ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.39 by root, Thu Dec 18 07:01:31 2008 UTC vs.
Revision 1.41 by root, Fri Dec 19 22:47:29 2008 UTC

22 */ 22 */
23 23
24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */ 24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
25 25
26#include <global.h> 26#include <global.h>
27#include <math.h> 27#include <cmath>
28
29/* Distance must be less than this for the object to be blocked.
30 * An object is 1.0 wide, so if set to 0.5, it means the object
31 * that blocks half the view (0.0 is complete block) will
32 * block view in our tables.
33 * .4 or less lets you see through walls. .5 is about right.
34 */
35#define SPACE_BLOCK 0.5
36
37typedef struct blstr
38{
39 int x[4], y[4];
40 int index;
41} blocks;
42
43// 31/32 == a speed hack
44// we would like to use 32 for speed, but the code loops endlessly
45// then, reason not yet identified, so only make the array use 32,
46// not the define's.
47blocks block[MAP_CLIENT_X][MAP_CLIENT_Y == 31 ? 32 : MAP_CLIENT_Y];
48 28
49static void expand_lighted_sight (object *op); 29static void expand_lighted_sight (object *op);
50 30
51/* 31enum {
52 * Used to initialise the array used by the LOS routines. 32 LOS_XI = 0x01,
53 * What this sets if that x,y blocks the view of bx,by 33 LOS_YI = 0x02,
54 * This then sets up a relation - for example, something 34};
55 * at 5,4 blocks view at 5,3 which blocks view at 5,2
56 * etc. So when we check 5,4 and find it block, we have
57 * the data to know that 5,3 and 5,2 and 5,1 should also
58 * be blocked.
59 */
60 35
61static void 36struct los_info
62set_block (int x, int y, int bx, int by)
63{ 37{
64 int index = block[x][y].index, i; 38 sint8 xo, yo; // obscure angle
39 sint8 xe, ye; // angle deviation
40 uint8 culled;
41 uint8 queued;
42 uint8 visible;
43 uint8 flags;
44};
65 45
66 /* Due to flipping, we may get duplicates - better safe than sorry. 46// temporary storage for the los algorithm,
67 */ 47// one los_info for each lightable map space
68 for (i = 0; i < index; i++) 48static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
69 {
70 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
71 return;
72 }
73 49
74 block[x][y].x[index] = bx; 50struct point
75 block[x][y].y[index] = by;
76 block[x][y].index++;
77#ifdef LOS_DEBUG
78 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
79#endif
80}
81
82/*
83 * initialises the array used by the LOS routines.
84 */
85
86/* since we are only doing the upper left quadrant, only
87 * these spaces could possibly get blocked, since these
88 * are the only ones further out that are still possibly in the
89 * sightline.
90 */
91void
92init_block (void)
93{ 51{
94 static int block_x[3] = { -1, -1, 0 },
95 block_y[3] = { -1, 0, -1 };
96
97 for (int x = 0; x < MAP_CLIENT_X; x++)
98 for (int y = 0; y < MAP_CLIENT_Y; y++)
99 block[x][y].index = 0;
100
101 /* The table should be symmetric, so only do the upper left
102 * quadrant - makes the processing easier.
103 */
104 for (int x = 1; x <= MAP_CLIENT_X / 2; x++)
105 {
106 for (int y = 1; y <= MAP_CLIENT_Y / 2; y++)
107 {
108 for (int i = 0; i < 3; i++)
109 {
110 int dx = x + block_x[i];
111 int dy = y + block_y[i];
112
113 /* center space never blocks */
114 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
115 continue;
116
117 /* If its a straight line, its blocked */
118 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
119 {
120 /* For simplicity, we mirror the coordinates to block the other
121 * quadrants.
122 */
123 set_block (x, y, dx, dy);
124 if (x == MAP_CLIENT_X / 2)
125 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
126 else if (y == MAP_CLIENT_Y / 2)
127 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
128 }
129 else
130 {
131 float d1, r, s, l;
132
133 /* We use the algorithm that found out how close the point
134 * (x,y) is to the line from dx,dy to the center of the viewable
135 * area. l is the distance from x,y to the line.
136 * r is more a curiosity - it lets us know what direction (left/right)
137 * the line is off
138 */
139
140 d1 = (powf (MAP_CLIENT_X / 2 - dx, 2.f) + powf (MAP_CLIENT_Y / 2 - dy, 2.f));
141 r = ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
142 s = ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
143 l = fabs (sqrtf (d1) * s);
144
145 if (l <= SPACE_BLOCK)
146 {
147 /* For simplicity, we mirror the coordinates to block the other
148 * quadrants.
149 */
150 set_block (x, y, dx, dy);
151 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
152 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
153 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
154 }
155 }
156 }
157 }
158 }
159}
160
161/*
162 * Used to initialise the array used by the LOS routines.
163 * x,y are indexes into the blocked[][] array.
164 * This recursively sets the blocked line of sight view.
165 * From the blocked[][] array, we know for example
166 * that if some particular space is blocked, it blocks
167 * the view of the spaces 'behind' it, and those blocked
168 * spaces behind it may block other spaces, etc.
169 * In this way, the chain of visibility is set.
170 */
171static void
172set_wall (object *op, int x, int y)
173{
174 for (int i = 0; i < block[x][y].index; i++)
175 {
176 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
177
178 /* ax, ay are the values as adjusted to be in the
179 * socket look structure.
180 */
181 ax = dx - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
182 ay = dy - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
183
184 if (ax < 0 || ax >= op->contr->ns->mapx || ay < 0 || ay >= op->contr->ns->mapy)
185 continue;
186#if 0
187 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
188#endif
189 /* we need to adjust to the fact that the socket
190 * code wants the los to start from the 0,0
191 * and not be relative to middle of los array.
192 */
193 op->contr->blocked_los[ax][ay] = LOS_BLOCKED;
194 set_wall (op, dx, dy);
195 }
196}
197
198/*
199 * Used to initialise the array used by the LOS routines.
200 * op is the object, x and y values based on MAP_CLIENT_X and Y.
201 * this is because they index the blocked[][] arrays.
202 */
203static void
204check_wall (object *op, int x, int y)
205{
206 int ax, ay; 52 sint8 x, y;
53};
207 54
208 if (!block[x][y].index) 55// minimum size, but must be a power of two
209 return; 56#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
210 57
211 /* ax, ay are coordinates as indexed into the look window */ 58// a queue of spaces to calculate
212 ax = x - (MAP_CLIENT_X - op->contr->ns->mapx) / 2; 59static point queue [QUEUE_LENGTH];
213 ay = y - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2; 60static int q1, q2; // queue start, end
214
215 /* If the converted coordinates are outside the viewable
216 * area for the client, return now.
217 */
218 if (ax < 0 || ay < 0 || ax >= op->contr->ns->mapx || ay >= op->contr->ns->mapy)
219 return;
220
221#if 0
222 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
223 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
224#endif
225
226 /* If this space is already blocked, prune the processing - presumably
227 * whatever has set this space to be blocked has done the work and already
228 * done the dependency chain.
229 */
230 if (op->contr->blocked_los[ax][ay] == LOS_BLOCKED)
231 return;
232
233 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
234 set_wall (op, x, y);
235}
236 61
237/* 62/*
238 * Clears/initialises the los-array associated to the player 63 * Clears/initialises the los-array associated to the player
239 * controlling the object. 64 * controlling the object.
240 */ 65 */
241
242void 66void
243clear_los (player *pl) 67clear_los (player *pl)
244{ 68{
245 /* This is safer than using the ns->mapx, mapy because 69 memset (pl->los, LOS_BLOCKED, sizeof (pl->los));
246 * we index the blocked_los as a 2 way array, so clearing
247 * the first z spaces may not not cover the spaces we are
248 * actually going to use
249 */
250 memset (pl->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
251} 70}
252 71
253/* 72// enqueue a single mapspace, but only if it hasn't
254 * expand_sight goes through the array of what the given player is 73// been enqueued yet.
255 * able to see, and expands the visible area a bit, so the player will,
256 * to a certain degree, be able to see into corners.
257 * This is somewhat suboptimal, would be better to improve the formula.
258 */
259static void 74static void
260expand_sight (object *op) 75enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
261{ 76{
262 for (int x = 1; x < op->contr->ns->mapx - 1; x++) /* loop over inner squares */ 77 sint8 x = LOS_X0 + dx;
263 for (int y = 1; y < op->contr->ns->mapy - 1; y++) 78 sint8 y = LOS_Y0 + dy;
264 if (!op->contr->blocked_los[x][y] && 79
265 !(get_map_flags (op->map, NULL, 80 if (x < 0 || x >= MAP_CLIENT_X) return;
266 op->x - op->contr->ns->mapx / 2 + x, 81 if (y < 0 || y >= MAP_CLIENT_Y) return;
267 op->y - op->contr->ns->mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))) 82
83 los_info &l = los[x][y];
84
85 l.flags |= flags;
86
87 if (l.queued)
88 return;
89
90 l.queued = 1;
91
92 queue[q1].x = dx;
93 queue[q1].y = dy;
94
95 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
96}
97
98// run the los algorithm
99// this is a variant of a spiral los algorithm taken from
100// http://www.geocities.com/temerra/los_rays.html
101// which has been simplified and changed considerably, but
102// still is basically the same algorithm.
103static void
104do_los (object *op)
105{
106 player *pl = op->contr;
107
108 int max_radius = max (pl->ns->mapx, pl->ns->mapy) / 2;
109
110 memset (los, 0, sizeof (los));
111
112 q1 = 0; q2 = 0; // initialise queue, not strictly required
113 enqueue (0, 0); // enqueue center
114
115 // treat the origin specially
116 los[LOS_X0][LOS_Y0].visible = 1;
117 pl->los[LOS_X0][LOS_Y0] = 0;
118
119 // loop over all enqueued points until the queue is empty
120 // the order in which this is done ensures that we
121 // never touch a mapspace whose input spaces we haven't checked
122 // yet.
123 while (q1 != q2)
124 {
125 sint8 dx = queue[q2].x;
126 sint8 dy = queue[q2].y;
127
128 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
129
130 sint8 x = LOS_X0 + dx;
131 sint8 y = LOS_Y0 + dy;
132
133 //int distance = idistance (dx, dy); if (distance > max_radius) continue;//D
134 int distance = 0;//D
135
136 los_info &l = los[x][y];
137
138 if (expect_true (l.flags & (LOS_XI | LOS_YI)))
139 {
140 l.culled = 1;
141
142 // check contributing spaces, first horizontal
143 if (expect_true (l.flags & LOS_XI))
268 { 144 {
269 for (int i = 1; i <= 8; i += 1) 145 los_info *xi = &los[x - sign (dx)][y];
270 { /* mark all directions */
271 int dx = x + freearr_x[i];
272 int dy = y + freearr_y[i];
273 146
274 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */ 147 // don't cull unless obscured
275 op->contr->blocked_los[dx][dy] = -1; 148 l.culled &= !xi->visible;
149
150 /* merge input space */
151 if (expect_false (xi->xo || xi->yo))
152 {
153 // The X input can provide two main pieces of information:
154 // 1. Progressive X obscurity.
155 // 2. Recessive Y obscurity.
156
157 // Progressive X obscurity, favouring recessive input angle
158 if (xi->xe > 0 && l.xo == 0)
159 {
160 l.xe = xi->xe - xi->yo;
161 l.ye = xi->ye + xi->yo;
162 l.xo = xi->xo;
163 l.yo = xi->yo;
164 }
165
166 // Recessive Y obscurity
167 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
168 {
169 l.ye = xi->yo + xi->ye;
170 l.xe = xi->xe - xi->yo;
171 l.xo = xi->xo;
172 l.yo = xi->yo;
173 }
174 }
276 } 175 }
176
177 // check contributing spaces, last vertical, identical structure
178 if (expect_true (l.flags & LOS_YI))
179 {
180 los_info *yi = &los[x][y - sign (dy)];
181
182 // don't cull unless obscured
183 l.culled &= !yi->visible;
184
185 /* merge input space */
186 if (expect_false (yi->yo || yi->xo))
187 {
188 // The Y input can provide two main pieces of information:
189 // 1. Progressive Y obscurity.
190 // 2. Recessive X obscurity.
191
192 // Progressive Y obscurity, favouring recessive input angle
193 if (yi->ye > 0 && l.yo == 0)
194 {
195 l.ye = yi->ye - yi->xo;
196 l.xe = yi->xe + yi->xo;
197 l.yo = yi->yo;
198 l.xo = yi->xo;
199 }
200
201 // Recessive X obscurity
202 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
203 {
204 l.xe = yi->xo + yi->xe;
205 l.ye = yi->ye - yi->xo;
206 l.yo = yi->yo;
207 l.xo = yi->xo;
208 }
209 }
210 }
211
212 // check whether this space blocks the view
213 maptile *m = op->map;
214 sint16 nx = op->x + dx;
215 sint16 ny = op->y + dy;
216
217 if (expect_true (!xy_normalise (m, nx, ny))
218 || expect_false (m->at (nx, ny).flags () & P_BLOCKSVIEW))
219 {
220 l.xo = l.xe = abs (dx);
221 l.yo = l.ye = abs (dy);
222
223 // we obscure dependents, but might be visible
224 // copy the los from the square towards the player,
225 // so outward diagonal corners are lit.
226 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
227 l.visible = false;
228 }
229 else
230 {
231 // we are not blocked, so calculate visibility, by checking
232 // whether we are inside or outside the shadow
233 l.visible = (l.xe <= 0 || l.xe > l.xo)
234 && (l.ye <= 0 || l.ye > l.yo);
235
236 pl->los[x][y] = l.culled ? LOS_BLOCKED
237 : l.visible ? max (0, 2 - max_radius + distance)
238 : 3;
239 }
240
241 }
242
243 // Expands by the unit length in each component's current direction.
244 // If a component has no direction, then it is expanded in both of its
245 // positive and negative directions.
246 if (!l.culled)
277 } 247 {
278 248 if (dx >= 0) enqueue (dx + 1, dy, LOS_XI);
279 expand_lighted_sight (op); 249 if (dx <= 0) enqueue (dx - 1, dy, LOS_XI);
280 250 if (dy >= 0) enqueue (dx, dy + 1, LOS_YI);
281 /* clear mark squares */ 251 if (dy <= 0) enqueue (dx, dy - 1, LOS_YI);
282 for (int x = 0; x < op->contr->ns->mapx; x++) 252 }
283 for (int y = 0; y < op->contr->ns->mapy; y++) 253 }
284 if (op->contr->blocked_los[x][y] < 0)
285 op->contr->blocked_los[x][y] = 0;
286} 254}
287 255
288/* returns true if op carries one or more lights 256/* returns true if op carries one or more lights
289 * This is a trivial function now days, but it used to 257 * This is a trivial function now days, but it used to
290 * be a bit longer. Probably better for callers to just 258 * be a bit longer. Probably better for callers to just
328{ 296{
329 return b == LOS_BLOCKED ? b : min (b, l); 297 return b == LOS_BLOCKED ? b : min (b, l);
330} 298}
331 299
332sint8 300sint8
333los_brighten_blocked (sint8 b, sint8 l)
334{
335 return min (b, l);
336}
337
338sint8
339los_darken (sint8 b, sint8 l) 301los_darken (sint8 b, sint8 l)
340{ 302{
341 return max (b, l); 303 return max (b, l);
342} 304}
343 305
344template<sint8 change_it (sint8, sint8)> 306template<sint8 change_it (sint8, sint8)>
345static void 307static void
346apply_light (object *op, int basex, int basey, int light, const sint8 *darkness_table) 308apply_light (object *op, int dx, int dy, int light, const sint8 *darkness_table)
347{ 309{
348 // min or max the ciruclar area around basex, basey 310 // min or max the circular area around basex, basey
349 player *pl = op->contr; 311 player *pl = op->contr;
350 312
313 dx += LOS_X0;
314 dy += LOS_Y0;
315
316 int hx = op->contr->ns->mapx / 2;
317 int hy = op->contr->ns->mapy / 2;
318
351 int ax0 = max (0, basex - light); 319 int ax0 = max (LOS_X0 - hx, dx - light);
352 int ay0 = max (0, basey - light); 320 int ay0 = max (LOS_Y0 - hy, dy - light);
353 int ax1 = min (basex + light, pl->ns->mapx - 1); 321 int ax1 = min (dx + light, LOS_X0 + hx);
354 int ay1 = min (basey + light, pl->ns->mapy - 1); 322 int ay1 = min (dy + light, LOS_Y0 + hy);
355 323
356 for (int ax = ax0; ax <= ax1; ax++) 324 for (int ax = ax0; ax <= ax1; ax++)
357 for (int ay = ay0; ay <= ay1; ay++) 325 for (int ay = ay0; ay <= ay1; ay++)
358 pl->blocked_los[ax][ay] = 326 pl->los[ax][ay] =
359 change_it (pl->blocked_los[ax][ay], darkness_table [idistance (ax - basex, ay - basey)]); 327 change_it (pl->los[ax][ay], darkness_table [idistance (ax - dx, ay - dy)]);
360} 328}
361 329
362/* add light, by finding all (non-null) nearby light sources, then 330/* add light, by finding all (non-null) nearby light sources, then
363 * mark those squares specially. 331 * mark those squares specially.
364 */ 332 */
365static void 333static void
366expand_lighted_sight (object *op) 334apply_lights (object *op)
367{ 335{
368 int darklevel, mflags, light, x1, y1; 336 int darklevel, mflags, light, x1, y1;
369 maptile *m = op->map; 337 maptile *m = op->map;
370 sint16 nx, ny; 338 sint16 nx, ny;
371 339
397 if (darklevel < 1) 365 if (darklevel < 1)
398 pass2 = 1; 366 pass2 = 1;
399 else 367 else
400 { 368 {
401 /* first, make everything totally dark */ 369 /* first, make everything totally dark */
402 for (int x = 0; x < op->contr->ns->mapx; x++) 370 for (int dx = -half_x; dx <= half_x; dx++)
403 for (int y = 0; y < op->contr->ns->mapy; y++) 371 for (int dy = -half_x; dy <= half_y; dy++)
404 if (op->contr->blocked_los[x][y] != LOS_BLOCKED) 372 if (op->contr->los[dx + LOS_X0][dy + LOS_Y0] != LOS_BLOCKED)
405 op->contr->blocked_los[x][y] = LOS_MAX; 373 op->contr->los[dx + LOS_X0][dy + LOS_Y0] = LOS_MAX;
406 374
407 /* 375 /*
408 * Only process the area of interest. 376 * Only process the area of interest.
409 * the basex, basey values represent the position in the op->contr->blocked_los 377 * the basex, basey values represent the position in the op->contr->los
410 * array. Its easier to just increment them here (and start with the right 378 * array. Its easier to just increment them here (and start with the right
411 * value) than to recalculate them down below. 379 * value) than to recalculate them down below.
412 */ 380 */
413 for (int x = min_x, basex = -MAX_LIGHT_RADIUS; x <= max_x; x++, basex++) 381 for (int x = min_x; x <= max_x; x++)
414 for (int y = min_y, basey = -MAX_LIGHT_RADIUS; y <= max_y; y++, basey++) 382 for (int y = min_y; y <= max_y; y++)
415 { 383 {
416 maptile *m = op->map; 384 maptile *m = op->map;
417 sint16 nx = x; 385 sint16 nx = x;
418 sint16 ny = y; 386 sint16 ny = y;
419 387
426 394
427 if (expect_false (light)) 395 if (expect_false (light))
428 if (light < 0) 396 if (light < 0)
429 pass2 = 1; 397 pass2 = 1;
430 else 398 else
431 apply_light<los_brighten> (op, basex, basey, light, darkness [light + MAX_LIGHT_RADIUS]); 399 apply_light<los_brighten> (op, x - op->x, y - op->y, light, darkness [light + MAX_LIGHT_RADIUS]);
432 } 400 }
433 401
434 /* grant some vision to the player, based on the darklevel */ 402 /* grant some vision to the player, based on the darklevel */
435 /* for outdoor maps, ensure some mininum visibility radius */ 403 /* for outdoor maps, ensure some mininum visibility radius */
436 { 404 {
437 int light = clamp (MAX_DARKNESS - darklevel, op->map->outdoor ? 2 : 0, MAX_LIGHT_RADIUS); 405 int light = clamp (MAX_DARKNESS - darklevel, op->map->outdoor ? 2 : 0, MAX_LIGHT_RADIUS);
438 406
439 apply_light<los_brighten_blocked> (op, half_x, half_y, light, darkness [light + MAX_LIGHT_RADIUS]); 407 apply_light<los_brighten> (op, 0, 0, light, darkness [light + MAX_LIGHT_RADIUS]);
440 } 408 }
441 } 409 }
442 410
443 // possibly do 2nd pass for rare negative glow radii 411 // possibly do 2nd pass for rare negative glow radii
444 // for effect, those are always considered to be stronger than anything else 412 // for effect, those are always considered to be stronger than anything else
445 // but they can't darken a place completely 413 // but they can't darken a place completely
446 if (pass2) 414 if (pass2)
447 for (int x = min_x, basex = -MAX_LIGHT_RADIUS; x <= max_x; x++, basex++) 415 for (int x = min_x; x <= max_x; x++)
448 for (int y = min_y, basey = -MAX_LIGHT_RADIUS; y <= max_y; y++, basey++) 416 for (int y = min_y; y <= max_y; y++)
449 { 417 {
450 maptile *m = op->map; 418 maptile *m = op->map;
451 sint16 nx = x; 419 sint16 nx = x;
452 sint16 ny = y; 420 sint16 ny = y;
453 421
457 mapspace &ms = m->at (nx, ny); 425 mapspace &ms = m->at (nx, ny);
458 ms.update (); 426 ms.update ();
459 sint8 light = ms.light; 427 sint8 light = ms.light;
460 428
461 if (expect_false (light < 0)) 429 if (expect_false (light < 0))
462 apply_light<los_darken> (op, basex, basey, -light, darkness [light + MAX_LIGHT_RADIUS]); 430 apply_light<los_darken> (op, x - op->x, y - op->y, -light, darkness [light + MAX_LIGHT_RADIUS]);
463 } 431 }
464} 432}
465 433
466/* blinded_sight() - sets all viewable squares to blocked except 434/* blinded_sight() - sets all viewable squares to blocked except
467 * for the one the central one that the player occupies. A little 435 * for the one the central one that the player occupies. A little
469 * really need for any reasonable game play. 437 * really need for any reasonable game play.
470 */ 438 */
471static void 439static void
472blinded_sight (object *op) 440blinded_sight (object *op)
473{ 441{
474 int x, y; 442 op->contr->los[LOS_X0][LOS_Y0] = 3;
475
476 for (x = 0; x < op->contr->ns->mapx; x++)
477 for (y = 0; y < op->contr->ns->mapy; y++)
478 op->contr->blocked_los[x][y] = LOS_BLOCKED;
479
480 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = 0;
481} 443}
482 444
483/* 445/*
484 * update_los() recalculates the array which specifies what is 446 * update_los() recalculates the array which specifies what is
485 * visible for the given player-object. 447 * visible for the given player-object.
486 */ 448 */
487void 449void
488update_los (object *op) 450update_los (object *op)
489{ 451{
490 int dx = op->contr->ns->mapx / 2, dy = op->contr->ns->mapy / 2, x, y;
491
492 if (QUERY_FLAG (op, FLAG_REMOVED)) 452 if (QUERY_FLAG (op, FLAG_REMOVED))
493 return; 453 return;
494 454
495 clear_los (op->contr); 455 clear_los (op->contr);
496 456
497 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ ) 457 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ )
498 return; 458 memset (op->contr->los, 0, sizeof (op->contr->los));
499
500 /* For larger maps, this is more efficient than the old way which
501 * used the chaining of the block array. Since many space views could
502 * be blocked by different spaces in front, this mean that a lot of spaces
503 * could be examined multile times, as each path would be looked at.
504 */
505 for (x = (MAP_CLIENT_X - op->contr->ns->mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->ns->mapx) / 2 + 1; x++)
506 for (y = (MAP_CLIENT_Y - op->contr->ns->mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->ns->mapy) / 2 + 1; y++)
507 check_wall (op, x, y);
508
509 /* do the los of the player. 3 (potential) cases */
510 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */ 459 else if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
511 blinded_sight (op); 460 blinded_sight (op);
512 else 461 else
513 expand_sight (op); 462 {
463 do_los (op);
464 apply_lights (op);
465 }
514 466
515 //TODO: no range-checking whatsoever :(
516 if (QUERY_FLAG (op, FLAG_XRAYS)) 467 if (QUERY_FLAG (op, FLAG_XRAYS))
517 for (int x = -2; x <= 2; x++) 468 for (int dx = -2; dx <= 2; dx++)
518 for (int y = -2; y <= 2; y++) 469 for (int dy = -2; dy <= 2; dy++)
519 op->contr->blocked_los[dx + x][dy + y] = 0; 470 op->contr->los[dx + LOS_X0][dy + LOS_X0] = 0;
520} 471}
521 472
522/* update all_map_los is like update_all_los below, 473/* update all_map_los is like update_all_los below,
523 * but updates everyone on the map, no matter where they 474 * but updates everyone on the map, no matter where they
524 * are. This generally should not be used, as a per 475 * are. This generally should not be used, as a per
613 } 564 }
614 } 565 }
615} 566}
616 567
617/* 568/*
618 * Debug-routine which dumps the array which specifies the visible
619 * area of a player. Triggered by the z key in DM mode.
620 */
621void
622print_los (object *op)
623{
624 int x, y;
625 char buf[50], buf2[10];
626
627 strcpy (buf, " ");
628
629 for (x = 0; x < op->contr->ns->mapx; x++)
630 {
631 sprintf (buf2, "%2d", x);
632 strcat (buf, buf2);
633 }
634
635 new_draw_info (NDI_UNIQUE, 0, op, buf);
636
637 for (y = 0; y < op->contr->ns->mapy; y++)
638 {
639 sprintf (buf, "%2d:", y);
640
641 for (x = 0; x < op->contr->ns->mapx; x++)
642 {
643 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]);
644 strcat (buf, buf2);
645 }
646
647 new_draw_info (NDI_UNIQUE, 0, op, buf);
648 }
649}
650
651/*
652 * make_sure_seen: The object is supposed to be visible through walls, thus 569 * make_sure_seen: The object is supposed to be visible through walls, thus
653 * check if any players are nearby, and edit their LOS array. 570 * check if any players are nearby, and edit their LOS array.
654 */ 571 */
655
656void 572void
657make_sure_seen (const object *op) 573make_sure_seen (const object *op)
658{ 574{
659 for_all_players (pl) 575 for_all_players (pl)
660 if (pl->ob->map == op->map && 576 if (pl->ob->map == op->map &&
661 pl->ob->y - pl->ns->mapy / 2 <= op->y && 577 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
662 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x) 578 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
663 pl->blocked_los[pl->ns->mapx / 2 + op->x - pl->ob->x][pl->ns->mapy / 2 + op->y - pl->ob->y] = 0; 579 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_X0] = 0;
664} 580}
665 581
666/* 582/*
667 * make_sure_not_seen: The object which is supposed to be visible through 583 * make_sure_not_seen: The object which is supposed to be visible through
668 * walls has just been removed from the map, so update the los of any 584 * walls has just been removed from the map, so update the los of any
669 * players within its range 585 * players within its range
670 */ 586 */
671
672void 587void
673make_sure_not_seen (const object *op) 588make_sure_not_seen (const object *op)
674{ 589{
675 for_all_players (pl) 590 for_all_players (pl)
676 if (pl->ob->map == op->map && 591 if (pl->ob->map == op->map &&

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines