ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.40 by root, Fri Dec 19 17:52:50 2008 UTC vs.
Revision 1.51 by root, Wed Dec 24 01:37:23 2008 UTC

19 * along with this program. If not, see <http://www.gnu.org/licenses/>. 19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 * 20 *
21 * The authors can be reached via e-mail to <support@deliantra.net> 21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */ 22 */
23 23
24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
25
26#include <global.h> 24#include <global.h>
27#include <math.h> 25#include <cmath>
28 26
29/* Distance must be less than this for the object to be blocked. 27#define SEE_IN_DARK_RADIUS 3
30 * An object is 1.0 wide, so if set to 0.5, it means the object
31 * that blocks half the view (0.0 is complete block) will
32 * block view in our tables.
33 * .4 or less lets you see through walls. .5 is about right.
34 */
35#define SPACE_BLOCK 0.5
36 28
37typedef struct blstr 29// los flags
38{ 30enum {
39 int x[4], y[4]; 31 FLG_XI = 0x01, // we have an x-parent
40 int index; 32 FLG_YI = 0x02, // we have an y-parent
41} blocks; 33 FLG_BLOCKED = 0x04, // this space blocks the view
34 FLG_QUEUED = 0x80 // already queued in queue, or border
35};
42 36
43// 31/32 == a speed hack 37struct los_info
44// we would like to use 32 for speed, but the code loops endlessly
45// then, reason not yet identified, so only make the array use 32,
46// not the define's.
47blocks block[MAP_CLIENT_X][MAP_CLIENT_Y == 31 ? 32 : MAP_CLIENT_Y];
48
49static void expand_lighted_sight (object *op);
50
51/*
52 * Used to initialise the array used by the LOS routines.
53 * What this sets if that x,y blocks the view of bx,by
54 * This then sets up a relation - for example, something
55 * at 5,4 blocks view at 5,3 which blocks view at 5,2
56 * etc. So when we check 5,4 and find it block, we have
57 * the data to know that 5,3 and 5,2 and 5,1 should also
58 * be blocked.
59 */
60
61static void
62set_block (int x, int y, int bx, int by)
63{ 38{
64 int index = block[x][y].index, i; 39 uint8 flags; // FLG_xxx
40 uint8 culled; // culled from "tree"
41 uint8 visible;
42 uint8 pad0;
65 43
66 /* Due to flipping, we may get duplicates - better safe than sorry. 44 sint8 xo, yo; // obscure angle
67 */ 45 sint8 xe, ye; // angle deviation
68 for (i = 0; i < index; i++) 46};
69 {
70 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
71 return;
72 }
73 47
74 block[x][y].x[index] = bx; 48// temporary storage for the los algorithm,
75 block[x][y].y[index] = by; 49// one los_info for each lightable map space
76 block[x][y].index++; 50static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
77#ifdef LOS_DEBUG
78 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
79#endif
80}
81 51
82/* 52struct point
83 * initialises the array used by the LOS routines.
84 */
85
86/* since we are only doing the upper left quadrant, only
87 * these spaces could possibly get blocked, since these
88 * are the only ones further out that are still possibly in the
89 * sightline.
90 */
91void
92init_block (void)
93{ 53{
94 static int block_x[3] = { -1, -1, 0 },
95 block_y[3] = { -1, 0, -1 };
96
97 for (int x = 0; x < MAP_CLIENT_X; x++)
98 for (int y = 0; y < MAP_CLIENT_Y; y++)
99 block[x][y].index = 0;
100
101 /* The table should be symmetric, so only do the upper left
102 * quadrant - makes the processing easier.
103 */
104 for (int x = 1; x <= MAP_CLIENT_X / 2; x++)
105 {
106 for (int y = 1; y <= MAP_CLIENT_Y / 2; y++)
107 {
108 for (int i = 0; i < 3; i++)
109 {
110 int dx = x + block_x[i];
111 int dy = y + block_y[i];
112
113 /* center space never blocks */
114 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
115 continue;
116
117 /* If its a straight line, its blocked */
118 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
119 {
120 /* For simplicity, we mirror the coordinates to block the other
121 * quadrants.
122 */
123 set_block (x, y, dx, dy);
124 if (x == MAP_CLIENT_X / 2)
125 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
126 else if (y == MAP_CLIENT_Y / 2)
127 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
128 }
129 else
130 {
131 float d1, r, s, l;
132
133 /* We use the algorithm that found out how close the point
134 * (x,y) is to the line from dx,dy to the center of the viewable
135 * area. l is the distance from x,y to the line.
136 * r is more a curiosity - it lets us know what direction (left/right)
137 * the line is off
138 */
139
140 d1 = (powf (MAP_CLIENT_X / 2 - dx, 2.f) + powf (MAP_CLIENT_Y / 2 - dy, 2.f));
141 r = ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
142 s = ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
143 l = fabs (sqrtf (d1) * s);
144
145 if (l <= SPACE_BLOCK)
146 {
147 /* For simplicity, we mirror the coordinates to block the other
148 * quadrants.
149 */
150 set_block (x, y, dx, dy);
151 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
152 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
153 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
154 }
155 }
156 }
157 }
158 }
159}
160
161/*
162 * Used to initialise the array used by the LOS routines.
163 * x,y are indexes into the blocked[][] array.
164 * This recursively sets the blocked line of sight view.
165 * From the blocked[][] array, we know for example
166 * that if some particular space is blocked, it blocks
167 * the view of the spaces 'behind' it, and those blocked
168 * spaces behind it may block other spaces, etc.
169 * In this way, the chain of visibility is set.
170 */
171static void
172set_wall (object *op, int x, int y)
173{
174 for (int i = 0; i < block[x][y].index; i++)
175 {
176 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
177
178 /* ax, ay are the values as adjusted to be in the
179 * socket look structure.
180 */
181 ax = dx - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
182 ay = dy - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
183
184 if (ax < 0 || ax >= op->contr->ns->mapx || ay < 0 || ay >= op->contr->ns->mapy)
185 continue;
186#if 0
187 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
188#endif
189 /* we need to adjust to the fact that the socket
190 * code wants the los to start from the 0,0
191 * and not be relative to middle of los array.
192 */
193 op->contr->blocked_los[ax][ay] = LOS_BLOCKED;
194 set_wall (op, dx, dy);
195 }
196}
197
198/*
199 * Used to initialise the array used by the LOS routines.
200 * op is the object, x and y values based on MAP_CLIENT_X and Y.
201 * this is because they index the blocked[][] arrays.
202 */
203static void
204check_wall (object *op, int x, int y)
205{
206 int ax, ay; 54 sint8 x, y;
55};
207 56
208 if (!block[x][y].index) 57// minimum size, but must be a power of two
209 return; 58#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
210 59
211 /* ax, ay are coordinates as indexed into the look window */ 60// a queue of spaces to calculate
212 ax = x - (MAP_CLIENT_X - op->contr->ns->mapx) / 2; 61static point queue [QUEUE_LENGTH];
213 ay = y - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2; 62static int q1, q2; // queue start, end
214
215 /* If the converted coordinates are outside the viewable
216 * area for the client, return now.
217 */
218 if (ax < 0 || ay < 0 || ax >= op->contr->ns->mapx || ay >= op->contr->ns->mapy)
219 return;
220
221#if 0
222 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
223 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
224#endif
225
226 /* If this space is already blocked, prune the processing - presumably
227 * whatever has set this space to be blocked has done the work and already
228 * done the dependency chain.
229 */
230 if (op->contr->blocked_los[ax][ay] == LOS_BLOCKED)
231 return;
232
233 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
234 set_wall (op, x, y);
235}
236 63
237/* 64/*
238 * Clears/initialises the los-array associated to the player 65 * Clears/initialises the los-array associated to the player
239 * controlling the object. 66 * controlling the object.
240 */ 67 */
241
242void 68void
243clear_los (player *pl) 69player::clear_los (sint8 value)
244{ 70{
245 /* This is safer than using the ns->mapx, mapy because 71 memset (los, value, sizeof (los));
246 * we index the blocked_los as a 2 way array, so clearing
247 * the first z spaces may not not cover the spaces we are
248 * actually going to use
249 */
250 memset (pl->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
251} 72}
252 73
253/* 74// enqueue a single mapspace, but only if it hasn't
254 * expand_sight goes through the array of what the given player is 75// been enqueued yet.
255 * able to see, and expands the visible area a bit, so the player will,
256 * to a certain degree, be able to see into corners.
257 * This is somewhat suboptimal, would be better to improve the formula.
258 */
259static void 76static void
260expand_sight (object *op) 77enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
261{ 78{
262 for (int x = 1; x < op->contr->ns->mapx - 1; x++) /* loop over inner squares */ 79 sint8 x = LOS_X0 + dx;
263 for (int y = 1; y < op->contr->ns->mapy - 1; y++) 80 sint8 y = LOS_Y0 + dy;
264 if (!op->contr->blocked_los[x][y] && 81
265 !(get_map_flags (op->map, NULL, 82 los_info &l = los[x][y];
266 op->x - op->contr->ns->mapx / 2 + x, 83
267 op->y - op->contr->ns->mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))) 84 l.flags |= flags;
85
86 if (l.flags & FLG_QUEUED)
87 return;
88
89 l.flags |= FLG_QUEUED;
90
91 queue[q1].x = dx;
92 queue[q1].y = dy;
93
94 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
95}
96
97// run the los algorithm
98// this is a variant of a spiral los algorithm taken from
99// http://www.geocities.com/temerra/los_rays.html
100// which has been simplified and changed considerably, but
101// still is basically the same algorithm.
102static void
103calculate_los (player *pl)
104{
105 {
106 // we keep one line for ourselves, for the border flag
107 // so the client area is actually MAP_CLIENT_(X|Y) - 2
108 int half_x = min (LOS_X0 - 1, pl->ns->mapx / 2);
109 int half_y = min (LOS_Y0 - 1, pl->ns->mapy / 2);
110
111 // create borders, the corners are not touched
112 for (int dx = -half_x; dx <= half_x; ++dx)
113 los [dx + LOS_X0][LOS_Y0 - (half_y + 1)].flags =
114 los [dx + LOS_X0][LOS_Y0 + (half_y + 1)].flags = FLG_QUEUED;
115
116 for (int dy = -half_y; dy <= half_y; ++dy)
117 los [LOS_X0 - (half_x + 1)][dy + LOS_Y0].flags =
118 los [LOS_X0 + (half_x + 1)][dy + LOS_Y0].flags = FLG_QUEUED;
119
120 // now reset the los area and also add blocked flags
121 // which supposedly is faster than doing it inside the
122 // spiral path algorithm below, except when very little
123 // area is visible, in which case it is slower, evening
124 // out los calculation times between large and small los maps.
125 // apply_lights also iterates over this area, maybe these
126 // two passes could be combined somehow.
127 rectangular_mapspace_iterate_begin (pl->observe, -half_x, half_x, -half_y, half_y)
128 los_info &l = los [LOS_X0 + dx][LOS_Y0 + dy];
129 l.flags = m && m->at (nx, ny).flags () & P_BLOCKSVIEW ? FLG_BLOCKED : 0;
130 rectangular_mapspace_iterate_end
131 }
132
133 q1 = 0; q2 = 0; // initialise queue, not strictly required
134 enqueue (0, 0); // enqueue center
135
136 // treat the origin specially
137 los[LOS_X0][LOS_Y0].visible = 1;
138 pl->los[LOS_X0][LOS_Y0] = 0;
139
140 // loop over all enqueued points until the queue is empty
141 // the order in which this is done ensures that we
142 // never touch a mapspace whose input spaces we haven't checked
143 // yet.
144 while (q1 != q2)
145 {
146 sint8 dx = queue[q2].x;
147 sint8 dy = queue[q2].y;
148
149 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
150
151 sint8 x = LOS_X0 + dx;
152 sint8 y = LOS_Y0 + dy;
153
154 los_info &l = los[x][y];
155
156 if (expect_true (l.flags & (FLG_XI | FLG_YI)))
157 {
158 l.culled = 1;
159 l.xo = l.yo = l.xe = l.ye = 0;
160
161 // check contributing spaces, first horizontal
162 if (expect_true (l.flags & FLG_XI))
268 { 163 {
269 for (int i = 1; i <= 8; i += 1) 164 los_info *xi = &los[x - sign (dx)][y];
270 { /* mark all directions */
271 int dx = x + freearr_x[i];
272 int dy = y + freearr_y[i];
273 165
274 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */ 166 // don't cull unless obscured
275 op->contr->blocked_los[dx][dy] = -1; 167 l.culled &= !xi->visible;
168
169 /* merge input space */
170 if (expect_false (xi->xo || xi->yo))
171 {
172 // The X input can provide two main pieces of information:
173 // 1. Progressive X obscurity.
174 // 2. Recessive Y obscurity.
175
176 // Progressive X obscurity, favouring recessive input angle
177 if (xi->xe > 0 && l.xo == 0)
178 {
179 l.xe = xi->xe - xi->yo;
180 l.ye = xi->ye + xi->yo;
181 l.xo = xi->xo;
182 l.yo = xi->yo;
183 }
184
185 // Recessive Y obscurity
186 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
187 {
188 l.ye = xi->yo + xi->ye;
189 l.xe = xi->xe - xi->yo;
190 l.xo = xi->xo;
191 l.yo = xi->yo;
192 }
193 }
276 } 194 }
195
196 // check contributing spaces, last vertical, identical structure
197 if (expect_true (l.flags & FLG_YI))
198 {
199 los_info *yi = &los[x][y - sign (dy)];
200
201 // don't cull unless obscured
202 l.culled &= !yi->visible;
203
204 /* merge input space */
205 if (expect_false (yi->yo || yi->xo))
206 {
207 // The Y input can provide two main pieces of information:
208 // 1. Progressive Y obscurity.
209 // 2. Recessive X obscurity.
210
211 // Progressive Y obscurity, favouring recessive input angle
212 if (yi->ye > 0 && l.yo == 0)
213 {
214 l.ye = yi->ye - yi->xo;
215 l.xe = yi->xe + yi->xo;
216 l.yo = yi->yo;
217 l.xo = yi->xo;
218 }
219
220 // Recessive X obscurity
221 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
222 {
223 l.xe = yi->xo + yi->xe;
224 l.ye = yi->ye - yi->xo;
225 l.yo = yi->yo;
226 l.xo = yi->xo;
227 }
228 }
229 }
230
231 if (l.flags & FLG_BLOCKED)
232 {
233 l.xo = l.xe = abs (dx);
234 l.yo = l.ye = abs (dy);
235
236 // we obscure dependents, but might be visible
237 // copy the los from the square towards the player,
238 // so outward diagonal corners are lit.
239 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
240
241 l.visible = false;
242 }
243 else
244 {
245 // we are not blocked, so calculate visibility, by checking
246 // whether we are inside or outside the shadow
247 l.visible = (l.xe <= 0 || l.xe > l.xo)
248 && (l.ye <= 0 || l.ye > l.yo);
249
250 pl->los[x][y] = l.culled ? LOS_BLOCKED
251 : l.visible ? 0
252 : 3;
253 }
254
277 } 255 }
278 256
279 expand_lighted_sight (op); 257 // Expands by the unit length in each component's current direction.
280 258 // If a component has no direction, then it is expanded in both of its
281 /* clear mark squares */ 259 // positive and negative directions.
282 for (int x = 0; x < op->contr->ns->mapx; x++) 260 if (!l.culled)
283 for (int y = 0; y < op->contr->ns->mapy; y++) 261 {
284 if (op->contr->blocked_los[x][y] < 0) 262 if (dx >= 0) enqueue (dx + 1, dy, FLG_XI);
285 op->contr->blocked_los[x][y] = 0; 263 if (dx <= 0) enqueue (dx - 1, dy, FLG_XI);
264 if (dy >= 0) enqueue (dx, dy + 1, FLG_YI);
265 if (dy <= 0) enqueue (dx, dy - 1, FLG_YI);
266 }
267 }
286} 268}
287 269
288/* returns true if op carries one or more lights 270/* returns true if op carries one or more lights
289 * This is a trivial function now days, but it used to 271 * This is a trivial function now days, but it used to
290 * be a bit longer. Probably better for callers to just 272 * be a bit longer. Probably better for callers to just
299 281
300 return 0; 282 return 0;
301} 283}
302 284
303/* radius, distance => lightness adjust */ 285/* radius, distance => lightness adjust */
304static sint8 darkness[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1]; 286static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
287static sint8 vision_atten[MAX_DARKNESS + SEE_IN_DARK_RADIUS + 1][(MAX_DARKNESS + SEE_IN_DARK_RADIUS) * 3 / 2 + 1];
305 288
306static struct darkness_init 289static struct los_init
307{ 290{
308 darkness_init () 291 los_init ()
309 { 292 {
293 assert (("QUEUE_LENGTH, MAP_CLIENT_X and MAP_CLIENT_Y *must* be powers of two",
294 !(QUEUE_LENGTH & (QUEUE_LENGTH - 1))));
295
296 /* for lights */
310 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius) 297 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
311 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance) 298 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
312 { 299 {
313 // max intensity 300 // max intensity
314 int intensity = min (LOS_MAX, abs (radius) + 1); 301 int intensity = min (LOS_MAX, abs (radius) + 1);
315 302
316 // actual intensity 303 // actual intensity
317 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0)); 304 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
318 305
319 darkness [radius + MAX_LIGHT_RADIUS][distance] = radius < 0 306 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
320 ? min (3, intensity) 307 ? min (3, intensity)
321 : LOS_MAX - intensity; 308 : LOS_MAX - intensity;
322 } 309 }
310
311 /* for general vision */
312 for (int radius = 0; radius <= MAX_DARKNESS + SEE_IN_DARK_RADIUS; ++radius)
313 for (int distance = 0; distance <= (MAX_DARKNESS + SEE_IN_DARK_RADIUS) * 3 / 2; ++distance)
314 vision_atten [radius][distance] = distance <= radius ? 3 : 4;
323 } 315 }
324} darkness_init; 316} los_init;
325 317
326sint8 318sint8
327los_brighten (sint8 b, sint8 l) 319los_brighten (sint8 b, sint8 l)
328{ 320{
329 return b == LOS_BLOCKED ? b : min (b, l); 321 return b == LOS_BLOCKED ? b : min (b, l);
335 return max (b, l); 327 return max (b, l);
336} 328}
337 329
338template<sint8 change_it (sint8, sint8)> 330template<sint8 change_it (sint8, sint8)>
339static void 331static void
340apply_light (object *op, int basex, int basey, int light, const sint8 *darkness_table) 332apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
341{ 333{
342 // min or max the ciruclar area around basex, basey 334 // min or max the circular area around basex, basey
343 player *pl = op->contr; 335 dx += LOS_X0;
336 dy += LOS_Y0;
344 337
338 int hx = pl->ns->mapx / 2;
339 int hy = pl->ns->mapy / 2;
340
345 int ax0 = max (0, basex - light); 341 int ax0 = max (LOS_X0 - hx, dx - light);
346 int ay0 = max (0, basey - light); 342 int ay0 = max (LOS_Y0 - hy, dy - light);
347 int ax1 = min (basex + light, pl->ns->mapx - 1); 343 int ax1 = min (dx + light, LOS_X0 + hx);
348 int ay1 = min (basey + light, pl->ns->mapy - 1); 344 int ay1 = min (dy + light, LOS_Y0 + hy);
349 345
350 for (int ax = ax0; ax <= ax1; ax++) 346 for (int ax = ax0; ax <= ax1; ax++)
351 for (int ay = ay0; ay <= ay1; ay++) 347 for (int ay = ay0; ay <= ay1; ay++)
352 pl->blocked_los[ax][ay] = 348 pl->los[ax][ay] =
353 change_it (pl->blocked_los[ax][ay], darkness_table [idistance (ax - basex, ay - basey)]); 349 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
354} 350}
355 351
356/* add light, by finding all (non-null) nearby light sources, then 352/* add light, by finding all (non-null) nearby light sources, then
357 * mark those squares specially. 353 * mark those squares specially.
358 */ 354 */
359static void 355static void
360expand_lighted_sight (object *op) 356apply_lights (player *pl)
361{ 357{
362 int darklevel, mflags, light, x1, y1; 358 object *op = pl->observe;
363 maptile *m = op->map; 359 int darklevel = op->map->darklevel ();
364 sint16 nx, ny;
365 360
366 darklevel = m->darkness;
367
368 /* If the player can see in the dark, lower the darklevel for him */
369 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK))
370 darklevel -= LOS_MAX / 2;
371
372 /* Do a sanity check. If not valid, some code below may do odd
373 * things.
374 */
375 if (darklevel > MAX_DARKNESS)
376 {
377 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel);
378 darklevel = MAX_DARKNESS;
379 }
380
381 int half_x = op->contr->ns->mapx / 2; 361 int half_x = pl->ns->mapx / 2;
382 int half_y = op->contr->ns->mapy / 2; 362 int half_y = pl->ns->mapy / 2;
383
384 int min_x = op->x - half_x - MAX_LIGHT_RADIUS;
385 int min_y = op->y - half_y - MAX_LIGHT_RADIUS;
386 int max_x = op->x + half_x + MAX_LIGHT_RADIUS;
387 int max_y = op->y + half_y + MAX_LIGHT_RADIUS;
388 363
389 int pass2 = 0; // negative lights have an extra pass 364 int pass2 = 0; // negative lights have an extra pass
390 365
391 if (darklevel < 1) 366 if (!darklevel)
392 pass2 = 1; 367 pass2 = 1;
393 else 368 else
394 { 369 {
395 /* first, make everything totally dark */ 370 /* first, make everything totally dark */
396 for (int x = 0; x < op->contr->ns->mapx; x++) 371 for (int dx = -half_x; dx <= half_x; dx++)
397 for (int y = 0; y < op->contr->ns->mapy; y++) 372 for (int dy = -half_x; dy <= half_y; dy++)
398 if (op->contr->blocked_los[x][y] != LOS_BLOCKED) 373 max_it (pl->los[dx + LOS_X0][dy + LOS_Y0], LOS_MAX);
399 op->contr->blocked_los[x][y] = LOS_MAX;
400 374
401 /* 375 /*
402 * Only process the area of interest. 376 * Only process the area of interest.
403 * the basex, basey values represent the position in the op->contr->blocked_los 377 * the basex, basey values represent the position in the op->contr->los
404 * array. Its easier to just increment them here (and start with the right 378 * array. Its easier to just increment them here (and start with the right
405 * value) than to recalculate them down below. 379 * value) than to recalculate them down below.
406 */ 380 */
407 for (int x = min_x, basex = -MAX_LIGHT_RADIUS; x <= max_x; x++, basex++) 381 rectangular_mapspace_iterate_begin (pl->observe, -half_x - MAX_LIGHT_RADIUS, half_x + MAX_LIGHT_RADIUS, -half_y - MAX_LIGHT_RADIUS, half_y + MAX_LIGHT_RADIUS)
408 for (int y = min_y, basey = -MAX_LIGHT_RADIUS; y <= max_y; y++, basey++) 382 if (m)
409 { 383 {
410 maptile *m = op->map;
411 sint16 nx = x;
412 sint16 ny = y;
413
414 if (!xy_normalise (m, nx, ny))
415 continue;
416
417 mapspace &ms = m->at (nx, ny); 384 mapspace &ms = m->at (nx, ny);
418 ms.update (); 385 ms.update ();
419 sint8 light = ms.light; 386 sint8 light = ms.light;
420 387
421 if (expect_false (light)) 388 if (expect_false (light))
422 if (light < 0) 389 if (light < 0)
423 pass2 = 1; 390 pass2 = 1;
424 else 391 else
425 apply_light<los_brighten> (op, basex, basey, light, darkness [light + MAX_LIGHT_RADIUS]); 392 apply_light<los_brighten> (pl, dx, dy, light, light_atten [light + MAX_LIGHT_RADIUS]);
426 } 393 }
394 rectangular_mapspace_iterate_end
427 395
428 /* grant some vision to the player, based on the darklevel */ 396 /* grant some vision to the player, based on the darklevel */
429 /* for outdoor maps, ensure some mininum visibility radius */
430 { 397 {
431 int light = clamp (MAX_DARKNESS - darklevel, op->map->outdoor ? 2 : 0, MAX_LIGHT_RADIUS); 398 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_DARKNESS);
432 399
433 apply_light<los_brighten> (op, half_x, half_y, light, darkness [light + MAX_LIGHT_RADIUS]); 400 /* If the player can see in the dark, lower the darklevel for him */
401 if (op->flag [FLAG_SEE_IN_DARK])
402 light += SEE_IN_DARK_RADIUS;
403
404 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
434 } 405 }
435 } 406 }
436 407
437 // possibly do 2nd pass for rare negative glow radii 408 // possibly do 2nd pass for rare negative glow radii
438 // for effect, those are always considered to be stronger than anything else 409 // for effect, those are always considered to be stronger than anything else
439 // but they can't darken a place completely 410 // but they can't darken a place completely
440 if (pass2) 411 if (pass2)
441 for (int x = min_x, basex = -MAX_LIGHT_RADIUS; x <= max_x; x++, basex++) 412 rectangular_mapspace_iterate_begin (pl->observe, -half_x - MAX_LIGHT_RADIUS, half_x + MAX_LIGHT_RADIUS, -half_y - MAX_LIGHT_RADIUS, half_y + MAX_LIGHT_RADIUS)
442 for (int y = min_y, basey = -MAX_LIGHT_RADIUS; y <= max_y; y++, basey++) 413 if (m)
443 { 414 {
444 maptile *m = op->map;
445 sint16 nx = x;
446 sint16 ny = y;
447
448 if (!xy_normalise (m, nx, ny))
449 continue;
450
451 mapspace &ms = m->at (nx, ny); 415 mapspace &ms = m->at (nx, ny);
452 ms.update (); 416 ms.update ();
453 sint8 light = ms.light; 417 sint8 light = ms.light;
454 418
455 if (expect_false (light < 0)) 419 if (expect_false (light < 0))
456 apply_light<los_darken> (op, basex, basey, -light, darkness [light + MAX_LIGHT_RADIUS]); 420 apply_light<los_darken> (pl, dx, dy, -light, light_atten [light + MAX_LIGHT_RADIUS]);
457 } 421 }
422 rectangular_mapspace_iterate_end
458} 423}
459 424
460/* blinded_sight() - sets all viewable squares to blocked except 425/* blinded_sight() - sets all viewable squares to blocked except
461 * for the one the central one that the player occupies. A little 426 * for the one the central one that the player occupies. A little
462 * odd that you can see yourself (and what your standing on), but 427 * odd that you can see yourself (and what your standing on), but
463 * really need for any reasonable game play. 428 * really need for any reasonable game play.
464 */ 429 */
465static void 430static void
466blinded_sight (object *op) 431blinded_sight (player *pl)
467{ 432{
468 int x, y; 433 pl->los[LOS_X0][LOS_Y0] = 1;
469
470 for (x = 0; x < op->contr->ns->mapx; x++)
471 for (y = 0; y < op->contr->ns->mapy; y++)
472 op->contr->blocked_los[x][y] = LOS_BLOCKED;
473
474 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = 0;
475} 434}
476 435
477/* 436/*
478 * update_los() recalculates the array which specifies what is 437 * update_los() recalculates the array which specifies what is
479 * visible for the given player-object. 438 * visible for the given player-object.
480 */ 439 */
481void 440void
482update_los (object *op) 441player::update_los ()
483{ 442{
484 int dx = op->contr->ns->mapx / 2, dy = op->contr->ns->mapy / 2, x, y; 443 if (ob->flag [FLAG_REMOVED])//D really needed?
485
486 if (QUERY_FLAG (op, FLAG_REMOVED))
487 return; 444 return;
488 445
489 clear_los (op->contr); 446 if (ob->flag [FLAG_WIZLOOK])
490 447 clear_los (0);
491 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ ) 448 else if (observe->flag [FLAG_BLIND]) /* player is blind */
492 return; 449 {
493 450 clear_los ();
494 /* For larger maps, this is more efficient than the old way which
495 * used the chaining of the block array. Since many space views could
496 * be blocked by different spaces in front, this mean that a lot of spaces
497 * could be examined multile times, as each path would be looked at.
498 */
499 for (x = (MAP_CLIENT_X - op->contr->ns->mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->ns->mapx) / 2 + 1; x++)
500 for (y = (MAP_CLIENT_Y - op->contr->ns->mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->ns->mapy) / 2 + 1; y++)
501 check_wall (op, x, y);
502
503 /* do the los of the player. 3 (potential) cases */
504 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
505 blinded_sight (op); 451 blinded_sight (this);
452 }
506 else 453 else
507 expand_sight (op); 454 {
455 clear_los ();
456 calculate_los (this);
457 apply_lights (this);
458 }
508 459
509 //TODO: no range-checking whatsoever :( 460 if (observe->flag [FLAG_XRAYS])
510 if (QUERY_FLAG (op, FLAG_XRAYS))
511 for (int x = -2; x <= 2; x++) 461 for (int dx = -2; dx <= 2; dx++)
512 for (int y = -2; y <= 2; y++) 462 for (int dy = -2; dy <= 2; dy++)
513 op->contr->blocked_los[dx + x][dy + y] = 0; 463 min_it (los[dx + LOS_X0][dy + LOS_Y0], 1);
514} 464}
515 465
516/* update all_map_los is like update_all_los below, 466/* update all_map_los is like update_all_los below,
517 * but updates everyone on the map, no matter where they 467 * but updates everyone on the map, no matter where they
518 * are. This generally should not be used, as a per 468 * are. This generally should not be used, as a per
525 * change_map_light function 475 * change_map_light function
526 */ 476 */
527void 477void
528update_all_map_los (maptile *map) 478update_all_map_los (maptile *map)
529{ 479{
530 for_all_players (pl) 480 for_all_players_on_map (pl, map)
531 if (pl->ob && pl->ob->map == map)
532 pl->do_los = 1; 481 pl->do_los = 1;
533} 482}
534 483
535/* 484/*
536 * This function makes sure that update_los() will be called for all 485 * This function makes sure that update_los() will be called for all
537 * players on the given map within the next frame. 486 * players on the given map within the next frame.
545 * map is the map that changed, x and y are the coordinates. 494 * map is the map that changed, x and y are the coordinates.
546 */ 495 */
547void 496void
548update_all_los (const maptile *map, int x, int y) 497update_all_los (const maptile *map, int x, int y)
549{ 498{
499 map->at (x, y).invalidate ();
500
550 for_all_players (pl) 501 for_all_players (pl)
551 { 502 {
552 /* Player should not have a null map, but do this 503 /* Player should not have a null map, but do this
553 * check as a safety 504 * check as a safety
554 */ 505 */
606 pl->do_los = 1; 557 pl->do_los = 1;
607 } 558 }
608 } 559 }
609} 560}
610 561
562static const int season_darkness[5][HOURS_PER_DAY] = {
563 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
564 { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
565 { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
566 { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
567 { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
568 { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
569};
570
611/* 571/*
612 * Debug-routine which dumps the array which specifies the visible 572 * Tell players the time and compute the darkness level for all maps in the game.
613 * area of a player. Triggered by the z key in DM mode. 573 * MUST be called exactly once per hour.
614 */ 574 */
615void 575void
616print_los (object *op) 576maptile::adjust_daylight ()
617{ 577{
618 int x, y; 578 timeofday_t tod;
619 char buf[50], buf2[10];
620 579
621 strcpy (buf, " "); 580 get_tod (&tod);
622 581
623 for (x = 0; x < op->contr->ns->mapx; x++) 582 // log the time to log-1 every hour, and to chat every day
624 { 583 {
625 sprintf (buf2, "%2d", x); 584 char todbuf[512];
626 strcat (buf, buf2); 585
586 format_tod (todbuf, sizeof (todbuf), &tod);
587
588 for_all_players (pl)
589 pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
627 } 590 }
628 591
629 new_draw_info (NDI_UNIQUE, 0, op, buf); 592 /* If the light level isn't changing, no reason to do all
593 * the work below.
594 */
595 sint8 new_darkness = season_darkness[tod.season][tod.hour];
630 596
631 for (y = 0; y < op->contr->ns->mapy; y++) 597 if (new_darkness == maptile::outdoor_darkness)
632 { 598 return;
633 sprintf (buf, "%2d:", y);
634 599
635 for (x = 0; x < op->contr->ns->mapx; x++) 600 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
636 { 601 new_darkness > maptile::outdoor_darkness
637 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]); 602 ? "It becomes darker."
638 strcat (buf, buf2); 603 : "It becomes brighter.");
639 }
640 604
641 new_draw_info (NDI_UNIQUE, 0, op, buf); 605 maptile::outdoor_darkness = new_darkness;
642 } 606
607 // we simply update the los for all players, which is unnecessarily
608 // costly, but should do for the moment.
609 for_all_players (pl)
610 pl->do_los = 1;
643} 611}
644 612
645/* 613/*
646 * make_sure_seen: The object is supposed to be visible through walls, thus 614 * make_sure_seen: The object is supposed to be visible through walls, thus
647 * check if any players are nearby, and edit their LOS array. 615 * check if any players are nearby, and edit their LOS array.
648 */ 616 */
649
650void 617void
651make_sure_seen (const object *op) 618make_sure_seen (const object *op)
652{ 619{
653 for_all_players (pl) 620 for_all_players (pl)
654 if (pl->ob->map == op->map && 621 if (pl->ob->map == op->map &&
655 pl->ob->y - pl->ns->mapy / 2 <= op->y && 622 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
656 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x) 623 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
657 pl->blocked_los[pl->ns->mapx / 2 + op->x - pl->ob->x][pl->ns->mapy / 2 + op->y - pl->ob->y] = 0; 624 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_Y0] = 0;
658} 625}
659 626
660/* 627/*
661 * make_sure_not_seen: The object which is supposed to be visible through 628 * make_sure_not_seen: The object which is supposed to be visible through
662 * walls has just been removed from the map, so update the los of any 629 * walls has just been removed from the map, so update the los of any
663 * players within its range 630 * players within its range
664 */ 631 */
665
666void 632void
667make_sure_not_seen (const object *op) 633make_sure_not_seen (const object *op)
668{ 634{
669 for_all_players (pl) 635 for_all_players (pl)
670 if (pl->ob->map == op->map && 636 if (pl->ob->map == op->map &&

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines