ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.4 by root, Sun Sep 10 16:00:23 2006 UTC vs.
Revision 1.47 by root, Tue Dec 23 01:51:27 2008 UTC

1
2/* 1/*
3 * static char *rcsid_los_c = 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
4 * "$Id: los.C,v 1.4 2006/09/10 16:00:23 root Exp $"; 3 *
5 */ 4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
6
7/*
8 CrossFire, A Multiplayer game for X-windows
9
10 Copyright (C) 2002 Mark Wedel & Crossfire Development Team 5 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
11 Copyright (C) 1992 Frank Tore Johansen 6 * Copyright (©) 1992,2007 Frank Tore Johansen
12 7 *
13 This program is free software; you can redistribute it and/or modify 8 * Deliantra is free software: you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by 9 * it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or 10 * the Free Software Foundation, either version 3 of the License, or
16 (at your option) any later version. 11 * (at your option) any later version.
17 12 *
18 This program is distributed in the hope that it will be useful, 13 * This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details. 16 * GNU General Public License for more details.
22 17 *
23 You should have received a copy of the GNU General Public License 18 * You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software 19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
25 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 *
26 21 * The authors can be reached via e-mail to <support@deliantra.net>
27 The authors can be reached via e-mail at crossfire-devel@real-time.com
28*/ 22 */
29 23
30/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */ 24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
31 25
32#include <global.h> 26#include <global.h>
33#include <funcpoint.h>
34#include <math.h> 27#include <cmath>
35
36
37/* Distance must be less than this for the object to be blocked.
38 * An object is 1.0 wide, so if set to 0.5, it means the object
39 * that blocks half the view (0.0 is complete block) will
40 * block view in our tables.
41 * .4 or less lets you see through walls. .5 is about right.
42 */
43
44#define SPACE_BLOCK 0.5
45
46typedef struct blstr
47{
48 int x[4], y[4];
49 int index;
50} blocks;
51
52blocks block[MAP_CLIENT_X][MAP_CLIENT_Y];
53 28
54static void expand_lighted_sight (object *op); 29static void expand_lighted_sight (object *op);
55 30
56/* 31enum {
57 * Used to initialise the array used by the LOS routines. 32 LOS_XI = 0x01,
58 * What this sets if that x,y blocks the view of bx,by 33 LOS_YI = 0x02,
59 * This then sets up a relation - for example, something 34};
60 * at 5,4 blocks view at 5,3 which blocks view at 5,2
61 * etc. So when we check 5,4 and find it block, we have
62 * the data to know that 5,3 and 5,2 and 5,1 should also
63 * be blocked.
64 */
65 35
66static void 36struct los_info
67set_block (int x, int y, int bx, int by)
68{ 37{
69 int index = block[x][y].index, i; 38 sint8 xo, yo; // obscure angle
39 sint8 xe, ye; // angle deviation
40 uint8 culled; // culled from "tree"
41 uint8 queued; // already queued
42 uint8 visible;
43 uint8 flags; // LOS_XI/YI
44};
70 45
71 /* Due to flipping, we may get duplicates - better safe than sorry. 46// temporary storage for the los algorithm,
72 */ 47// one los_info for each lightable map space
73 for (i = 0; i < index; i++) 48static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
74 {
75 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
76 return;
77 }
78 49
79 block[x][y].x[index] = bx; 50struct point
80 block[x][y].y[index] = by;
81 block[x][y].index++;
82#ifdef LOS_DEBUG
83 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
84#endif
85}
86
87/*
88 * initialises the array used by the LOS routines.
89 */
90
91/* since we are only doing the upper left quadrant, only
92 * these spaces could possibly get blocked, since these
93 * are the only ones further out that are still possibly in the
94 * sightline.
95 */
96
97void
98init_block (void)
99{ 51{
100 int x, y, dx, dy, i;
101 static int block_x[3] = { -1, -1, 0 }, block_y[3] =
102 {
103 -1, 0, -1};
104
105 for (x = 0; x < MAP_CLIENT_X; x++)
106 for (y = 0; y < MAP_CLIENT_Y; y++)
107 {
108 block[x][y].index = 0;
109 }
110
111
112 /* The table should be symmetric, so only do the upper left
113 * quadrant - makes the processing easier.
114 */
115 for (x = 1; x <= MAP_CLIENT_X / 2; x++)
116 {
117 for (y = 1; y <= MAP_CLIENT_Y / 2; y++)
118 {
119 for (i = 0; i < 3; i++)
120 {
121 dx = x + block_x[i];
122 dy = y + block_y[i];
123
124 /* center space never blocks */
125 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
126 continue;
127
128 /* If its a straight line, its blocked */
129 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
130 {
131 /* For simplicity, we mirror the coordinates to block the other
132 * quadrants.
133 */
134 set_block (x, y, dx, dy);
135 if (x == MAP_CLIENT_X / 2)
136 {
137 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
138 }
139 else if (y == MAP_CLIENT_Y / 2)
140 {
141 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
142 }
143 }
144 else
145 {
146 float d1, r, s, l;
147
148 /* We use the algorihm that found out how close the point
149 * (x,y) is to the line from dx,dy to the center of the viewable
150 * area. l is the distance from x,y to the line.
151 * r is more a curiosity - it lets us know what direction (left/right)
152 * the line is off
153 */
154
155 d1 = (float) (pow (MAP_CLIENT_X / 2 - dx, 2) + pow (MAP_CLIENT_Y / 2 - dy, 2));
156 r = (float) ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
157 s = (float) ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
158 l = FABS (sqrt (d1) * s);
159
160 if (l <= SPACE_BLOCK)
161 {
162 /* For simplicity, we mirror the coordinates to block the other
163 * quadrants.
164 */
165 set_block (x, y, dx, dy);
166 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
167 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
168 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
169 }
170 }
171 }
172 }
173 }
174}
175
176/*
177 * Used to initialise the array used by the LOS routines.
178 * x,y are indexes into the blocked[][] array.
179 * This recursively sets the blocked line of sight view.
180 * From the blocked[][] array, we know for example
181 * that if some particular space is blocked, it blocks
182 * the view of the spaces 'behind' it, and those blocked
183 * spaces behind it may block other spaces, etc.
184 * In this way, the chain of visibility is set.
185 */
186
187static void
188set_wall (object *op, int x, int y)
189{
190 int i;
191
192 for (i = 0; i < block[x][y].index; i++)
193 {
194 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
195
196 /* ax, ay are the values as adjusted to be in the
197 * socket look structure.
198 */
199 ax = dx - (MAP_CLIENT_X - op->contr->socket.mapx) / 2;
200 ay = dy - (MAP_CLIENT_Y - op->contr->socket.mapy) / 2;
201
202 if (ax < 0 || ax >= op->contr->socket.mapx || ay < 0 || ay >= op->contr->socket.mapy)
203 continue;
204#if 0
205 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
206#endif
207 /* we need to adjust to the fact that the socket
208 * code wants the los to start from the 0,0
209 * and not be relative to middle of los array.
210 */
211 op->contr->blocked_los[ax][ay] = 100;
212 set_wall (op, dx, dy);
213 }
214}
215
216/*
217 * Used to initialise the array used by the LOS routines.
218 * op is the object, x and y values based on MAP_CLIENT_X and Y.
219 * this is because they index the blocked[][] arrays.
220 */
221
222static void
223check_wall (object *op, int x, int y)
224{
225 int ax, ay; 52 sint8 x, y;
53};
226 54
227 if (!block[x][y].index) 55// minimum size, but must be a power of two
228 return; 56#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
229 57
230 /* ax, ay are coordinates as indexed into the look window */ 58// a queue of spaces to calculate
231 ax = x - (MAP_CLIENT_X - op->contr->socket.mapx) / 2; 59static point queue [QUEUE_LENGTH];
232 ay = y - (MAP_CLIENT_Y - op->contr->socket.mapy) / 2; 60static int q1, q2; // queue start, end
233
234 /* If the converted coordinates are outside the viewable
235 * area for the client, return now.
236 */
237 if (ax < 0 || ay < 0 || ax >= op->contr->socket.mapx || ay >= op->contr->socket.mapy)
238 return;
239
240#if 0
241 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
242 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
243#endif
244
245 /* If this space is already blocked, prune the processing - presumably
246 * whatever has set this space to be blocked has done the work and already
247 * done the dependency chain.
248 */
249 if (op->contr->blocked_los[ax][ay] == 100)
250 return;
251
252
253 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
254 set_wall (op, x, y);
255}
256 61
257/* 62/*
258 * Clears/initialises the los-array associated to the player 63 * Clears/initialises the los-array associated to the player
259 * controlling the object. 64 * controlling the object.
260 */ 65 */
261
262void 66void
263clear_los (object *op) 67player::clear_los (sint8 value)
264{ 68{
265 /* This is safer than using the socket->mapx, mapy because 69 memset (los, value, sizeof (los));
266 * we index the blocked_los as a 2 way array, so clearing
267 * the first z spaces may not not cover the spaces we are
268 * actually going to use
269 */
270 (void) memset ((void *) op->contr->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
271} 70}
272 71
273/* 72// enqueue a single mapspace, but only if it hasn't
274 * expand_sight goes through the array of what the given player is 73// been enqueued yet.
275 * able to see, and expands the visible area a bit, so the player will,
276 * to a certain degree, be able to see into corners.
277 * This is somewhat suboptimal, would be better to improve the formula.
278 */
279
280static void 74static void
281expand_sight (object *op) 75enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
282{ 76{
283 int i, x, y, dx, dy; 77 sint8 x = LOS_X0 + dx;
78 sint8 y = LOS_Y0 + dy;
284 79
285 for (x = 1; x < op->contr->socket.mapx - 1; x++) /* loop over inner squares */ 80 if (x < 0 || x >= MAP_CLIENT_X) return;
286 for (y = 1; y < op->contr->socket.mapy - 1; y++) 81 if (y < 0 || y >= MAP_CLIENT_Y) return;
82
83 los_info &l = los[x][y];
84
85 l.flags |= flags;
86
87 if (l.queued)
88 return;
89
90 l.queued = 1;
91
92 queue[q1].x = dx;
93 queue[q1].y = dy;
94
95 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
96}
97
98// run the los algorithm
99// this is a variant of a spiral los algorithm taken from
100// http://www.geocities.com/temerra/los_rays.html
101// which has been simplified and changed considerably, but
102// still is basically the same algorithm.
103static void
104do_los (object *op)
105{
106 player *pl = op->contr;
107
108 int max_radius = max (pl->ns->mapx, pl->ns->mapy) / 2;
109
110 memset (los, 0, sizeof (los));
111
112 q1 = 0; q2 = 0; // initialise queue, not strictly required
113 enqueue (0, 0); // enqueue center
114
115 // treat the origin specially
116 los[LOS_X0][LOS_Y0].visible = 1;
117 pl->los[LOS_X0][LOS_Y0] = 0;
118
119 // loop over all enqueued points until the queue is empty
120 // the order in which this is done ensures that we
121 // never touch a mapspace whose input spaces we haven't checked
122 // yet.
123 while (q1 != q2)
124 {
125 sint8 dx = queue[q2].x;
126 sint8 dy = queue[q2].y;
127
128 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
129
130 sint8 x = LOS_X0 + dx;
131 sint8 y = LOS_Y0 + dy;
132
133 //int distance = idistance (dx, dy); if (distance > max_radius) continue;//D
134 int distance = 0;//D
135
136 los_info &l = los[x][y];
137
138 if (expect_true (l.flags & (LOS_XI | LOS_YI)))
287 { 139 {
288 if (!op->contr->blocked_los[x][y] && 140 l.culled = 1;
289 !(get_map_flags (op->map, NULL, 141
290 op->x - op->contr->socket.mapx / 2 + x, 142 // check contributing spaces, first horizontal
291 op->y - op->contr->socket.mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))) 143 if (expect_true (l.flags & LOS_XI))
292 { 144 {
145 los_info *xi = &los[x - sign (dx)][y];
293 146
294 for (i = 1; i <= 8; i += 1) 147 // don't cull unless obscured
295 { /* mark all directions */ 148 l.culled &= !xi->visible;
296 dx = x + freearr_x[i]; 149
297 dy = y + freearr_y[i]; 150 /* merge input space */
298 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */ 151 if (expect_false (xi->xo || xi->yo))
299 op->contr->blocked_los[dx][dy] = -1; 152 {
153 // The X input can provide two main pieces of information:
154 // 1. Progressive X obscurity.
155 // 2. Recessive Y obscurity.
156
157 // Progressive X obscurity, favouring recessive input angle
158 if (xi->xe > 0 && l.xo == 0)
159 {
160 l.xe = xi->xe - xi->yo;
161 l.ye = xi->ye + xi->yo;
162 l.xo = xi->xo;
163 l.yo = xi->yo;
164 }
165
166 // Recessive Y obscurity
167 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
168 {
169 l.ye = xi->yo + xi->ye;
170 l.xe = xi->xe - xi->yo;
171 l.xo = xi->xo;
172 l.yo = xi->yo;
173 }
300 } 174 }
301 } 175 }
176
177 // check contributing spaces, last vertical, identical structure
178 if (expect_true (l.flags & LOS_YI))
179 {
180 los_info *yi = &los[x][y - sign (dy)];
181
182 // don't cull unless obscured
183 l.culled &= !yi->visible;
184
185 /* merge input space */
186 if (expect_false (yi->yo || yi->xo))
187 {
188 // The Y input can provide two main pieces of information:
189 // 1. Progressive Y obscurity.
190 // 2. Recessive X obscurity.
191
192 // Progressive Y obscurity, favouring recessive input angle
193 if (yi->ye > 0 && l.yo == 0)
194 {
195 l.ye = yi->ye - yi->xo;
196 l.xe = yi->xe + yi->xo;
197 l.yo = yi->yo;
198 l.xo = yi->xo;
199 }
200
201 // Recessive X obscurity
202 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
203 {
204 l.xe = yi->xo + yi->xe;
205 l.ye = yi->ye - yi->xo;
206 l.yo = yi->yo;
207 l.xo = yi->xo;
208 }
209 }
210 }
211
212 // check whether this space blocks the view
213 maptile *m = op->map;
214 sint16 nx = op->x + dx;
215 sint16 ny = op->y + dy;
216
217 if (expect_true (!xy_normalise (m, nx, ny))
218 || expect_false (m->at (nx, ny).flags () & P_BLOCKSVIEW))
219 {
220 l.xo = l.xe = abs (dx);
221 l.yo = l.ye = abs (dy);
222
223 // we obscure dependents, but might be visible
224 // copy the los from the square towards the player,
225 // so outward diagonal corners are lit.
226 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
227 l.visible = false;
228 }
229 else
230 {
231 // we are not blocked, so calculate visibility, by checking
232 // whether we are inside or outside the shadow
233 l.visible = (l.xe <= 0 || l.xe > l.xo)
234 && (l.ye <= 0 || l.ye > l.yo);
235
236 pl->los[x][y] = l.culled ? LOS_BLOCKED
237 : l.visible ? max (0, 2 - max_radius + distance)
238 : 3;
239 }
240
302 } 241 }
303 242
304 if (MAP_DARKNESS (op->map) > 0) /* player is on a dark map */ 243 // Expands by the unit length in each component's current direction.
305 expand_lighted_sight (op); 244 // If a component has no direction, then it is expanded in both of its
306 245 // positive and negative directions.
307 246 if (!l.culled)
308 /* clear mark squares */ 247 {
309 for (x = 0; x < op->contr->socket.mapx; x++) 248 if (dx >= 0) enqueue (dx + 1, dy, LOS_XI);
310 for (y = 0; y < op->contr->socket.mapy; y++) 249 if (dx <= 0) enqueue (dx - 1, dy, LOS_XI);
311 if (op->contr->blocked_los[x][y] < 0) 250 if (dy >= 0) enqueue (dx, dy + 1, LOS_YI);
312 op->contr->blocked_los[x][y] = 0; 251 if (dy <= 0) enqueue (dx, dy - 1, LOS_YI);
252 }
253 }
313} 254}
314
315
316
317 255
318/* returns true if op carries one or more lights 256/* returns true if op carries one or more lights
319 * This is a trivial function now days, but it used to 257 * This is a trivial function now days, but it used to
320 * be a bit longer. Probably better for callers to just 258 * be a bit longer. Probably better for callers to just
321 * check the op->glow_radius instead of calling this. 259 * check the op->glow_radius instead of calling this.
322 */ 260 */
323
324int 261int
325has_carried_lights (const object *op) 262has_carried_lights (const object *op)
326{ 263{
327 /* op may glow! */ 264 /* op may glow! */
328 if (op->glow_radius > 0) 265 if (op->glow_radius > 0)
329 return 1; 266 return 1;
330 267
331 return 0; 268 return 0;
332} 269}
333 270
271/* radius, distance => lightness adjust */
272static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
273static sint8 vision_atten[MAX_DARKNESS + 1][MAX_DARKNESS * 3 / 2 + 1];
274
275static struct los_init
276{
277 los_init ()
278 {
279 /* for lights */
280 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
281 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
282 {
283 // max intensity
284 int intensity = min (LOS_MAX, abs (radius) + 1);
285
286 // actual intensity
287 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
288
289 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
290 ? min (3, intensity)
291 : LOS_MAX - intensity;
292 }
293
294 /* for general vision */
295 for (int radius = 0; radius <= MAX_DARKNESS; ++radius)
296 for (int distance = 0; distance <= MAX_DARKNESS * 3 / 2; ++distance)
297 {
298 vision_atten [radius][distance] = distance <= radius ? 3 : 4;
299 }
300 }
301} los_init;
302
303sint8
304los_brighten (sint8 b, sint8 l)
305{
306 return b == LOS_BLOCKED ? b : min (b, l);
307}
308
309sint8
310los_darken (sint8 b, sint8 l)
311{
312 return max (b, l);
313}
314
315template<sint8 change_it (sint8, sint8)>
334static void 316static void
335expand_lighted_sight (object *op) 317apply_light (object *op, int dx, int dy, int light, const sint8 *atten_table)
336{ 318{
337 int x, y, darklevel, ax, ay, basex, basey, mflags, light, x1, y1; 319 // min or max the circular area around basex, basey
320 player *pl = op->contr;
321
322 dx += LOS_X0;
323 dy += LOS_Y0;
324
325 int hx = op->contr->ns->mapx / 2;
326 int hy = op->contr->ns->mapy / 2;
327
328 int ax0 = max (LOS_X0 - hx, dx - light);
329 int ay0 = max (LOS_Y0 - hy, dy - light);
330 int ax1 = min (dx + light, LOS_X0 + hx);
331 int ay1 = min (dy + light, LOS_Y0 + hy);
332
333 for (int ax = ax0; ax <= ax1; ax++)
334 for (int ay = ay0; ay <= ay1; ay++)
335 pl->los[ax][ay] =
336 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
337}
338
339/* add light, by finding all (non-null) nearby light sources, then
340 * mark those squares specially.
341 */
342static void
343apply_lights (object *op)
344{
345 int darklevel, mflags, light, x1, y1;
338 mapstruct *m = op->map; 346 maptile *m = op->map;
339 sint16 nx, ny; 347 sint16 nx, ny;
340 348
341 darklevel = MAP_DARKNESS (m); 349 darklevel = m->darklevel ();
342 350
343 /* If the player can see in the dark, lower the darklevel for him */ 351 /* If the player can see in the dark, lower the darklevel for him */
344 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK)) 352 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK))
345 darklevel -= 2; 353 darklevel -= 2;
346
347 /* add light, by finding all (non-null) nearby light sources, then
348 * mark those squares specially. If the darklevel<1, there is no
349 * reason to do this, so we skip this function
350 */
351
352 if (darklevel < 1)
353 return;
354 354
355 /* Do a sanity check. If not valid, some code below may do odd 355 /* Do a sanity check. If not valid, some code below may do odd
356 * things. 356 * things.
357 */ 357 */
358 if (darklevel > MAX_DARKNESS) 358 if (darklevel > MAX_DARKNESS)
359 { 359 {
360 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, op->map->path, darklevel); 360 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel);
361 darklevel = MAX_DARKNESS; 361 darklevel = MAX_DARKNESS;
362 } 362 }
363 363
364 /* First, limit player furthest (unlighted) vision */ 364 int half_x = op->contr->ns->mapx / 2;
365 for (x = 0; x < op->contr->socket.mapx; x++) 365 int half_y = op->contr->ns->mapy / 2;
366 for (y = 0; y < op->contr->socket.mapy; y++)
367 if (op->contr->blocked_los[x][y] != 100)
368 op->contr->blocked_los[x][y] = MAX_LIGHT_RADII;
369 366
370 /* the spaces[] darkness value contains the information we need. 367 int min_x = op->x - half_x - MAX_LIGHT_RADIUS;
371 * Only process the area of interest. 368 int min_y = op->y - half_y - MAX_LIGHT_RADIUS;
372 * the basex, basey values represent the position in the op->contr->blocked_los 369 int max_x = op->x + half_x + MAX_LIGHT_RADIUS;
373 * array. Its easier to just increment them here (and start with the right 370 int max_y = op->y + half_y + MAX_LIGHT_RADIUS;
374 * value) than to recalculate them down below. 371
375 */ 372 int pass2 = 0; // negative lights have an extra pass
376 for (x = (op->x - op->contr->socket.mapx / 2 - MAX_LIGHT_RADII), basex = -MAX_LIGHT_RADII; 373
377 x <= (op->x + op->contr->socket.mapx / 2 + MAX_LIGHT_RADII); x++, basex++) 374 if (darklevel < 1)
375 pass2 = 1;
376 else
378 { 377 {
378 /* first, make everything totally dark */
379 for (int dx = -half_x; dx <= half_x; dx++)
380 for (int dy = -half_x; dy <= half_y; dy++)
381 if (op->contr->los[dx + LOS_X0][dy + LOS_Y0] != LOS_BLOCKED)
382 op->contr->los[dx + LOS_X0][dy + LOS_Y0] = LOS_MAX;
379 383
380 for (y = (op->y - op->contr->socket.mapy / 2 - MAX_LIGHT_RADII), basey = -MAX_LIGHT_RADII; 384 /*
381 y <= (op->y + op->contr->socket.mapy / 2 + MAX_LIGHT_RADII); y++, basey++) 385 * Only process the area of interest.
386 * the basex, basey values represent the position in the op->contr->los
387 * array. Its easier to just increment them here (and start with the right
388 * value) than to recalculate them down below.
389 */
390 for (int x = min_x; x <= max_x; x++)
391 for (int y = min_y; y <= max_y; y++)
382 { 392 {
393 maptile *m = op->map;
394 sint16 nx = x;
395 sint16 ny = y;
396
397 if (!xy_normalise (m, nx, ny))
398 continue;
399
400 mapspace &ms = m->at (nx, ny);
401 ms.update ();
402 sint8 light = ms.light;
403
404 if (expect_false (light))
405 if (light < 0)
406 pass2 = 1;
407 else
408 apply_light<los_brighten> (op, x - op->x, y - op->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
409 }
410
411 /* grant some vision to the player, based on the darklevel */
412 {
413 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_DARKNESS);
414
415 apply_light<los_brighten> (op, 0, 0, light, vision_atten [light]);
416 }
417 }
418
419 // possibly do 2nd pass for rare negative glow radii
420 // for effect, those are always considered to be stronger than anything else
421 // but they can't darken a place completely
422 if (pass2)
423 for (int x = min_x; x <= max_x; x++)
424 for (int y = min_y; y <= max_y; y++)
425 {
383 m = op->map; 426 maptile *m = op->map;
384 nx = x; 427 sint16 nx = x;
385 ny = y; 428 sint16 ny = y;
386 429
387 mflags = get_map_flags (m, &m, nx, ny, &nx, &ny); 430 if (!xy_normalise (m, nx, ny))
388
389 if (mflags & P_OUT_OF_MAP)
390 continue; 431 continue;
391 432
392 /* This space is providing light, so we need to brighten up the 433 mapspace &ms = m->at (nx, ny);
393 * spaces around here. 434 ms.update ();
394 */ 435 sint8 light = ms.light;
395 light = GET_MAP_LIGHT (m, nx, ny);
396 if (light != 0)
397 {
398#if 0
399 LOG (llevDebug, "expand_lighted_sight: Found light at x=%d, y=%d, basex=%d, basey=%d\n", x, y, basex, basey);
400#endif
401 for (ax = basex - light; ax <= basex + light; ax++)
402 {
403 if (ax < 0 || ax >= op->contr->socket.mapx)
404 continue;
405 for (ay = basey - light; ay <= basey + light; ay++)
406 {
407 if (ay < 0 || ay >= op->contr->socket.mapy)
408 continue;
409 436
410 /* If the space is fully blocked, do nothing. Otherwise, we 437 if (expect_false (light < 0))
411 * brighten the space. The further the light is away from the 438 apply_light<los_darken> (op, x - op->x, y - op->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
412 * source (basex-x), the less effect it has. Though light used
413 * to dim in a square manner, it now dims in a circular manner
414 * using the the pythagorean theorem. glow_radius still
415 * represents the radius
416 */
417 if (op->contr->blocked_los[ax][ay] != 100)
418 {
419 x1 = abs (basex - ax) * abs (basex - ax);
420 y1 = abs (basey - ay) * abs (basey - ay);
421 if (light > 0)
422 op->contr->blocked_los[ax][ay] -= MAX ((light - isqrt (x1 + y1)), 0);
423 if (light < 0)
424 op->contr->blocked_los[ax][ay] -= MIN ((light + isqrt (x1 + y1)), 0);
425 }
426 } /* for ay */
427 } /* for ax */
428 } /* if this space is providing light */
429 } /* for y */
430 } /* for x */
431
432 /* Outdoor should never really be completely pitch black dark like
433 * a dungeon, so let the player at least see a little around themselves
434 */
435 if (op->map->outdoor && darklevel > (MAX_DARKNESS - 3))
436 {
437 if (op->contr->blocked_los[op->contr->socket.mapx / 2][op->contr->socket.mapy / 2] > (MAX_DARKNESS - 3))
438 op->contr->blocked_los[op->contr->socket.mapx / 2][op->contr->socket.mapy / 2] = MAX_DARKNESS - 3;
439
440 for (x = -1; x <= 1; x++)
441 for (y = -1; y <= 1; y++)
442 {
443 if (op->contr->blocked_los[x + op->contr->socket.mapx / 2][y + op->contr->socket.mapy / 2] > (MAX_DARKNESS - 2))
444 op->contr->blocked_los[x + op->contr->socket.mapx / 2][y + op->contr->socket.mapy / 2] = MAX_DARKNESS - 2;
445 } 439 }
446 }
447 /* grant some vision to the player, based on the darklevel */
448 for (x = darklevel - MAX_DARKNESS; x < MAX_DARKNESS + 1 - darklevel; x++)
449 for (y = darklevel - MAX_DARKNESS; y < MAX_DARKNESS + 1 - darklevel; y++)
450 if (!(op->contr->blocked_los[x + op->contr->socket.mapx / 2][y + op->contr->socket.mapy / 2] == 100))
451 op->contr->blocked_los[x + op->contr->socket.mapx / 2][y + op->contr->socket.mapy / 2] -=
452 MAX (0, 6 - darklevel - MAX (abs (x), abs (y)));
453} 440}
454 441
455/* blinded_sight() - sets all veiwable squares to blocked except 442/* blinded_sight() - sets all viewable squares to blocked except
456 * for the one the central one that the player occupies. A little 443 * for the one the central one that the player occupies. A little
457 * odd that you can see yourself (and what your standing on), but 444 * odd that you can see yourself (and what your standing on), but
458 * really need for any reasonable game play. 445 * really need for any reasonable game play.
459 */ 446 */
460
461static void 447static void
462blinded_sight (object *op) 448blinded_sight (object *op)
463{ 449{
464 int x, y; 450 op->contr->los[LOS_X0][LOS_Y0] = 1;
465
466 for (x = 0; x < op->contr->socket.mapx; x++)
467 for (y = 0; y < op->contr->socket.mapy; y++)
468 op->contr->blocked_los[x][y] = 100;
469
470 op->contr->blocked_los[op->contr->socket.mapx / 2][op->contr->socket.mapy / 2] = 0;
471} 451}
472 452
473/* 453/*
474 * update_los() recalculates the array which specifies what is 454 * update_los() recalculates the array which specifies what is
475 * visible for the given player-object. 455 * visible for the given player-object.
476 */ 456 */
477
478void 457void
479update_los (object *op) 458update_los (object *op)
480{ 459{
481 int dx = op->contr->socket.mapx / 2, dy = op->contr->socket.mapy / 2, x, y;
482
483 if (QUERY_FLAG (op, FLAG_REMOVED)) 460 if (QUERY_FLAG (op, FLAG_REMOVED))
484 return; 461 return;
485 462
486 clear_los (op); 463 op->contr->clear_los ();
464
487 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ ) 465 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ )
488 return; 466 memset (op->contr->los, 0, sizeof (op->contr->los));
489
490 /* For larger maps, this is more efficient than the old way which
491 * used the chaining of the block array. Since many space views could
492 * be blocked by different spaces in front, this mean that a lot of spaces
493 * could be examined multile times, as each path would be looked at.
494 */
495 for (x = (MAP_CLIENT_X - op->contr->socket.mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->socket.mapx) / 2 + 1; x++)
496 for (y = (MAP_CLIENT_Y - op->contr->socket.mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->socket.mapy) / 2 + 1; y++)
497 check_wall (op, x, y);
498
499
500 /* do the los of the player. 3 (potential) cases */
501 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */ 467 else if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
502 blinded_sight (op); 468 blinded_sight (op);
503 else 469 else
504 expand_sight (op); 470 {
471 do_los (op);
472 apply_lights (op);
473 }
505 474
506 if (QUERY_FLAG (op, FLAG_XRAYS)) 475 if (QUERY_FLAG (op, FLAG_XRAYS))
507 {
508 int x, y;
509
510 for (x = -2; x <= 2; x++) 476 for (int dx = -2; dx <= 2; dx++)
511 for (y = -2; y <= 2; y++) 477 for (int dy = -2; dy <= 2; dy++)
512 op->contr->blocked_los[dx + x][dy + y] = 0; 478 min_it (op->contr->los[dx + LOS_X0][dy + LOS_X0], 1);
513 }
514} 479}
515 480
516/* update all_map_los is like update_all_los below, 481/* update all_map_los is like update_all_los below,
517 * but updates everyone on the map, no matter where they 482 * but updates everyone on the map, no matter where they
518 * are. This generally should not be used, as a per 483 * are. This generally should not be used, as a per
519 * specific map change doesn't make much sense when tiling 484 * specific map change doesn't make much sense when tiling
520 * is considered (lowering darkness would certainly be a 485 * is considered (lowering darkness would certainly be a
521 * strange effect if done on a tile map, as it makes 486 * strange effect if done on a tile map, as it makes
522 * the distinction between maps much more obvious to the 487 * the distinction between maps much more obvious to the
523 * players, which is should not be. 488 * players, which is should not be.
524 * Currently, this function is called from the 489 * Currently, this function is called from the
525 * change_map_light function 490 * change_map_light function
526 */ 491 */
527void 492void
528update_all_map_los (mapstruct *map) 493update_all_map_los (maptile *map)
529{ 494{
530 player *pl; 495 for_all_players_on_map (pl, map)
531
532 for (pl = first_player; pl != NULL; pl = pl->next)
533 {
534 if (pl->ob->map == map)
535 pl->do_los = 1; 496 pl->do_los = 1;
536 }
537} 497}
538
539 498
540/* 499/*
541 * This function makes sure that update_los() will be called for all 500 * This function makes sure that update_los() will be called for all
542 * players on the given map within the next frame. 501 * players on the given map within the next frame.
543 * It is triggered by removal or inserting of objects which blocks 502 * It is triggered by removal or inserting of objects which blocks
547 * means that just being on the same map is not sufficient - the 506 * means that just being on the same map is not sufficient - the
548 * space that changes must be withing your viewable area. 507 * space that changes must be withing your viewable area.
549 * 508 *
550 * map is the map that changed, x and y are the coordinates. 509 * map is the map that changed, x and y are the coordinates.
551 */ 510 */
552
553void 511void
554update_all_los (const mapstruct *map, int x, int y) 512update_all_los (const maptile *map, int x, int y)
555{ 513{
556 player *pl; 514 map->at (x, y).invalidate ();
557 515
558 for (pl = first_player; pl != NULL; pl = pl->next) 516 for_all_players (pl)
559 { 517 {
560 /* Player should not have a null map, but do this 518 /* Player should not have a null map, but do this
561 * check as a safety 519 * check as a safety
562 */ 520 */
563 if (!pl->ob->map) 521 if (!pl->ob || !pl->ob->map || !pl->ns)
564 continue; 522 continue;
565 523
566 /* Same map is simple case - see if pl is close enough. 524 /* Same map is simple case - see if pl is close enough.
567 * Note in all cases, we did the check for same map first, 525 * Note in all cases, we did the check for same map first,
568 * and then see if the player is close enough and update 526 * and then see if the player is close enough and update
572 * so by setting it up this way, we trim processing 530 * so by setting it up this way, we trim processing
573 * some. 531 * some.
574 */ 532 */
575 if (pl->ob->map == map) 533 if (pl->ob->map == map)
576 { 534 {
577 if ((abs (pl->ob->x - x) <= pl->socket.mapx / 2) && (abs (pl->ob->y - y) <= pl->socket.mapy / 2)) 535 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
578 pl->do_los = 1; 536 pl->do_los = 1;
579 } 537 }
538
580 /* Now we check to see if player is on adjacent 539 /* Now we check to see if player is on adjacent
581 * maps to the one that changed and also within 540 * maps to the one that changed and also within
582 * view. The tile_maps[] could be null, but in that 541 * view. The tile_maps[] could be null, but in that
583 * case it should never match the pl->ob->map, so 542 * case it should never match the pl->ob->map, so
584 * we want ever try to dereference any of the data in it. 543 * we want ever try to dereference any of the data in it.
585 */ 544 *
586
587 /* The logic for 0 and 3 is to see how far the player is 545 * The logic for 0 and 3 is to see how far the player is
588 * from the edge of the map (height/width) - pl->ob->(x,y) 546 * from the edge of the map (height/width) - pl->ob->(x,y)
589 * and to add current position on this map - that gives a 547 * and to add current position on this map - that gives a
590 * distance. 548 * distance.
591 * For 1 and 2, we check to see how far the given 549 * For 1 and 2, we check to see how far the given
592 * coordinate (x,y) is from the corresponding edge, 550 * coordinate (x,y) is from the corresponding edge,
593 * and then add the players location, which gives 551 * and then add the players location, which gives
594 * a distance. 552 * a distance.
595 */ 553 */
596 else if (pl->ob->map == map->tile_map[0]) 554 else if (pl->ob->map == map->tile_map[0])
597 { 555 {
598 if ((abs (pl->ob->x - x) <= pl->socket.mapx / 2) && (abs (y + MAP_HEIGHT (map->tile_map[0]) - pl->ob->y) <= pl->socket.mapy / 2)) 556 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
599 pl->do_los = 1; 557 pl->do_los = 1;
600 } 558 }
601 else if (pl->ob->map == map->tile_map[2]) 559 else if (pl->ob->map == map->tile_map[2])
602 { 560 {
603 if ((abs (pl->ob->x - x) <= pl->socket.mapx / 2) && (abs (pl->ob->y + MAP_HEIGHT (map) - y) <= pl->socket.mapy / 2)) 561 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
604 pl->do_los = 1; 562 pl->do_los = 1;
605 } 563 }
606 else if (pl->ob->map == map->tile_map[1]) 564 else if (pl->ob->map == map->tile_map[1])
607 { 565 {
608 if ((abs (pl->ob->x + MAP_WIDTH (map) - x) <= pl->socket.mapx / 2) && (abs (pl->ob->y - y) <= pl->socket.mapy / 2)) 566 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
609 pl->do_los = 1; 567 pl->do_los = 1;
610 } 568 }
611 else if (pl->ob->map == map->tile_map[3]) 569 else if (pl->ob->map == map->tile_map[3])
612 { 570 {
613 if ((abs (x + MAP_WIDTH (map->tile_map[3]) - pl->ob->x) <= pl->socket.mapx / 2) && (abs (pl->ob->y - y) <= pl->socket.mapy / 2)) 571 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
614 pl->do_los = 1; 572 pl->do_los = 1;
615 } 573 }
616 } 574 }
617} 575}
618 576
577static const int season_timechange[5][HOURS_PER_DAY] = {
578 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
579 { 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1},
580 { 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0},
581 { 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0},
582 { 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0},
583 { 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0}
584};
585
586void
587maptile::set_darkness_map ()
588{
589 timeofday_t tod;
590
591 if (!outdoor)
592 return;
593
594 get_tod (&tod);
595 darkness = 0;
596
597 for (int i = HOURS_PER_DAY / 2; i < HOURS_PER_DAY; i++)
598 change_map_light (season_timechange[tod.season][i]);
599
600 for (int i = 0; i <= tod.hour; i++)
601 change_map_light (season_timechange[tod.season][i]);
602}
603
619/* 604/*
620 * Debug-routine which dumps the array which specifies the visible 605 * Compute the darkness level for all maps in the game. Requires the
621 * area of a player. Triggered by the z key in DM mode. 606 * time of day as an argument.
607 */
608
609static void
610dawn_to_dusk (const timeofday_t * tod)
611{
612 /* If the light level isn't changing, no reason to do all
613 * the work below.
622 */ 614 */
615 if (season_timechange[tod->season][tod->hour] == 0)
616 return;
623 617
624void 618 maptile::change_all_map_light (season_timechange[tod->season][tod->hour]);
625print_los (object *op) 619}
626{
627 int x, y;
628 char buf[50], buf2[10];
629 620
630 strcpy (buf, " "); 621void
631 for (x = 0; x < op->contr->socket.mapx; x++) 622adjust_daylight ()
632 { 623{
633 sprintf (buf2, "%2d", x); 624 timeofday_t tod;
634 strcat (buf, buf2); 625
635 } 626 get_tod (&tod);
636 new_draw_info (NDI_UNIQUE, 0, op, buf); 627 dawn_to_dusk (&tod);
637 for (y = 0; y < op->contr->socket.mapy; y++)
638 {
639 sprintf (buf, "%2d:", y);
640 for (x = 0; x < op->contr->socket.mapx; x++)
641 {
642 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]);
643 strcat (buf, buf2);
644 }
645 new_draw_info (NDI_UNIQUE, 0, op, buf);
646 }
647} 628}
648 629
649/* 630/*
650 * make_sure_seen: The object is supposed to be visible through walls, thus 631 * make_sure_seen: The object is supposed to be visible through walls, thus
651 * check if any players are nearby, and edit their LOS array. 632 * check if any players are nearby, and edit their LOS array.
652 */ 633 */
653
654void 634void
655make_sure_seen (const object *op) 635make_sure_seen (const object *op)
656{ 636{
657 player *pl; 637 for_all_players (pl)
658
659 for (pl = first_player; pl; pl = pl->next)
660 if (pl->ob->map == op->map && 638 if (pl->ob->map == op->map &&
661 pl->ob->y - pl->socket.mapy / 2 <= op->y && 639 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
662 pl->ob->y + pl->socket.mapy / 2 >= op->y && pl->ob->x - pl->socket.mapx / 2 <= op->x && pl->ob->x + pl->socket.mapx / 2 >= op->x) 640 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
663 pl->blocked_los[pl->socket.mapx / 2 + op->x - pl->ob->x][pl->socket.mapy / 2 + op->y - pl->ob->y] = 0; 641 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_X0] = 0;
664} 642}
665 643
666/* 644/*
667 * make_sure_not_seen: The object which is supposed to be visible through 645 * make_sure_not_seen: The object which is supposed to be visible through
668 * walls has just been removed from the map, so update the los of any 646 * walls has just been removed from the map, so update the los of any
669 * players within its range 647 * players within its range
670 */ 648 */
671
672void 649void
673make_sure_not_seen (const object *op) 650make_sure_not_seen (const object *op)
674{ 651{
675 player *pl; 652 for_all_players (pl)
676
677 for (pl = first_player; pl; pl = pl->next)
678 if (pl->ob->map == op->map && 653 if (pl->ob->map == op->map &&
679 pl->ob->y - pl->socket.mapy / 2 <= op->y && 654 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
680 pl->ob->y + pl->socket.mapy / 2 >= op->y && pl->ob->x - pl->socket.mapx / 2 <= op->x && pl->ob->x + pl->socket.mapx / 2 >= op->x) 655 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
681 pl->do_los = 1; 656 pl->do_los = 1;
682} 657}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines