIGHT_RADIUS]); 399 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
434 } 400 }
435 } 401 }
436 402
437 // possibly do 2nd pass for rare negative glow radii 403 // possibly do 2nd pass for rare negative glow radii
438 // for effect, those are always considered to be stronger than anything else 404 // for effect, those are always considered to be stronger than anything else
439 // but they can't darken a place completely 405 // but they can't darken a place completely
440 if (pass2) 406 if (pass2)
441 for (int x = min_x, basex = -MAX_LIGHT_RADIUS; x <= max_x; x++, basex++) 407 for (int x = min_x; x <= max_x; x++)
442 for (int y = min_y, basey = -MAX_LIGHT_RADIUS; y <= max_y; y++, basey++) 408 for (int y = min_y; y <= max_y; y++)
443 { 409 {
444 maptile *m = op->map; 410 maptile *m = pl->observe->map;
445 sint16 nx = x; 411 sint16 nx = x;
446 sint16 ny = y; 412 sint16 ny = y;
447 413
448 if (!xy_normalise (m, nx, ny)) 414 if (!xy_normalise (m, nx, ny))
449 continue; 415 continue;
451 mapspace &ms = m->at (nx, ny); 417 mapspace &ms = m->at (nx, ny);
452 ms.update (); 418 ms.update ();
453 sint8 light = ms.light; 419 sint8 light = ms.light;
454 420
455 if (expect_false (light < 0)) 421 if (expect_false (light < 0))
456 apply_light<los_darken> (op, basex, basey, -light, darkness [light + MAX_LIGHT_RADIUS]); 422 apply_light<los_darken> (pl, x - op->x, y - op->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
457 } 423 }
458} 424}
459 425
460/* blinded_sight() - sets all viewable squares to blocked except 426/* blinded_sight() - sets all viewable squares to blocked except
461 * for the one the central one that the player occupies. A little 427 * for the one the central one that the player occupies. A little
462 * odd that you can see yourself (and what your standing on), but 428 * odd that you can see yourself (and what your standing on), but
463 * really need for any reasonable game play. 429 * really need for any reasonable game play.
464 */ 430 */
465static void 431static void
466blinded_sight (object *op) 432blinded_sight (player *pl)
467{ 433{
468 int x, y; 434 pl->los[LOS_X0][LOS_Y0] = 1;
469
470 for (x = 0; x < op->contr->ns->mapx; x++)
471 for (y = 0; y < op->contr->ns->mapy; y++)
472 op->contr->blocked_los[x][y] = LOS_BLOCKED;
473
474 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = 0;
475} 435}
476 436
477/* 437/*
478 * update_los() recalculates the array which specifies what is 438 * update_los() recalculates the array which specifies what is
479 * visible for the given player-object. 439 * visible for the given player-object.
480 */ 440 */
481void 441void
482update_los (object *op) 442player::update_los ()
483{ 443{
484 int dx = op->contr->ns->mapx / 2, dy = op->contr->ns->mapy / 2, x, y; 444 if (ob->flag [FLAG_REMOVED])//D really needed?
485
486 if (QUERY_FLAG (op, FLAG_REMOVED))
487 return; 445 return;
488 446
489 clear_los (op->contr); 447 clear_los ();
490 448
491 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ ) 449 if (ob->flag [FLAG_WIZLOOK])
492 return; 450 memset (los, 0, sizeof (los));
493 451 else if (observe->flag [FLAG_BLIND]) /* player is blind */
494 /* For larger maps, this is more efficient than the old way which
495 * used the chaining of the block array. Since many space views could
496 * be blocked by different spaces in front, this mean that a lot of spaces
497 * could be examined multile times, as each path would be looked at.
498 */
499 for (x = (MAP_CLIENT_X - op->contr->ns->mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->ns->mapx) / 2 + 1; x++)
500 for (y = (MAP_CLIENT_Y - op->contr->ns->mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->ns->mapy) / 2 + 1; y++)
501 check_wall (op, x, y);
502
503 /* do the los of the player. 3 (potential) cases */
504 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
505 blinded_sight (op); 452 blinded_sight (this);
506 else 453 else
507 expand_sight (op); 454 {
455 calculate_los (this);
456 apply_lights (this);
457 }
508 458
509 //TODO: no range-checking whatsoever :( 459 if (observe->flag [FLAG_XRAYS])
510 if (QUERY_FLAG (op, FLAG_XRAYS))
511 for (int x = -2; x <= 2; x++) 460 for (int dx = -2; dx <= 2; dx++)
512 for (int y = -2; y <= 2; y++) 461 for (int dy = -2; dy <= 2; dy++)
513 op->contr->blocked_los[dx + x][dy + y] = 0; 462 min_it (los[dx + LOS_X0][dy + LOS_X0], 1);
514} 463}
515 464
516/* update all_map_los is like update_all_los below, 465/* update all_map_los is like update_all_los below,
517 * but updates everyone on the map, no matter where they 466 * but updates everyone on the map, no matter where they
518 * are. This generally should not be used, as a per 467 * are. This generally should not be used, as a per
525 * change_map_light function 474 * change_map_light function
526 */ 475 */
527void 476void
528update_all_map_los (maptile *map) 477update_all_map_los (maptile *map)
529{ 478{
530 for_all_players (pl) 479 for_all_players_on_map (pl, map)
531 if (pl->ob && pl->ob->map == map)
532 pl->do_los = 1; 480 pl->do_los = 1;
533} 481}
534 482
535/* 483/*
536 * This function makes sure that update_los() will be called for all 484 * This function makes sure that update_los() will be called for all
537 * players on the given map within the next frame. 485 * players on the given map within the next frame.
545 * map is the map that changed, x and y are the coordinates. 493 * map is the map that changed, x and y are the coordinates.
546 */ 494 */
547void 495void
548update_all_los (const maptile *map, int x, int y) 496update_all_los (const maptile *map, int x, int y)
549{ 497{
498 map->at (x, y).invalidate ();
499
550 for_all_players (pl) 500 for_all_players (pl)
551 { 501 {
552 /* Player should not have a null map, but do this 502 /* Player should not have a null map, but do this
553 * check as a safety 503 * check as a safety
554 */ 504 */
606 pl->do_los = 1; 556 pl->do_los = 1;
607 } 557 }
608 } 558 }
609} 559}
610 560
561static const int season_darkness[5][HOURS_PER_DAY] = {
562 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
563 { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
564 { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
565 { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
566 { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
567 { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
568};
569
611/* 570/*
612 * Debug-routine which dumps the array which specifies the visible 571 * Tell players the time and compute the darkness level for all maps in the game.
613 * area of a player. Triggered by the z key in DM mode. 572 * MUST be called exactly once per hour.
614 */ 573 */
615void 574void
616print_los (object *op) 575maptile::adjust_daylight ()
617{ 576{
618 int x, y; 577 timeofday_t tod;
619 char buf[50], buf2[10];
620 578
621 strcpy (buf, " "); 579 get_tod (&tod);
622 580
623 for (x = 0; x < op->contr->ns->mapx; x++) 581 // log the time to log-1 every hour, and to chat every day
624 { 582 {
625 sprintf (buf2, "%2d", x); 583 char todbuf[512];
626 strcat (buf, buf2); 584
585 format_tod (todbuf, sizeof (todbuf), &tod);
586
587 for_all_players (pl)
588 pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
627 } 589 }
628 590
629 new_draw_info (NDI_UNIQUE, 0, op, buf); 591 /* If the light level isn't changing, no reason to do all
592 * the work below.
593 */
594 sint8 new_darkness = season_darkness[tod.season][tod.hour];
630 595
631 for (y = 0; y < op->contr->ns->mapy; y++) 596 if (new_darkness == maptile::outdoor_darkness)
632 { 597 return;
633 sprintf (buf, "%2d:", y);
634 598
635 for (x = 0; x < op->contr->ns->mapx; x++) 599 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
636 { 600 new_darkness > maptile::outdoor_darkness
637 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]); 601 ? "It becomes darker."
638 strcat (buf, buf2); 602 : "It becomes brighter.");
639 }
640 603
641 new_draw_info (NDI_UNIQUE, 0, op, buf); 604 maptile::outdoor_darkness = new_darkness;
642 } 605
606 // we simply update the los for all players, which is unnecessarily
607 // costly, but should do for the moment.
608 for_all_players (pl)
609 pl->do_los = 1;
643} 610}
644 611
645/* 612/*
646 * make_sure_seen: The object is supposed to be visible through walls, thus 613 * make_sure_seen: The object is supposed to be visible through walls, thus
647 * check if any players are nearby, and edit their LOS array. 614 * check if any players are nearby, and edit their LOS array.
648 */ 615 */
649
650void 616void
651make_sure_seen (const object *op) 617make_sure_seen (const object *op)
652{ 618{
653 for_all_players (pl) 619 for_all_players (pl)
654 if (pl->ob->map == op->map && 620 if (pl->ob->map == op->map &&
655 pl->ob->y - pl->ns->mapy / 2 <= op->y && 621 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
656 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x) 622 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
657 pl->blocked_los[pl->ns->mapx / 2 + op->x - pl->ob->x][pl->ns->mapy / 2 + op->y - pl->ob->y] = 0; 623 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_X0] = 0;
658} 624}
659 625
660/* 626/*
661 * make_sure_not_seen: The object which is supposed to be visible through 627 * make_sure_not_seen: The object which is supposed to be visible through
662 * walls has just been removed from the map, so update the los of any 628 * walls has just been removed from the map, so update the los of any
663 * players within its range 629 * players within its range
664 */ 630 */
665
666void 631void
667make_sure_not_seen (const object *op) 632make_sure_not_seen (const object *op)
668{ 633{
669 for_all_players (pl) 634 for_all_players (pl)
670 if (pl->ob->map == op->map && 635 if (pl->ob->map == op->map &&

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines