ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.8 by root, Thu Dec 14 04:30:31 2006 UTC vs.
Revision 1.44 by root, Sun Dec 21 21:20:35 2008 UTC

1/* 1/*
2 CrossFire, A Multiplayer game for X-windows 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
4 Copyright (C) 2002 Mark Wedel & Crossfire Development Team 5 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
5 Copyright (C) 1992 Frank Tore Johansen 6 * Copyright (©) 1992,2007 Frank Tore Johansen
6 7 *
7 This program is free software; you can redistribute it and/or modify 8 * Deliantra is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by 9 * it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or 10 * the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version. 11 * (at your option) any later version.
11 12 *
12 This program is distributed in the hope that it will be useful, 13 * This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details. 16 * GNU General Public License for more details.
16 17 *
17 You should have received a copy of the GNU General Public License 18 * You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software 19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 *
20 21 * The authors can be reached via e-mail to <support@deliantra.net>
21 The authors can be reached via e-mail at <crossfire@schmorp.de>
22*/ 22 */
23 23
24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */ 24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
25 25
26#include <global.h> 26#include <global.h>
27#include <funcpoint.h>
28#include <math.h> 27#include <cmath>
29
30
31/* Distance must be less than this for the object to be blocked.
32 * An object is 1.0 wide, so if set to 0.5, it means the object
33 * that blocks half the view (0.0 is complete block) will
34 * block view in our tables.
35 * .4 or less lets you see through walls. .5 is about right.
36 */
37
38#define SPACE_BLOCK 0.5
39
40typedef struct blstr
41{
42 int x[4], y[4];
43 int index;
44} blocks;
45
46blocks block[MAP_CLIENT_X][MAP_CLIENT_Y];
47 28
48static void expand_lighted_sight (object *op); 29static void expand_lighted_sight (object *op);
49 30
50/* 31enum {
51 * Used to initialise the array used by the LOS routines. 32 LOS_XI = 0x01,
52 * What this sets if that x,y blocks the view of bx,by 33 LOS_YI = 0x02,
53 * This then sets up a relation - for example, something 34};
54 * at 5,4 blocks view at 5,3 which blocks view at 5,2
55 * etc. So when we check 5,4 and find it block, we have
56 * the data to know that 5,3 and 5,2 and 5,1 should also
57 * be blocked.
58 */
59 35
60static void 36struct los_info
61set_block (int x, int y, int bx, int by)
62{ 37{
63 int index = block[x][y].index, i; 38 sint8 xo, yo; // obscure angle
39 sint8 xe, ye; // angle deviation
40 uint8 culled; // culled from "tree"
41 uint8 queued; // already queued
42 uint8 visible;
43 uint8 flags; // LOS_XI/YI
44};
64 45
65 /* Due to flipping, we may get duplicates - better safe than sorry. 46// temporary storage for the los algorithm,
66 */ 47// one los_info for each lightable map space
67 for (i = 0; i < index; i++) 48static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
68 {
69 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
70 return;
71 }
72 49
73 block[x][y].x[index] = bx; 50struct point
74 block[x][y].y[index] = by;
75 block[x][y].index++;
76#ifdef LOS_DEBUG
77 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
78#endif
79}
80
81/*
82 * initialises the array used by the LOS routines.
83 */
84
85/* since we are only doing the upper left quadrant, only
86 * these spaces could possibly get blocked, since these
87 * are the only ones further out that are still possibly in the
88 * sightline.
89 */
90
91void
92init_block (void)
93{ 51{
94 int x, y, dx, dy, i;
95 static int block_x[3] = { -1, -1, 0 }, block_y[3] =
96 {
97 -1, 0, -1};
98
99 for (x = 0; x < MAP_CLIENT_X; x++)
100 for (y = 0; y < MAP_CLIENT_Y; y++)
101 {
102 block[x][y].index = 0;
103 }
104
105
106 /* The table should be symmetric, so only do the upper left
107 * quadrant - makes the processing easier.
108 */
109 for (x = 1; x <= MAP_CLIENT_X / 2; x++)
110 {
111 for (y = 1; y <= MAP_CLIENT_Y / 2; y++)
112 {
113 for (i = 0; i < 3; i++)
114 {
115 dx = x + block_x[i];
116 dy = y + block_y[i];
117
118 /* center space never blocks */
119 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
120 continue;
121
122 /* If its a straight line, its blocked */
123 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
124 {
125 /* For simplicity, we mirror the coordinates to block the other
126 * quadrants.
127 */
128 set_block (x, y, dx, dy);
129 if (x == MAP_CLIENT_X / 2)
130 {
131 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
132 }
133 else if (y == MAP_CLIENT_Y / 2)
134 {
135 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
136 }
137 }
138 else
139 {
140 float d1, r, s, l;
141
142 /* We use the algorihm that found out how close the point
143 * (x,y) is to the line from dx,dy to the center of the viewable
144 * area. l is the distance from x,y to the line.
145 * r is more a curiosity - it lets us know what direction (left/right)
146 * the line is off
147 */
148
149 d1 = (float) (pow (MAP_CLIENT_X / 2 - dx, 2.f) + pow (MAP_CLIENT_Y / 2 - dy, 2.f));
150 r = (float) ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
151 s = (float) ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
152 l = FABS (sqrt (d1) * s);
153
154 if (l <= SPACE_BLOCK)
155 {
156 /* For simplicity, we mirror the coordinates to block the other
157 * quadrants.
158 */
159 set_block (x, y, dx, dy);
160 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
161 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
162 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
163 }
164 }
165 }
166 }
167 }
168}
169
170/*
171 * Used to initialise the array used by the LOS routines.
172 * x,y are indexes into the blocked[][] array.
173 * This recursively sets the blocked line of sight view.
174 * From the blocked[][] array, we know for example
175 * that if some particular space is blocked, it blocks
176 * the view of the spaces 'behind' it, and those blocked
177 * spaces behind it may block other spaces, etc.
178 * In this way, the chain of visibility is set.
179 */
180
181static void
182set_wall (object *op, int x, int y)
183{
184 int i;
185
186 for (i = 0; i < block[x][y].index; i++)
187 {
188 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
189
190 /* ax, ay are the values as adjusted to be in the
191 * socket look structure.
192 */
193 ax = dx - (MAP_CLIENT_X - op->contr->socket->mapx) / 2;
194 ay = dy - (MAP_CLIENT_Y - op->contr->socket->mapy) / 2;
195
196 if (ax < 0 || ax >= op->contr->socket->mapx || ay < 0 || ay >= op->contr->socket->mapy)
197 continue;
198#if 0
199 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
200#endif
201 /* we need to adjust to the fact that the socket
202 * code wants the los to start from the 0,0
203 * and not be relative to middle of los array.
204 */
205 op->contr->blocked_los[ax][ay] = 100;
206 set_wall (op, dx, dy);
207 }
208}
209
210/*
211 * Used to initialise the array used by the LOS routines.
212 * op is the object, x and y values based on MAP_CLIENT_X and Y.
213 * this is because they index the blocked[][] arrays.
214 */
215
216static void
217check_wall (object *op, int x, int y)
218{
219 int ax, ay; 52 sint8 x, y;
53};
220 54
221 if (!block[x][y].index) 55// minimum size, but must be a power of two
222 return; 56#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
223 57
224 /* ax, ay are coordinates as indexed into the look window */ 58// a queue of spaces to calculate
225 ax = x - (MAP_CLIENT_X - op->contr->socket->mapx) / 2; 59static point queue [QUEUE_LENGTH];
226 ay = y - (MAP_CLIENT_Y - op->contr->socket->mapy) / 2; 60static int q1, q2; // queue start, end
227
228 /* If the converted coordinates are outside the viewable
229 * area for the client, return now.
230 */
231 if (ax < 0 || ay < 0 || ax >= op->contr->socket->mapx || ay >= op->contr->socket->mapy)
232 return;
233
234#if 0
235 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
236 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
237#endif
238
239 /* If this space is already blocked, prune the processing - presumably
240 * whatever has set this space to be blocked has done the work and already
241 * done the dependency chain.
242 */
243 if (op->contr->blocked_los[ax][ay] == 100)
244 return;
245
246
247 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
248 set_wall (op, x, y);
249}
250 61
251/* 62/*
252 * Clears/initialises the los-array associated to the player 63 * Clears/initialises the los-array associated to the player
253 * controlling the object. 64 * controlling the object.
254 */ 65 */
255
256void 66void
257clear_los (object *op) 67player::clear_los (sint8 value)
258{ 68{
259 /* This is safer than using the socket->mapx, mapy because 69 memset (los, value, sizeof (los));
260 * we index the blocked_los as a 2 way array, so clearing
261 * the first z spaces may not not cover the spaces we are
262 * actually going to use
263 */
264 (void) memset ((void *) op->contr->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
265} 70}
266 71
267/* 72// enqueue a single mapspace, but only if it hasn't
268 * expand_sight goes through the array of what the given player is 73// been enqueued yet.
269 * able to see, and expands the visible area a bit, so the player will,
270 * to a certain degree, be able to see into corners.
271 * This is somewhat suboptimal, would be better to improve the formula.
272 */
273
274static void 74static void
275expand_sight (object *op) 75enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
276{ 76{
277 int i, x, y, dx, dy; 77 sint8 x = LOS_X0 + dx;
78 sint8 y = LOS_Y0 + dy;
278 79
279 for (x = 1; x < op->contr->socket->mapx - 1; x++) /* loop over inner squares */ 80 if (x < 0 || x >= MAP_CLIENT_X) return;
280 for (y = 1; y < op->contr->socket->mapy - 1; y++) 81 if (y < 0 || y >= MAP_CLIENT_Y) return;
82
83 los_info &l = los[x][y];
84
85 l.flags |= flags;
86
87 if (l.queued)
88 return;
89
90 l.queued = 1;
91
92 queue[q1].x = dx;
93 queue[q1].y = dy;
94
95 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
96}
97
98// run the los algorithm
99// this is a variant of a spiral los algorithm taken from
100// http://www.geocities.com/temerra/los_rays.html
101// which has been simplified and changed considerably, but
102// still is basically the same algorithm.
103static void
104do_los (object *op)
105{
106 player *pl = op->contr;
107
108 int max_radius = max (pl->ns->mapx, pl->ns->mapy) / 2;
109
110 memset (los, 0, sizeof (los));
111
112 q1 = 0; q2 = 0; // initialise queue, not strictly required
113 enqueue (0, 0); // enqueue center
114
115 // treat the origin specially
116 los[LOS_X0][LOS_Y0].visible = 1;
117 pl->los[LOS_X0][LOS_Y0] = 0;
118
119 // loop over all enqueued points until the queue is empty
120 // the order in which this is done ensures that we
121 // never touch a mapspace whose input spaces we haven't checked
122 // yet.
123 while (q1 != q2)
124 {
125 sint8 dx = queue[q2].x;
126 sint8 dy = queue[q2].y;
127
128 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
129
130 sint8 x = LOS_X0 + dx;
131 sint8 y = LOS_Y0 + dy;
132
133 //int distance = idistance (dx, dy); if (distance > max_radius) continue;//D
134 int distance = 0;//D
135
136 los_info &l = los[x][y];
137
138 if (expect_true (l.flags & (LOS_XI | LOS_YI)))
281 { 139 {
282 if (!op->contr->blocked_los[x][y] && 140 l.culled = 1;
283 !(get_map_flags (op->map, NULL, 141
284 op->x - op->contr->socket->mapx / 2 + x, 142 // check contributing spaces, first horizontal
285 op->y - op->contr->socket->mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))) 143 if (expect_true (l.flags & LOS_XI))
286 { 144 {
145 los_info *xi = &los[x - sign (dx)][y];
287 146
288 for (i = 1; i <= 8; i += 1) 147 // don't cull unless obscured
289 { /* mark all directions */ 148 l.culled &= !xi->visible;
290 dx = x + freearr_x[i]; 149
291 dy = y + freearr_y[i]; 150 /* merge input space */
292 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */ 151 if (expect_false (xi->xo || xi->yo))
293 op->contr->blocked_los[dx][dy] = -1; 152 {
153 // The X input can provide two main pieces of information:
154 // 1. Progressive X obscurity.
155 // 2. Recessive Y obscurity.
156
157 // Progressive X obscurity, favouring recessive input angle
158 if (xi->xe > 0 && l.xo == 0)
159 {
160 l.xe = xi->xe - xi->yo;
161 l.ye = xi->ye + xi->yo;
162 l.xo = xi->xo;
163 l.yo = xi->yo;
164 }
165
166 // Recessive Y obscurity
167 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
168 {
169 l.ye = xi->yo + xi->ye;
170 l.xe = xi->xe - xi->yo;
171 l.xo = xi->xo;
172 l.yo = xi->yo;
173 }
294 } 174 }
295 } 175 }
176
177 // check contributing spaces, last vertical, identical structure
178 if (expect_true (l.flags & LOS_YI))
179 {
180 los_info *yi = &los[x][y - sign (dy)];
181
182 // don't cull unless obscured
183 l.culled &= !yi->visible;
184
185 /* merge input space */
186 if (expect_false (yi->yo || yi->xo))
187 {
188 // The Y input can provide two main pieces of information:
189 // 1. Progressive Y obscurity.
190 // 2. Recessive X obscurity.
191
192 // Progressive Y obscurity, favouring recessive input angle
193 if (yi->ye > 0 && l.yo == 0)
194 {
195 l.ye = yi->ye - yi->xo;
196 l.xe = yi->xe + yi->xo;
197 l.yo = yi->yo;
198 l.xo = yi->xo;
199 }
200
201 // Recessive X obscurity
202 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
203 {
204 l.xe = yi->xo + yi->xe;
205 l.ye = yi->ye - yi->xo;
206 l.yo = yi->yo;
207 l.xo = yi->xo;
208 }
209 }
210 }
211
212 // check whether this space blocks the view
213 maptile *m = op->map;
214 sint16 nx = op->x + dx;
215 sint16 ny = op->y + dy;
216
217 if (expect_true (!xy_normalise (m, nx, ny))
218 || expect_false (m->at (nx, ny).flags () & P_BLOCKSVIEW))
219 {
220 l.xo = l.xe = abs (dx);
221 l.yo = l.ye = abs (dy);
222
223 // we obscure dependents, but might be visible
224 // copy the los from the square towards the player,
225 // so outward diagonal corners are lit.
226 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
227 l.visible = false;
228 }
229 else
230 {
231 // we are not blocked, so calculate visibility, by checking
232 // whether we are inside or outside the shadow
233 l.visible = (l.xe <= 0 || l.xe > l.xo)
234 && (l.ye <= 0 || l.ye > l.yo);
235
236 pl->los[x][y] = l.culled ? LOS_BLOCKED
237 : l.visible ? max (0, 2 - max_radius + distance)
238 : 3;
239 }
240
296 } 241 }
297 242
298 if (MAP_DARKNESS (op->map) > 0) /* player is on a dark map */ 243 // Expands by the unit length in each component's current direction.
299 expand_lighted_sight (op); 244 // If a component has no direction, then it is expanded in both of its
300 245 // positive and negative directions.
301 246 if (!l.culled)
302 /* clear mark squares */ 247 {
303 for (x = 0; x < op->contr->socket->mapx; x++) 248 if (dx >= 0) enqueue (dx + 1, dy, LOS_XI);
304 for (y = 0; y < op->contr->socket->mapy; y++) 249 if (dx <= 0) enqueue (dx - 1, dy, LOS_XI);
305 if (op->contr->blocked_los[x][y] < 0) 250 if (dy >= 0) enqueue (dx, dy + 1, LOS_YI);
306 op->contr->blocked_los[x][y] = 0; 251 if (dy <= 0) enqueue (dx, dy - 1, LOS_YI);
252 }
253 }
307} 254}
308
309
310
311 255
312/* returns true if op carries one or more lights 256/* returns true if op carries one or more lights
313 * This is a trivial function now days, but it used to 257 * This is a trivial function now days, but it used to
314 * be a bit longer. Probably better for callers to just 258 * be a bit longer. Probably better for callers to just
315 * check the op->glow_radius instead of calling this. 259 * check the op->glow_radius instead of calling this.
316 */ 260 */
317
318int 261int
319has_carried_lights (const object *op) 262has_carried_lights (const object *op)
320{ 263{
321 /* op may glow! */ 264 /* op may glow! */
322 if (op->glow_radius > 0) 265 if (op->glow_radius > 0)
323 return 1; 266 return 1;
324 267
325 return 0; 268 return 0;
326} 269}
327 270
271/* radius, distance => lightness adjust */
272static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
273
274static struct los_init
275{
276 los_init ()
277 {
278 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
279 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
280 {
281 // max intensity
282 int intensity = min (LOS_MAX, abs (radius) + 1);
283
284 // actual intensity
285 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
286
287 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
288 ? min (3, intensity)
289 : LOS_MAX - intensity;
290 }
291 }
292} los_init;
293
294sint8
295los_brighten (sint8 b, sint8 l)
296{
297 return b == LOS_BLOCKED ? b : min (b, l);
298}
299
300sint8
301los_darken (sint8 b, sint8 l)
302{
303 return max (b, l);
304}
305
306template<sint8 change_it (sint8, sint8)>
328static void 307static void
329expand_lighted_sight (object *op) 308apply_light (object *op, int dx, int dy, int light, const sint8 *atten_table)
330{ 309{
331 int x, y, darklevel, ax, ay, basex, basey, mflags, light, x1, y1; 310 // min or max the circular area around basex, basey
311 player *pl = op->contr;
312
313 dx += LOS_X0;
314 dy += LOS_Y0;
315
316 int hx = op->contr->ns->mapx / 2;
317 int hy = op->contr->ns->mapy / 2;
318
319 int ax0 = max (LOS_X0 - hx, dx - light);
320 int ay0 = max (LOS_Y0 - hy, dy - light);
321 int ax1 = min (dx + light, LOS_X0 + hx);
322 int ay1 = min (dy + light, LOS_Y0 + hy);
323
324 for (int ax = ax0; ax <= ax1; ax++)
325 for (int ay = ay0; ay <= ay1; ay++)
326 pl->los[ax][ay] =
327 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
328}
329
330/* add light, by finding all (non-null) nearby light sources, then
331 * mark those squares specially.
332 */
333static void
334apply_lights (object *op)
335{
336 int darklevel, mflags, light, x1, y1;
332 maptile *m = op->map; 337 maptile *m = op->map;
333 sint16 nx, ny; 338 sint16 nx, ny;
334 339
335 darklevel = MAP_DARKNESS (m); 340 darklevel = m->darkness;
336 341
337 /* If the player can see in the dark, lower the darklevel for him */ 342 /* If the player can see in the dark, lower the darklevel for him */
338 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK)) 343 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK))
339 darklevel -= 2; 344 darklevel -= LOS_MAX / 2;
340
341 /* add light, by finding all (non-null) nearby light sources, then
342 * mark those squares specially. If the darklevel<1, there is no
343 * reason to do this, so we skip this function
344 */
345
346 if (darklevel < 1)
347 return;
348 345
349 /* Do a sanity check. If not valid, some code below may do odd 346 /* Do a sanity check. If not valid, some code below may do odd
350 * things. 347 * things.
351 */ 348 */
352 if (darklevel > MAX_DARKNESS) 349 if (darklevel > MAX_DARKNESS)
353 { 350 {
354 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, op->map->path, darklevel); 351 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel);
355 darklevel = MAX_DARKNESS; 352 darklevel = MAX_DARKNESS;
356 } 353 }
357 354
358 /* First, limit player furthest (unlighted) vision */ 355 int half_x = op->contr->ns->mapx / 2;
359 for (x = 0; x < op->contr->socket->mapx; x++) 356 int half_y = op->contr->ns->mapy / 2;
360 for (y = 0; y < op->contr->socket->mapy; y++)
361 if (op->contr->blocked_los[x][y] != 100)
362 op->contr->blocked_los[x][y] = MAX_LIGHT_RADII;
363 357
364 /* the spaces[] darkness value contains the information we need. 358 int min_x = op->x - half_x - MAX_LIGHT_RADIUS;
365 * Only process the area of interest. 359 int min_y = op->y - half_y - MAX_LIGHT_RADIUS;
366 * the basex, basey values represent the position in the op->contr->blocked_los 360 int max_x = op->x + half_x + MAX_LIGHT_RADIUS;
367 * array. Its easier to just increment them here (and start with the right 361 int max_y = op->y + half_y + MAX_LIGHT_RADIUS;
368 * value) than to recalculate them down below. 362
369 */ 363 int pass2 = 0; // negative lights have an extra pass
370 for (x = (op->x - op->contr->socket->mapx / 2 - MAX_LIGHT_RADII), basex = -MAX_LIGHT_RADII; 364
371 x <= (op->x + op->contr->socket->mapx / 2 + MAX_LIGHT_RADII); x++, basex++) 365 if (darklevel < 1)
366 pass2 = 1;
367 else
372 { 368 {
369 /* first, make everything totally dark */
370 for (int dx = -half_x; dx <= half_x; dx++)
371 for (int dy = -half_x; dy <= half_y; dy++)
372 if (op->contr->los[dx + LOS_X0][dy + LOS_Y0] != LOS_BLOCKED)
373 op->contr->los[dx + LOS_X0][dy + LOS_Y0] = LOS_MAX;
373 374
374 for (y = (op->y - op->contr->socket->mapy / 2 - MAX_LIGHT_RADII), basey = -MAX_LIGHT_RADII; 375 /*
375 y <= (op->y + op->contr->socket->mapy / 2 + MAX_LIGHT_RADII); y++, basey++) 376 * Only process the area of interest.
377 * the basex, basey values represent the position in the op->contr->los
378 * array. Its easier to just increment them here (and start with the right
379 * value) than to recalculate them down below.
380 */
381 for (int x = min_x; x <= max_x; x++)
382 for (int y = min_y; y <= max_y; y++)
376 { 383 {
384 maptile *m = op->map;
385 sint16 nx = x;
386 sint16 ny = y;
387
388 if (!xy_normalise (m, nx, ny))
389 continue;
390
391 mapspace &ms = m->at (nx, ny);
392 ms.update ();
393 sint8 light = ms.light;
394
395 if (expect_false (light))
396 if (light < 0)
397 pass2 = 1;
398 else
399 apply_light<los_brighten> (op, x - op->x, y - op->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
400 }
401
402 /* grant some vision to the player, based on the darklevel */
403 {
404 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_LIGHT_RADIUS);
405
406 apply_light<los_brighten> (op, 0, 0, light, light_atten [light + MAX_LIGHT_RADIUS]);
407 }
408 }
409
410 // possibly do 2nd pass for rare negative glow radii
411 // for effect, those are always considered to be stronger than anything else
412 // but they can't darken a place completely
413 if (pass2)
414 for (int x = min_x; x <= max_x; x++)
415 for (int y = min_y; y <= max_y; y++)
416 {
377 m = op->map; 417 maptile *m = op->map;
378 nx = x; 418 sint16 nx = x;
379 ny = y; 419 sint16 ny = y;
380 420
381 mflags = get_map_flags (m, &m, nx, ny, &nx, &ny); 421 if (!xy_normalise (m, nx, ny))
382
383 if (mflags & P_OUT_OF_MAP)
384 continue; 422 continue;
385 423
386 /* This space is providing light, so we need to brighten up the 424 mapspace &ms = m->at (nx, ny);
387 * spaces around here. 425 ms.update ();
388 */ 426 sint8 light = ms.light;
389 light = GET_MAP_LIGHT (m, nx, ny);
390 if (light != 0)
391 {
392#if 0
393 LOG (llevDebug, "expand_lighted_sight: Found light at x=%d, y=%d, basex=%d, basey=%d\n", x, y, basex, basey);
394#endif
395 for (ax = basex - light; ax <= basex + light; ax++)
396 {
397 if (ax < 0 || ax >= op->contr->socket->mapx)
398 continue;
399 for (ay = basey - light; ay <= basey + light; ay++)
400 {
401 if (ay < 0 || ay >= op->contr->socket->mapy)
402 continue;
403 427
404 /* If the space is fully blocked, do nothing. Otherwise, we 428 if (expect_false (light < 0))
405 * brighten the space. The further the light is away from the 429 apply_light<los_darken> (op, x - op->x, y - op->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
406 * source (basex-x), the less effect it has. Though light used
407 * to dim in a square manner, it now dims in a circular manner
408 * using the the pythagorean theorem. glow_radius still
409 * represents the radius
410 */
411 if (op->contr->blocked_los[ax][ay] != 100)
412 {
413 x1 = abs (basex - ax) * abs (basex - ax);
414 y1 = abs (basey - ay) * abs (basey - ay);
415 if (light > 0)
416 op->contr->blocked_los[ax][ay] -= MAX ((light - isqrt (x1 + y1)), 0);
417 if (light < 0)
418 op->contr->blocked_los[ax][ay] -= MIN ((light + isqrt (x1 + y1)), 0);
419 }
420 } /* for ay */
421 } /* for ax */
422 } /* if this space is providing light */
423 } /* for y */
424 } /* for x */
425
426 /* Outdoor should never really be completely pitch black dark like
427 * a dungeon, so let the player at least see a little around themselves
428 */
429 if (op->map->outdoor && darklevel > (MAX_DARKNESS - 3))
430 {
431 if (op->contr->blocked_los[op->contr->socket->mapx / 2][op->contr->socket->mapy / 2] > (MAX_DARKNESS - 3))
432 op->contr->blocked_los[op->contr->socket->mapx / 2][op->contr->socket->mapy / 2] = MAX_DARKNESS - 3;
433
434 for (x = -1; x <= 1; x++)
435 for (y = -1; y <= 1; y++)
436 {
437 if (op->contr->blocked_los[x + op->contr->socket->mapx / 2][y + op->contr->socket->mapy / 2] > (MAX_DARKNESS - 2))
438 op->contr->blocked_los[x + op->contr->socket->mapx / 2][y + op->contr->socket->mapy / 2] = MAX_DARKNESS - 2;
439 } 430 }
440 }
441 /* grant some vision to the player, based on the darklevel */
442 for (x = darklevel - MAX_DARKNESS; x < MAX_DARKNESS + 1 - darklevel; x++)
443 for (y = darklevel - MAX_DARKNESS; y < MAX_DARKNESS + 1 - darklevel; y++)
444 if (!(op->contr->blocked_los[x + op->contr->socket->mapx / 2][y + op->contr->socket->mapy / 2] == 100))
445 op->contr->blocked_los[x + op->contr->socket->mapx / 2][y + op->contr->socket->mapy / 2] -=
446 MAX (0, 6 - darklevel - MAX (abs (x), abs (y)));
447} 431}
448 432
449/* blinded_sight() - sets all veiwable squares to blocked except 433/* blinded_sight() - sets all viewable squares to blocked except
450 * for the one the central one that the player occupies. A little 434 * for the one the central one that the player occupies. A little
451 * odd that you can see yourself (and what your standing on), but 435 * odd that you can see yourself (and what your standing on), but
452 * really need for any reasonable game play. 436 * really need for any reasonable game play.
453 */ 437 */
454
455static void 438static void
456blinded_sight (object *op) 439blinded_sight (object *op)
457{ 440{
458 int x, y; 441 op->contr->los[LOS_X0][LOS_Y0] = 3;
459
460 for (x = 0; x < op->contr->socket->mapx; x++)
461 for (y = 0; y < op->contr->socket->mapy; y++)
462 op->contr->blocked_los[x][y] = 100;
463
464 op->contr->blocked_los[op->contr->socket->mapx / 2][op->contr->socket->mapy / 2] = 0;
465} 442}
466 443
467/* 444/*
468 * update_los() recalculates the array which specifies what is 445 * update_los() recalculates the array which specifies what is
469 * visible for the given player-object. 446 * visible for the given player-object.
470 */ 447 */
471
472void 448void
473update_los (object *op) 449update_los (object *op)
474{ 450{
475 int dx = op->contr->socket->mapx / 2, dy = op->contr->socket->mapy / 2, x, y;
476
477 if (QUERY_FLAG (op, FLAG_REMOVED)) 451 if (QUERY_FLAG (op, FLAG_REMOVED))
478 return; 452 return;
479 453
480 clear_los (op); 454 op->contr->clear_los ();
455
481 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ ) 456 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ )
482 return; 457 memset (op->contr->los, 0, sizeof (op->contr->los));
483
484 /* For larger maps, this is more efficient than the old way which
485 * used the chaining of the block array. Since many space views could
486 * be blocked by different spaces in front, this mean that a lot of spaces
487 * could be examined multile times, as each path would be looked at.
488 */
489 for (x = (MAP_CLIENT_X - op->contr->socket->mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->socket->mapx) / 2 + 1; x++)
490 for (y = (MAP_CLIENT_Y - op->contr->socket->mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->socket->mapy) / 2 + 1; y++)
491 check_wall (op, x, y);
492
493
494 /* do the los of the player. 3 (potential) cases */
495 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */ 458 else if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
496 blinded_sight (op); 459 blinded_sight (op);
497 else 460 else
498 expand_sight (op); 461 {
462 do_los (op);
463 apply_lights (op);
464 }
499 465
500 if (QUERY_FLAG (op, FLAG_XRAYS)) 466 if (QUERY_FLAG (op, FLAG_XRAYS))
501 {
502 int x, y;
503
504 for (x = -2; x <= 2; x++) 467 for (int dx = -2; dx <= 2; dx++)
505 for (y = -2; y <= 2; y++) 468 for (int dy = -2; dy <= 2; dy++)
506 op->contr->blocked_los[dx + x][dy + y] = 0; 469 op->contr->los[dx + LOS_X0][dy + LOS_X0] = 0;
507 }
508} 470}
509 471
510/* update all_map_los is like update_all_los below, 472/* update all_map_los is like update_all_los below,
511 * but updates everyone on the map, no matter where they 473 * but updates everyone on the map, no matter where they
512 * are. This generally should not be used, as a per 474 * are. This generally should not be used, as a per
513 * specific map change doesn't make much sense when tiling 475 * specific map change doesn't make much sense when tiling
514 * is considered (lowering darkness would certainly be a 476 * is considered (lowering darkness would certainly be a
515 * strange effect if done on a tile map, as it makes 477 * strange effect if done on a tile map, as it makes
516 * the distinction between maps much more obvious to the 478 * the distinction between maps much more obvious to the
517 * players, which is should not be. 479 * players, which is should not be.
519 * change_map_light function 481 * change_map_light function
520 */ 482 */
521void 483void
522update_all_map_los (maptile *map) 484update_all_map_los (maptile *map)
523{ 485{
524 player *pl; 486 for_all_players (pl)
525
526 for (pl = first_player; pl != NULL; pl = pl->next)
527 {
528 if (pl->ob->map == map) 487 if (pl->ob && pl->ob->map == map)
529 pl->do_los = 1; 488 pl->do_los = 1;
530 }
531} 489}
532
533 490
534/* 491/*
535 * This function makes sure that update_los() will be called for all 492 * This function makes sure that update_los() will be called for all
536 * players on the given map within the next frame. 493 * players on the given map within the next frame.
537 * It is triggered by removal or inserting of objects which blocks 494 * It is triggered by removal or inserting of objects which blocks
541 * means that just being on the same map is not sufficient - the 498 * means that just being on the same map is not sufficient - the
542 * space that changes must be withing your viewable area. 499 * space that changes must be withing your viewable area.
543 * 500 *
544 * map is the map that changed, x and y are the coordinates. 501 * map is the map that changed, x and y are the coordinates.
545 */ 502 */
546
547void 503void
548update_all_los (const maptile *map, int x, int y) 504update_all_los (const maptile *map, int x, int y)
549{ 505{
550 player *pl; 506 for_all_players (pl)
551
552 for (pl = first_player; pl != NULL; pl = pl->next)
553 { 507 {
554 /* Player should not have a null map, but do this 508 /* Player should not have a null map, but do this
555 * check as a safety 509 * check as a safety
556 */ 510 */
557 if (!pl->ob->map) 511 if (!pl->ob || !pl->ob->map || !pl->ns)
558 continue; 512 continue;
559 513
560 /* Same map is simple case - see if pl is close enough. 514 /* Same map is simple case - see if pl is close enough.
561 * Note in all cases, we did the check for same map first, 515 * Note in all cases, we did the check for same map first,
562 * and then see if the player is close enough and update 516 * and then see if the player is close enough and update
566 * so by setting it up this way, we trim processing 520 * so by setting it up this way, we trim processing
567 * some. 521 * some.
568 */ 522 */
569 if (pl->ob->map == map) 523 if (pl->ob->map == map)
570 { 524 {
571 if ((abs (pl->ob->x - x) <= pl->socket->mapx / 2) && (abs (pl->ob->y - y) <= pl->socket->mapy / 2)) 525 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
572 pl->do_los = 1; 526 pl->do_los = 1;
573 } 527 }
528
574 /* Now we check to see if player is on adjacent 529 /* Now we check to see if player is on adjacent
575 * maps to the one that changed and also within 530 * maps to the one that changed and also within
576 * view. The tile_maps[] could be null, but in that 531 * view. The tile_maps[] could be null, but in that
577 * case it should never match the pl->ob->map, so 532 * case it should never match the pl->ob->map, so
578 * we want ever try to dereference any of the data in it. 533 * we want ever try to dereference any of the data in it.
579 */ 534 *
580
581 /* The logic for 0 and 3 is to see how far the player is 535 * The logic for 0 and 3 is to see how far the player is
582 * from the edge of the map (height/width) - pl->ob->(x,y) 536 * from the edge of the map (height/width) - pl->ob->(x,y)
583 * and to add current position on this map - that gives a 537 * and to add current position on this map - that gives a
584 * distance. 538 * distance.
585 * For 1 and 2, we check to see how far the given 539 * For 1 and 2, we check to see how far the given
586 * coordinate (x,y) is from the corresponding edge, 540 * coordinate (x,y) is from the corresponding edge,
587 * and then add the players location, which gives 541 * and then add the players location, which gives
588 * a distance. 542 * a distance.
589 */ 543 */
590 else if (pl->ob->map == map->tile_map[0]) 544 else if (pl->ob->map == map->tile_map[0])
591 { 545 {
592 if ((abs (pl->ob->x - x) <= pl->socket->mapx / 2) && (abs (y + MAP_HEIGHT (map->tile_map[0]) - pl->ob->y) <= pl->socket->mapy / 2)) 546 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
593 pl->do_los = 1; 547 pl->do_los = 1;
594 } 548 }
595 else if (pl->ob->map == map->tile_map[2]) 549 else if (pl->ob->map == map->tile_map[2])
596 { 550 {
597 if ((abs (pl->ob->x - x) <= pl->socket->mapx / 2) && (abs (pl->ob->y + MAP_HEIGHT (map) - y) <= pl->socket->mapy / 2)) 551 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
598 pl->do_los = 1; 552 pl->do_los = 1;
599 } 553 }
600 else if (pl->ob->map == map->tile_map[1]) 554 else if (pl->ob->map == map->tile_map[1])
601 { 555 {
602 if ((abs (pl->ob->x + MAP_WIDTH (map) - x) <= pl->socket->mapx / 2) && (abs (pl->ob->y - y) <= pl->socket->mapy / 2)) 556 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
603 pl->do_los = 1; 557 pl->do_los = 1;
604 } 558 }
605 else if (pl->ob->map == map->tile_map[3]) 559 else if (pl->ob->map == map->tile_map[3])
606 { 560 {
607 if ((abs (x + MAP_WIDTH (map->tile_map[3]) - pl->ob->x) <= pl->socket->mapx / 2) && (abs (pl->ob->y - y) <= pl->socket->mapy / 2)) 561 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
608 pl->do_los = 1; 562 pl->do_los = 1;
609 } 563 }
610 }
611}
612
613/*
614 * Debug-routine which dumps the array which specifies the visible
615 * area of a player. Triggered by the z key in DM mode.
616 */
617
618void
619print_los (object *op)
620{
621 int x, y;
622 char buf[50], buf2[10];
623
624 strcpy (buf, " ");
625 for (x = 0; x < op->contr->socket->mapx; x++)
626 {
627 sprintf (buf2, "%2d", x);
628 strcat (buf, buf2);
629 }
630 new_draw_info (NDI_UNIQUE, 0, op, buf);
631 for (y = 0; y < op->contr->socket->mapy; y++)
632 {
633 sprintf (buf, "%2d:", y);
634 for (x = 0; x < op->contr->socket->mapx; x++)
635 {
636 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]);
637 strcat (buf, buf2);
638 }
639 new_draw_info (NDI_UNIQUE, 0, op, buf);
640 } 564 }
641} 565}
642 566
643/* 567/*
644 * make_sure_seen: The object is supposed to be visible through walls, thus 568 * make_sure_seen: The object is supposed to be visible through walls, thus
645 * check if any players are nearby, and edit their LOS array. 569 * check if any players are nearby, and edit their LOS array.
646 */ 570 */
647
648void 571void
649make_sure_seen (const object *op) 572make_sure_seen (const object *op)
650{ 573{
651 player *pl; 574 for_all_players (pl)
652
653 for (pl = first_player; pl; pl = pl->next)
654 if (pl->ob->map == op->map && 575 if (pl->ob->map == op->map &&
655 pl->ob->y - pl->socket->mapy / 2 <= op->y && 576 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
656 pl->ob->y + pl->socket->mapy / 2 >= op->y && pl->ob->x - pl->socket->mapx / 2 <= op->x && pl->ob->x + pl->socket->mapx / 2 >= op->x) 577 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
657 pl->blocked_los[pl->socket->mapx / 2 + op->x - pl->ob->x][pl->socket->mapy / 2 + op->y - pl->ob->y] = 0; 578 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_X0] = 0;
658} 579}
659 580
660/* 581/*
661 * make_sure_not_seen: The object which is supposed to be visible through 582 * make_sure_not_seen: The object which is supposed to be visible through
662 * walls has just been removed from the map, so update the los of any 583 * walls has just been removed from the map, so update the los of any
663 * players within its range 584 * players within its range
664 */ 585 */
665
666void 586void
667make_sure_not_seen (const object *op) 587make_sure_not_seen (const object *op)
668{ 588{
669 player *pl; 589 for_all_players (pl)
670
671 for (pl = first_player; pl; pl = pl->next)
672 if (pl->ob->map == op->map && 590 if (pl->ob->map == op->map &&
673 pl->ob->y - pl->socket->mapy / 2 <= op->y && 591 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
674 pl->ob->y + pl->socket->mapy / 2 >= op->y && pl->ob->x - pl->socket->mapx / 2 <= op->x && pl->ob->x + pl->socket->mapx / 2 >= op->x) 592 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
675 pl->do_los = 1; 593 pl->do_los = 1;
676} 594}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines