ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.27 by root, Sun Jun 3 17:42:39 2007 UTC vs.
Revision 1.43 by root, Sat Dec 20 04:02:15 2008 UTC

1/* 1/*
2 * This file is part of Crossfire TRT, the Multiplayer Online Role Playing Game. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Crossfire TRT team 4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team 5 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
6 * Copyright (©) 1992,2007 Frank Tore Johansen 6 * Copyright (©) 1992,2007 Frank Tore Johansen
7 * 7 *
8 * Crossfire TRT is free software; you can redistribute it and/or modify it 8 * Deliantra is free software: you can redistribute it and/or modify
9 * under the terms of the GNU General Public License as published by the Free 9 * it under the terms of the GNU General Public License as published by
10 * Software Foundation; either version 2 of the License, or (at your option) 10 * the Free Software Foundation, either version 3 of the License, or
11 * any later version. 11 * (at your option) any later version.
12 * 12 *
13 * This program is distributed in the hope that it will be useful, but 13 * This program is distributed in the hope that it will be useful,
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * for more details. 16 * GNU General Public License for more details.
17 * 17 *
18 * You should have received a copy of the GNU General Public License along 18 * You should have received a copy of the GNU General Public License
19 * with Crossfire TRT; if not, write to the Free Software Foundation, Inc. 51 19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 * Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 * 20 *
22 * The authors can be reached via e-mail to <crossfire@schmorp.de> 21 * The authors can be reached via e-mail to <support@deliantra.net>
23 */ 22 */
24 23
25/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */ 24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
26 25
27#include <global.h> 26#include <global.h>
28#include <funcpoint.h>
29#include <math.h> 27#include <cmath>
30
31/* Distance must be less than this for the object to be blocked.
32 * An object is 1.0 wide, so if set to 0.5, it means the object
33 * that blocks half the view (0.0 is complete block) will
34 * block view in our tables.
35 * .4 or less lets you see through walls. .5 is about right.
36 */
37
38#define SPACE_BLOCK 0.5
39
40typedef struct blstr
41{
42 int x[4], y[4];
43 int index;
44} blocks;
45
46// 31/32 == a speed hack
47// we would like to use 32 for speed, but the code loops endlessly
48// then, reason not yet identified, so only make the array use 32,
49// not the define's.
50blocks block[MAP_CLIENT_X][MAP_CLIENT_Y == 31 ? 32 : MAP_CLIENT_Y];
51 28
52static void expand_lighted_sight (object *op); 29static void expand_lighted_sight (object *op);
53 30
54/* 31enum {
55 * Used to initialise the array used by the LOS routines. 32 LOS_XI = 0x01,
56 * What this sets if that x,y blocks the view of bx,by 33 LOS_YI = 0x02,
57 * This then sets up a relation - for example, something 34};
58 * at 5,4 blocks view at 5,3 which blocks view at 5,2
59 * etc. So when we check 5,4 and find it block, we have
60 * the data to know that 5,3 and 5,2 and 5,1 should also
61 * be blocked.
62 */
63 35
64static void 36struct los_info
65set_block (int x, int y, int bx, int by)
66{ 37{
67 int index = block[x][y].index, i; 38 sint8 xo, yo; // obscure angle
39 sint8 xe, ye; // angle deviation
40 uint8 culled; // culled from "tree"
41 uint8 queued; // already queued
42 uint8 visible;
43 uint8 flags; // LOS_XI/YI
44};
68 45
69 /* Due to flipping, we may get duplicates - better safe than sorry. 46// temporary storage for the los algorithm,
70 */ 47// one los_info for each lightable map space
71 for (i = 0; i < index; i++) 48static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
72 {
73 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
74 return;
75 }
76 49
77 block[x][y].x[index] = bx; 50struct point
78 block[x][y].y[index] = by;
79 block[x][y].index++;
80#ifdef LOS_DEBUG
81 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
82#endif
83}
84
85/*
86 * initialises the array used by the LOS routines.
87 */
88
89/* since we are only doing the upper left quadrant, only
90 * these spaces could possibly get blocked, since these
91 * are the only ones further out that are still possibly in the
92 * sightline.
93 */
94
95void
96init_block (void)
97{ 51{
98 int x, y, dx, dy, i;
99 static int block_x[3] = { -1, -1, 0 },
100 block_y[3] = { -1, 0, -1 };
101
102 for (x = 0; x < MAP_CLIENT_X; x++)
103 for (y = 0; y < MAP_CLIENT_Y; y++)
104 block[x][y].index = 0;
105
106
107 /* The table should be symmetric, so only do the upper left
108 * quadrant - makes the processing easier.
109 */
110 for (x = 1; x <= MAP_CLIENT_X / 2; x++)
111 {
112 for (y = 1; y <= MAP_CLIENT_Y / 2; y++)
113 {
114 for (i = 0; i < 3; i++)
115 {
116 dx = x + block_x[i];
117 dy = y + block_y[i];
118
119 /* center space never blocks */
120 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
121 continue;
122
123 /* If its a straight line, its blocked */
124 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
125 {
126 /* For simplicity, we mirror the coordinates to block the other
127 * quadrants.
128 */
129 set_block (x, y, dx, dy);
130 if (x == MAP_CLIENT_X / 2)
131 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
132 else if (y == MAP_CLIENT_Y / 2)
133 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
134 }
135 else
136 {
137 float d1, r, s, l;
138
139 /* We use the algorihm that found out how close the point
140 * (x,y) is to the line from dx,dy to the center of the viewable
141 * area. l is the distance from x,y to the line.
142 * r is more a curiosity - it lets us know what direction (left/right)
143 * the line is off
144 */
145
146 d1 = (float) (pow (MAP_CLIENT_X / 2 - dx, 2.f) + pow (MAP_CLIENT_Y / 2 - dy, 2.f));
147 r = (float) ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
148 s = (float) ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
149 l = FABS (sqrt (d1) * s);
150
151 if (l <= SPACE_BLOCK)
152 {
153 /* For simplicity, we mirror the coordinates to block the other
154 * quadrants.
155 */
156 set_block (x, y, dx, dy);
157 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
158 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
159 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
160 }
161 }
162 }
163 }
164 }
165}
166
167/*
168 * Used to initialise the array used by the LOS routines.
169 * x,y are indexes into the blocked[][] array.
170 * This recursively sets the blocked line of sight view.
171 * From the blocked[][] array, we know for example
172 * that if some particular space is blocked, it blocks
173 * the view of the spaces 'behind' it, and those blocked
174 * spaces behind it may block other spaces, etc.
175 * In this way, the chain of visibility is set.
176 */
177static void
178set_wall (object *op, int x, int y)
179{
180 int i;
181
182 for (i = 0; i < block[x][y].index; i++)
183 {
184 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
185
186 /* ax, ay are the values as adjusted to be in the
187 * socket look structure.
188 */
189 ax = dx - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
190 ay = dy - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
191
192 if (ax < 0 || ax >= op->contr->ns->mapx || ay < 0 || ay >= op->contr->ns->mapy)
193 continue;
194#if 0
195 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
196#endif
197 /* we need to adjust to the fact that the socket
198 * code wants the los to start from the 0,0
199 * and not be relative to middle of los array.
200 */
201 op->contr->blocked_los[ax][ay] = 100;
202 set_wall (op, dx, dy);
203 }
204}
205
206/*
207 * Used to initialise the array used by the LOS routines.
208 * op is the object, x and y values based on MAP_CLIENT_X and Y.
209 * this is because they index the blocked[][] arrays.
210 */
211
212static void
213check_wall (object *op, int x, int y)
214{
215 int ax, ay; 52 sint8 x, y;
53};
216 54
217 if (!block[x][y].index) 55// minimum size, but must be a power of two
218 return; 56#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
219 57
220 /* ax, ay are coordinates as indexed into the look window */ 58// a queue of spaces to calculate
221 ax = x - (MAP_CLIENT_X - op->contr->ns->mapx) / 2; 59static point queue [QUEUE_LENGTH];
222 ay = y - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2; 60static int q1, q2; // queue start, end
223
224 /* If the converted coordinates are outside the viewable
225 * area for the client, return now.
226 */
227 if (ax < 0 || ay < 0 || ax >= op->contr->ns->mapx || ay >= op->contr->ns->mapy)
228 return;
229
230#if 0
231 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
232 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
233#endif
234
235 /* If this space is already blocked, prune the processing - presumably
236 * whatever has set this space to be blocked has done the work and already
237 * done the dependency chain.
238 */
239 if (op->contr->blocked_los[ax][ay] == 100)
240 return;
241
242
243 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
244 set_wall (op, x, y);
245}
246 61
247/* 62/*
248 * Clears/initialises the los-array associated to the player 63 * Clears/initialises the los-array associated to the player
249 * controlling the object. 64 * controlling the object.
250 */ 65 */
251
252void 66void
253clear_los (player *pl) 67player::clear_los (sint8 value)
254{ 68{
255 /* This is safer than using the ns->mapx, mapy because 69 memset (los, value, sizeof (los));
256 * we index the blocked_los as a 2 way array, so clearing
257 * the first z spaces may not not cover the spaces we are
258 * actually going to use
259 */
260 memset (pl->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
261} 70}
262 71
263/* 72// enqueue a single mapspace, but only if it hasn't
264 * expand_sight goes through the array of what the given player is 73// been enqueued yet.
265 * able to see, and expands the visible area a bit, so the player will,
266 * to a certain degree, be able to see into corners.
267 * This is somewhat suboptimal, would be better to improve the formula.
268 */
269
270static void 74static void
271expand_sight (object *op) 75enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
272{ 76{
273 int i, x, y, dx, dy; 77 sint8 x = LOS_X0 + dx;
78 sint8 y = LOS_Y0 + dy;
274 79
275 for (x = 1; x < op->contr->ns->mapx - 1; x++) /* loop over inner squares */ 80 if (x < 0 || x >= MAP_CLIENT_X) return;
276 for (y = 1; y < op->contr->ns->mapy - 1; y++) 81 if (y < 0 || y >= MAP_CLIENT_Y) return;
82
83 los_info &l = los[x][y];
84
85 l.flags |= flags;
86
87 if (l.queued)
88 return;
89
90 l.queued = 1;
91
92 queue[q1].x = dx;
93 queue[q1].y = dy;
94
95 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
96}
97
98// run the los algorithm
99// this is a variant of a spiral los algorithm taken from
100// http://www.geocities.com/temerra/los_rays.html
101// which has been simplified and changed considerably, but
102// still is basically the same algorithm.
103static void
104do_los (object *op)
105{
106 player *pl = op->contr;
107
108 int max_radius = max (pl->ns->mapx, pl->ns->mapy) / 2;
109
110 memset (los, 0, sizeof (los));
111
112 q1 = 0; q2 = 0; // initialise queue, not strictly required
113 enqueue (0, 0); // enqueue center
114
115 // treat the origin specially
116 los[LOS_X0][LOS_Y0].visible = 1;
117 pl->los[LOS_X0][LOS_Y0] = 0;
118
119 // loop over all enqueued points until the queue is empty
120 // the order in which this is done ensures that we
121 // never touch a mapspace whose input spaces we haven't checked
122 // yet.
123 while (q1 != q2)
124 {
125 sint8 dx = queue[q2].x;
126 sint8 dy = queue[q2].y;
127
128 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
129
130 sint8 x = LOS_X0 + dx;
131 sint8 y = LOS_Y0 + dy;
132
133 //int distance = idistance (dx, dy); if (distance > max_radius) continue;//D
134 int distance = 0;//D
135
136 los_info &l = los[x][y];
137
138 if (expect_true (l.flags & (LOS_XI | LOS_YI)))
277 { 139 {
278 if (!op->contr->blocked_los[x][y] && 140 l.culled = 1;
279 !(get_map_flags (op->map, NULL, 141
280 op->x - op->contr->ns->mapx / 2 + x, 142 // check contributing spaces, first horizontal
281 op->y - op->contr->ns->mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))) 143 if (expect_true (l.flags & LOS_XI))
282 { 144 {
145 los_info *xi = &los[x - sign (dx)][y];
283 146
284 for (i = 1; i <= 8; i += 1) 147 // don't cull unless obscured
285 { /* mark all directions */ 148 l.culled &= !xi->visible;
286 dx = x + freearr_x[i]; 149
287 dy = y + freearr_y[i]; 150 /* merge input space */
288 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */ 151 if (expect_false (xi->xo || xi->yo))
289 op->contr->blocked_los[dx][dy] = -1; 152 {
153 // The X input can provide two main pieces of information:
154 // 1. Progressive X obscurity.
155 // 2. Recessive Y obscurity.
156
157 // Progressive X obscurity, favouring recessive input angle
158 if (xi->xe > 0 && l.xo == 0)
159 {
160 l.xe = xi->xe - xi->yo;
161 l.ye = xi->ye + xi->yo;
162 l.xo = xi->xo;
163 l.yo = xi->yo;
164 }
165
166 // Recessive Y obscurity
167 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
168 {
169 l.ye = xi->yo + xi->ye;
170 l.xe = xi->xe - xi->yo;
171 l.xo = xi->xo;
172 l.yo = xi->yo;
173 }
290 } 174 }
291 } 175 }
176
177 // check contributing spaces, last vertical, identical structure
178 if (expect_true (l.flags & LOS_YI))
179 {
180 los_info *yi = &los[x][y - sign (dy)];
181
182 // don't cull unless obscured
183 l.culled &= !yi->visible;
184
185 /* merge input space */
186 if (expect_false (yi->yo || yi->xo))
187 {
188 // The Y input can provide two main pieces of information:
189 // 1. Progressive Y obscurity.
190 // 2. Recessive X obscurity.
191
192 // Progressive Y obscurity, favouring recessive input angle
193 if (yi->ye > 0 && l.yo == 0)
194 {
195 l.ye = yi->ye - yi->xo;
196 l.xe = yi->xe + yi->xo;
197 l.yo = yi->yo;
198 l.xo = yi->xo;
199 }
200
201 // Recessive X obscurity
202 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
203 {
204 l.xe = yi->xo + yi->xe;
205 l.ye = yi->ye - yi->xo;
206 l.yo = yi->yo;
207 l.xo = yi->xo;
208 }
209 }
210 }
211
212 // check whether this space blocks the view
213 maptile *m = op->map;
214 sint16 nx = op->x + dx;
215 sint16 ny = op->y + dy;
216
217 if (expect_true (!xy_normalise (m, nx, ny))
218 || expect_false (m->at (nx, ny).flags () & P_BLOCKSVIEW))
219 {
220 l.xo = l.xe = abs (dx);
221 l.yo = l.ye = abs (dy);
222
223 // we obscure dependents, but might be visible
224 // copy the los from the square towards the player,
225 // so outward diagonal corners are lit.
226 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
227 l.visible = false;
228 }
229 else
230 {
231 // we are not blocked, so calculate visibility, by checking
232 // whether we are inside or outside the shadow
233 l.visible = (l.xe <= 0 || l.xe > l.xo)
234 && (l.ye <= 0 || l.ye > l.yo);
235
236 pl->los[x][y] = l.culled ? LOS_BLOCKED
237 : l.visible ? max (0, 2 - max_radius + distance)
238 : 3;
239 }
240
292 } 241 }
293 242
294 if (op->map->darkness > 0) /* player is on a dark map */ 243 // Expands by the unit length in each component's current direction.
295 expand_lighted_sight (op); 244 // If a component has no direction, then it is expanded in both of its
296 245 // positive and negative directions.
297 /* clear mark squares */ 246 if (!l.culled)
298 for (x = 0; x < op->contr->ns->mapx; x++) 247 {
299 for (y = 0; y < op->contr->ns->mapy; y++) 248 if (dx >= 0) enqueue (dx + 1, dy, LOS_XI);
300 if (op->contr->blocked_los[x][y] < 0) 249 if (dx <= 0) enqueue (dx - 1, dy, LOS_XI);
301 op->contr->blocked_los[x][y] = 0; 250 if (dy >= 0) enqueue (dx, dy + 1, LOS_YI);
251 if (dy <= 0) enqueue (dx, dy - 1, LOS_YI);
252 }
253 }
302} 254}
303 255
304/* returns true if op carries one or more lights 256/* returns true if op carries one or more lights
305 * This is a trivial function now days, but it used to 257 * This is a trivial function now days, but it used to
306 * be a bit longer. Probably better for callers to just 258 * be a bit longer. Probably better for callers to just
307 * check the op->glow_radius instead of calling this. 259 * check the op->glow_radius instead of calling this.
308 */ 260 */
309
310int 261int
311has_carried_lights (const object *op) 262has_carried_lights (const object *op)
312{ 263{
313 /* op may glow! */ 264 /* op may glow! */
314 if (op->glow_radius > 0) 265 if (op->glow_radius > 0)
315 return 1; 266 return 1;
316 267
317 return 0; 268 return 0;
318} 269}
319 270
271/* radius, distance => lightness adjust */
272static sint8 darkness[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
273
274static struct darkness_init
275{
276 darkness_init ()
277 {
278 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
279 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
280 {
281 // max intensity
282 int intensity = min (LOS_MAX, abs (radius) + 1);
283
284 // actual intensity
285 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
286
287 darkness [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
288 ? min (3, intensity)
289 : LOS_MAX - intensity;
290 }
291 }
292} darkness_init;
293
294sint8
295los_brighten (sint8 b, sint8 l)
296{
297 return b == LOS_BLOCKED ? b : min (b, l);
298}
299
300sint8
301los_darken (sint8 b, sint8 l)
302{
303 return max (b, l);
304}
305
306template<sint8 change_it (sint8, sint8)>
320static void 307static void
321expand_lighted_sight (object *op) 308apply_light (object *op, int dx, int dy, int light, const sint8 *darkness_table)
322{ 309{
323 int x, y, darklevel, ax, ay, basex, basey, mflags, light, x1, y1; 310 // min or max the circular area around basex, basey
311 player *pl = op->contr;
312
313 dx += LOS_X0;
314 dy += LOS_Y0;
315
316 int hx = op->contr->ns->mapx / 2;
317 int hy = op->contr->ns->mapy / 2;
318
319 int ax0 = max (LOS_X0 - hx, dx - light);
320 int ay0 = max (LOS_Y0 - hy, dy - light);
321 int ax1 = min (dx + light, LOS_X0 + hx);
322 int ay1 = min (dy + light, LOS_Y0 + hy);
323
324 for (int ax = ax0; ax <= ax1; ax++)
325 for (int ay = ay0; ay <= ay1; ay++)
326 pl->los[ax][ay] =
327 change_it (pl->los[ax][ay], darkness_table [idistance (ax - dx, ay - dy)]);
328}
329
330/* add light, by finding all (non-null) nearby light sources, then
331 * mark those squares specially.
332 */
333static void
334apply_lights (object *op)
335{
336 int darklevel, mflags, light, x1, y1;
324 maptile *m = op->map; 337 maptile *m = op->map;
325 sint16 nx, ny; 338 sint16 nx, ny;
326 339
327 darklevel = m->darkness; 340 darklevel = m->darkness;
328 341
329 /* If the player can see in the dark, lower the darklevel for him */ 342 /* If the player can see in the dark, lower the darklevel for him */
330 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK)) 343 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK))
331 darklevel -= 2; 344 darklevel -= LOS_MAX / 2;
332
333 /* add light, by finding all (non-null) nearby light sources, then
334 * mark those squares specially. If the darklevel<1, there is no
335 * reason to do this, so we skip this function
336 */
337
338 if (darklevel < 1)
339 return;
340 345
341 /* Do a sanity check. If not valid, some code below may do odd 346 /* Do a sanity check. If not valid, some code below may do odd
342 * things. 347 * things.
343 */ 348 */
344 if (darklevel > MAX_DARKNESS) 349 if (darklevel > MAX_DARKNESS)
345 { 350 {
346 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel); 351 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel);
347 darklevel = MAX_DARKNESS; 352 darklevel = MAX_DARKNESS;
348 } 353 }
349 354
350 /* First, limit player furthest (unlighted) vision */ 355 int half_x = op->contr->ns->mapx / 2;
351 for (x = 0; x < op->contr->ns->mapx; x++) 356 int half_y = op->contr->ns->mapy / 2;
352 for (y = 0; y < op->contr->ns->mapy; y++)
353 if (op->contr->blocked_los[x][y] != 100)
354 op->contr->blocked_los[x][y] = MAX_LIGHT_RADII;
355 357
356 /* the spaces[] darkness value contains the information we need. 358 int min_x = op->x - half_x - MAX_LIGHT_RADIUS;
357 * Only process the area of interest. 359 int min_y = op->y - half_y - MAX_LIGHT_RADIUS;
358 * the basex, basey values represent the position in the op->contr->blocked_los 360 int max_x = op->x + half_x + MAX_LIGHT_RADIUS;
359 * array. Its easier to just increment them here (and start with the right 361 int max_y = op->y + half_y + MAX_LIGHT_RADIUS;
360 * value) than to recalculate them down below. 362
361 */ 363 int pass2 = 0; // negative lights have an extra pass
362 for (x = (op->x - op->contr->ns->mapx / 2 - MAX_LIGHT_RADII), basex = -MAX_LIGHT_RADII; 364
363 x <= (op->x + op->contr->ns->mapx / 2 + MAX_LIGHT_RADII); x++, basex++) 365 if (darklevel < 1)
366 pass2 = 1;
367 else
364 { 368 {
369 /* first, make everything totally dark */
370 for (int dx = -half_x; dx <= half_x; dx++)
371 for (int dy = -half_x; dy <= half_y; dy++)
372 if (op->contr->los[dx + LOS_X0][dy + LOS_Y0] != LOS_BLOCKED)
373 op->contr->los[dx + LOS_X0][dy + LOS_Y0] = LOS_MAX;
365 374
366 for (y = (op->y - op->contr->ns->mapy / 2 - MAX_LIGHT_RADII), basey = -MAX_LIGHT_RADII; 375 /*
367 y <= (op->y + op->contr->ns->mapy / 2 + MAX_LIGHT_RADII); y++, basey++) 376 * Only process the area of interest.
377 * the basex, basey values represent the position in the op->contr->los
378 * array. Its easier to just increment them here (and start with the right
379 * value) than to recalculate them down below.
380 */
381 for (int x = min_x; x <= max_x; x++)
382 for (int y = min_y; y <= max_y; y++)
368 { 383 {
384 maptile *m = op->map;
385 sint16 nx = x;
386 sint16 ny = y;
387
388 if (!xy_normalise (m, nx, ny))
389 continue;
390
391 mapspace &ms = m->at (nx, ny);
392 ms.update ();
393 sint8 light = ms.light;
394
395 if (expect_false (light))
396 if (light < 0)
397 pass2 = 1;
398 else
399 apply_light<los_brighten> (op, x - op->x, y - op->y, light, darkness [light + MAX_LIGHT_RADIUS]);
400 }
401
402 /* grant some vision to the player, based on the darklevel */
403 /* for outdoor maps, ensure some mininum visibility radius */
404 {
405 int light = clamp (MAX_DARKNESS - darklevel, op->map->outdoor ? 2 : 0, MAX_LIGHT_RADIUS);
406
407 apply_light<los_brighten> (op, 0, 0, light, darkness [light + MAX_LIGHT_RADIUS]);
408 }
409 }
410
411 // possibly do 2nd pass for rare negative glow radii
412 // for effect, those are always considered to be stronger than anything else
413 // but they can't darken a place completely
414 if (pass2)
415 for (int x = min_x; x <= max_x; x++)
416 for (int y = min_y; y <= max_y; y++)
417 {
369 m = op->map; 418 maptile *m = op->map;
370 nx = x; 419 sint16 nx = x;
371 ny = y; 420 sint16 ny = y;
372 421
373 mflags = get_map_flags (m, &m, nx, ny, &nx, &ny); 422 if (!xy_normalise (m, nx, ny))
374
375 if (mflags & P_OUT_OF_MAP)
376 continue; 423 continue;
377 424
378 /* This space is providing light, so we need to brighten up the 425 mapspace &ms = m->at (nx, ny);
379 * spaces around here. 426 ms.update ();
380 */ 427 sint8 light = ms.light;
381 light = GET_MAP_LIGHT (m, nx, ny);
382 if (light != 0)
383 {
384#if 0
385 LOG (llevDebug, "expand_lighted_sight: Found light at x=%d, y=%d, basex=%d, basey=%d\n", x, y, basex, basey);
386#endif
387 for (ax = basex - light; ax <= basex + light; ax++)
388 {
389 if (ax < 0 || ax >= op->contr->ns->mapx)
390 continue;
391 428
392 for (ay = basey - light; ay <= basey + light; ay++) 429 if (expect_false (light < 0))
393 { 430 apply_light<los_darken> (op, x - op->x, y - op->y, -light, darkness [light + MAX_LIGHT_RADIUS]);
394 if (ay < 0 || ay >= op->contr->ns->mapy)
395 continue;
396
397 /* If the space is fully blocked, do nothing. Otherwise, we
398 * brighten the space. The further the light is away from the
399 * source (basex-x), the less effect it has. Though light used
400 * to dim in a square manner, it now dims in a circular manner
401 * using the the pythagorean theorem. glow_radius still
402 * represents the radius
403 */
404 if (op->contr->blocked_los[ax][ay] != 100)
405 {
406 x1 = abs (basex - ax) * abs (basex - ax);
407 y1 = abs (basey - ay) * abs (basey - ay);
408
409 if (light > 0) op->contr->blocked_los[ax][ay] -= max (light - isqrt (x1 + y1), 0);
410 if (light < 0) op->contr->blocked_los[ax][ay] -= min (light + isqrt (x1 + y1), 0);
411 }
412 }
413 }
414 }
415 }
416 }
417
418 /* Outdoor should never really be completely pitch black dark like
419 * a dungeon, so let the player at least see a little around themselves
420 */
421 if (op->map->outdoor && darklevel > (MAX_DARKNESS - 3))
422 {
423 if (op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] > (MAX_DARKNESS - 3))
424 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = MAX_DARKNESS - 3;
425
426 for (x = -1; x <= 1; x++)
427 for (y = -1; y <= 1; y++)
428 {
429 if (op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] > (MAX_DARKNESS - 2))
430 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] = MAX_DARKNESS - 2;
431 } 431 }
432 }
433
434 /* grant some vision to the player, based on the darklevel */
435 for (x = darklevel - MAX_DARKNESS; x < MAX_DARKNESS + 1 - darklevel; x++)
436 for (y = darklevel - MAX_DARKNESS; y < MAX_DARKNESS + 1 - darklevel; y++)
437 if (!(op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] == 100))
438 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] -=
439 MAX (0, 6 - darklevel - MAX (abs (x), abs (y)));
440} 432}
441 433
442/* blinded_sight() - sets all veiwable squares to blocked except 434/* blinded_sight() - sets all viewable squares to blocked except
443 * for the one the central one that the player occupies. A little 435 * for the one the central one that the player occupies. A little
444 * odd that you can see yourself (and what your standing on), but 436 * odd that you can see yourself (and what your standing on), but
445 * really need for any reasonable game play. 437 * really need for any reasonable game play.
446 */ 438 */
447static void 439static void
448blinded_sight (object *op) 440blinded_sight (object *op)
449{ 441{
450 int x, y; 442 op->contr->los[LOS_X0][LOS_Y0] = 3;
451
452 for (x = 0; x < op->contr->ns->mapx; x++)
453 for (y = 0; y < op->contr->ns->mapy; y++)
454 op->contr->blocked_los[x][y] = 100;
455
456 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = 0;
457} 443}
458 444
459/* 445/*
460 * update_los() recalculates the array which specifies what is 446 * update_los() recalculates the array which specifies what is
461 * visible for the given player-object. 447 * visible for the given player-object.
462 */ 448 */
463void 449void
464update_los (object *op) 450update_los (object *op)
465{ 451{
466 int dx = op->contr->ns->mapx / 2, dy = op->contr->ns->mapy / 2, x, y;
467
468 if (QUERY_FLAG (op, FLAG_REMOVED)) 452 if (QUERY_FLAG (op, FLAG_REMOVED))
469 return; 453 return;
470 454
471 clear_los (op->contr); 455 op->contr->clear_los ();
472 456
473 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ ) 457 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ )
474 return; 458 memset (op->contr->los, 0, sizeof (op->contr->los));
475
476 /* For larger maps, this is more efficient than the old way which
477 * used the chaining of the block array. Since many space views could
478 * be blocked by different spaces in front, this mean that a lot of spaces
479 * could be examined multile times, as each path would be looked at.
480 */
481 for (x = (MAP_CLIENT_X - op->contr->ns->mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->ns->mapx) / 2 + 1; x++)
482 for (y = (MAP_CLIENT_Y - op->contr->ns->mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->ns->mapy) / 2 + 1; y++)
483 check_wall (op, x, y);
484
485 /* do the los of the player. 3 (potential) cases */
486 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */ 459 else if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
487 blinded_sight (op); 460 blinded_sight (op);
488 else 461 else
489 expand_sight (op); 462 {
463 do_los (op);
464 apply_lights (op);
465 }
490 466
491 //TODO: no range-checking whatsoever :(
492 if (QUERY_FLAG (op, FLAG_XRAYS)) 467 if (QUERY_FLAG (op, FLAG_XRAYS))
493 for (int x = -2; x <= 2; x++) 468 for (int dx = -2; dx <= 2; dx++)
494 for (int y = -2; y <= 2; y++) 469 for (int dy = -2; dy <= 2; dy++)
495 op->contr->blocked_los[dx + x][dy + y] = 0; 470 op->contr->los[dx + LOS_X0][dy + LOS_X0] = 0;
496} 471}
497 472
498/* update all_map_los is like update_all_los below, 473/* update all_map_los is like update_all_los below,
499 * but updates everyone on the map, no matter where they 474 * but updates everyone on the map, no matter where they
500 * are. This generally should not be used, as a per 475 * are. This generally should not be used, as a per
589 } 564 }
590 } 565 }
591} 566}
592 567
593/* 568/*
594 * Debug-routine which dumps the array which specifies the visible
595 * area of a player. Triggered by the z key in DM mode.
596 */
597void
598print_los (object *op)
599{
600 int x, y;
601 char buf[50], buf2[10];
602
603 strcpy (buf, " ");
604
605 for (x = 0; x < op->contr->ns->mapx; x++)
606 {
607 sprintf (buf2, "%2d", x);
608 strcat (buf, buf2);
609 }
610
611 new_draw_info (NDI_UNIQUE, 0, op, buf);
612
613 for (y = 0; y < op->contr->ns->mapy; y++)
614 {
615 sprintf (buf, "%2d:", y);
616
617 for (x = 0; x < op->contr->ns->mapx; x++)
618 {
619 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]);
620 strcat (buf, buf2);
621 }
622
623 new_draw_info (NDI_UNIQUE, 0, op, buf);
624 }
625}
626
627/*
628 * make_sure_seen: The object is supposed to be visible through walls, thus 569 * make_sure_seen: The object is supposed to be visible through walls, thus
629 * check if any players are nearby, and edit their LOS array. 570 * check if any players are nearby, and edit their LOS array.
630 */ 571 */
631
632void 572void
633make_sure_seen (const object *op) 573make_sure_seen (const object *op)
634{ 574{
635 for_all_players (pl) 575 for_all_players (pl)
636 if (pl->ob->map == op->map && 576 if (pl->ob->map == op->map &&
637 pl->ob->y - pl->ns->mapy / 2 <= op->y && 577 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
638 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x) 578 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
639 pl->blocked_los[pl->ns->mapx / 2 + op->x - pl->ob->x][pl->ns->mapy / 2 + op->y - pl->ob->y] = 0; 579 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_X0] = 0;
640} 580}
641 581
642/* 582/*
643 * make_sure_not_seen: The object which is supposed to be visible through 583 * make_sure_not_seen: The object which is supposed to be visible through
644 * walls has just been removed from the map, so update the los of any 584 * walls has just been removed from the map, so update the los of any
645 * players within its range 585 * players within its range
646 */ 586 */
647
648void 587void
649make_sure_not_seen (const object *op) 588make_sure_not_seen (const object *op)
650{ 589{
651 for_all_players (pl) 590 for_all_players (pl)
652 if (pl->ob->map == op->map && 591 if (pl->ob->map == op->map &&

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines