ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.8 by root, Thu Dec 14 04:30:31 2006 UTC vs.
Revision 1.48 by root, Tue Dec 23 06:58:23 2008 UTC

1/* 1/*
2 CrossFire, A Multiplayer game for X-windows 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
4 Copyright (C) 2002 Mark Wedel & Crossfire Development Team 5 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
5 Copyright (C) 1992 Frank Tore Johansen 6 * Copyright (©) 1992,2007 Frank Tore Johansen
6 7 *
7 This program is free software; you can redistribute it and/or modify 8 * Deliantra is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by 9 * it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or 10 * the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version. 11 * (at your option) any later version.
11 12 *
12 This program is distributed in the hope that it will be useful, 13 * This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details. 16 * GNU General Public License for more details.
16 17 *
17 You should have received a copy of the GNU General Public License 18 * You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software 19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 *
20 21 * The authors can be reached via e-mail to <support@deliantra.net>
21 The authors can be reached via e-mail at <crossfire@schmorp.de>
22*/ 22 */
23 23
24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */ 24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
25 25
26#include <global.h> 26#include <global.h>
27#include <funcpoint.h>
28#include <math.h> 27#include <cmath>
29
30
31/* Distance must be less than this for the object to be blocked.
32 * An object is 1.0 wide, so if set to 0.5, it means the object
33 * that blocks half the view (0.0 is complete block) will
34 * block view in our tables.
35 * .4 or less lets you see through walls. .5 is about right.
36 */
37
38#define SPACE_BLOCK 0.5
39
40typedef struct blstr
41{
42 int x[4], y[4];
43 int index;
44} blocks;
45
46blocks block[MAP_CLIENT_X][MAP_CLIENT_Y];
47 28
48static void expand_lighted_sight (object *op); 29static void expand_lighted_sight (object *op);
49 30
50/* 31enum {
51 * Used to initialise the array used by the LOS routines. 32 LOS_XI = 0x01,
52 * What this sets if that x,y blocks the view of bx,by 33 LOS_YI = 0x02,
53 * This then sets up a relation - for example, something 34};
54 * at 5,4 blocks view at 5,3 which blocks view at 5,2
55 * etc. So when we check 5,4 and find it block, we have
56 * the data to know that 5,3 and 5,2 and 5,1 should also
57 * be blocked.
58 */
59 35
60static void 36struct los_info
61set_block (int x, int y, int bx, int by)
62{ 37{
63 int index = block[x][y].index, i; 38 sint8 xo, yo; // obscure angle
39 sint8 xe, ye; // angle deviation
40 uint8 culled; // culled from "tree"
41 uint8 queued; // already queued
42 uint8 visible;
43 uint8 flags; // LOS_XI/YI
44};
64 45
65 /* Due to flipping, we may get duplicates - better safe than sorry. 46// temporary storage for the los algorithm,
66 */ 47// one los_info for each lightable map space
67 for (i = 0; i < index; i++) 48static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
68 {
69 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
70 return;
71 }
72 49
73 block[x][y].x[index] = bx; 50struct point
74 block[x][y].y[index] = by;
75 block[x][y].index++;
76#ifdef LOS_DEBUG
77 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
78#endif
79}
80
81/*
82 * initialises the array used by the LOS routines.
83 */
84
85/* since we are only doing the upper left quadrant, only
86 * these spaces could possibly get blocked, since these
87 * are the only ones further out that are still possibly in the
88 * sightline.
89 */
90
91void
92init_block (void)
93{ 51{
94 int x, y, dx, dy, i;
95 static int block_x[3] = { -1, -1, 0 }, block_y[3] =
96 {
97 -1, 0, -1};
98
99 for (x = 0; x < MAP_CLIENT_X; x++)
100 for (y = 0; y < MAP_CLIENT_Y; y++)
101 {
102 block[x][y].index = 0;
103 }
104
105
106 /* The table should be symmetric, so only do the upper left
107 * quadrant - makes the processing easier.
108 */
109 for (x = 1; x <= MAP_CLIENT_X / 2; x++)
110 {
111 for (y = 1; y <= MAP_CLIENT_Y / 2; y++)
112 {
113 for (i = 0; i < 3; i++)
114 {
115 dx = x + block_x[i];
116 dy = y + block_y[i];
117
118 /* center space never blocks */
119 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
120 continue;
121
122 /* If its a straight line, its blocked */
123 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
124 {
125 /* For simplicity, we mirror the coordinates to block the other
126 * quadrants.
127 */
128 set_block (x, y, dx, dy);
129 if (x == MAP_CLIENT_X / 2)
130 {
131 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
132 }
133 else if (y == MAP_CLIENT_Y / 2)
134 {
135 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
136 }
137 }
138 else
139 {
140 float d1, r, s, l;
141
142 /* We use the algorihm that found out how close the point
143 * (x,y) is to the line from dx,dy to the center of the viewable
144 * area. l is the distance from x,y to the line.
145 * r is more a curiosity - it lets us know what direction (left/right)
146 * the line is off
147 */
148
149 d1 = (float) (pow (MAP_CLIENT_X / 2 - dx, 2.f) + pow (MAP_CLIENT_Y / 2 - dy, 2.f));
150 r = (float) ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
151 s = (float) ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
152 l = FABS (sqrt (d1) * s);
153
154 if (l <= SPACE_BLOCK)
155 {
156 /* For simplicity, we mirror the coordinates to block the other
157 * quadrants.
158 */
159 set_block (x, y, dx, dy);
160 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
161 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
162 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
163 }
164 }
165 }
166 }
167 }
168}
169
170/*
171 * Used to initialise the array used by the LOS routines.
172 * x,y are indexes into the blocked[][] array.
173 * This recursively sets the blocked line of sight view.
174 * From the blocked[][] array, we know for example
175 * that if some particular space is blocked, it blocks
176 * the view of the spaces 'behind' it, and those blocked
177 * spaces behind it may block other spaces, etc.
178 * In this way, the chain of visibility is set.
179 */
180
181static void
182set_wall (object *op, int x, int y)
183{
184 int i;
185
186 for (i = 0; i < block[x][y].index; i++)
187 {
188 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
189
190 /* ax, ay are the values as adjusted to be in the
191 * socket look structure.
192 */
193 ax = dx - (MAP_CLIENT_X - op->contr->socket->mapx) / 2;
194 ay = dy - (MAP_CLIENT_Y - op->contr->socket->mapy) / 2;
195
196 if (ax < 0 || ax >= op->contr->socket->mapx || ay < 0 || ay >= op->contr->socket->mapy)
197 continue;
198#if 0
199 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
200#endif
201 /* we need to adjust to the fact that the socket
202 * code wants the los to start from the 0,0
203 * and not be relative to middle of los array.
204 */
205 op->contr->blocked_los[ax][ay] = 100;
206 set_wall (op, dx, dy);
207 }
208}
209
210/*
211 * Used to initialise the array used by the LOS routines.
212 * op is the object, x and y values based on MAP_CLIENT_X and Y.
213 * this is because they index the blocked[][] arrays.
214 */
215
216static void
217check_wall (object *op, int x, int y)
218{
219 int ax, ay; 52 sint8 x, y;
53};
220 54
221 if (!block[x][y].index) 55// minimum size, but must be a power of two
222 return; 56#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
223 57
224 /* ax, ay are coordinates as indexed into the look window */ 58// a queue of spaces to calculate
225 ax = x - (MAP_CLIENT_X - op->contr->socket->mapx) / 2; 59static point queue [QUEUE_LENGTH];
226 ay = y - (MAP_CLIENT_Y - op->contr->socket->mapy) / 2; 60static int q1, q2; // queue start, end
227
228 /* If the converted coordinates are outside the viewable
229 * area for the client, return now.
230 */
231 if (ax < 0 || ay < 0 || ax >= op->contr->socket->mapx || ay >= op->contr->socket->mapy)
232 return;
233
234#if 0
235 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
236 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
237#endif
238
239 /* If this space is already blocked, prune the processing - presumably
240 * whatever has set this space to be blocked has done the work and already
241 * done the dependency chain.
242 */
243 if (op->contr->blocked_los[ax][ay] == 100)
244 return;
245
246
247 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
248 set_wall (op, x, y);
249}
250 61
251/* 62/*
252 * Clears/initialises the los-array associated to the player 63 * Clears/initialises the los-array associated to the player
253 * controlling the object. 64 * controlling the object.
254 */ 65 */
255
256void 66void
257clear_los (object *op) 67player::clear_los (sint8 value)
258{ 68{
259 /* This is safer than using the socket->mapx, mapy because 69 memset (los, value, sizeof (los));
260 * we index the blocked_los as a 2 way array, so clearing
261 * the first z spaces may not not cover the spaces we are
262 * actually going to use
263 */
264 (void) memset ((void *) op->contr->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
265} 70}
266 71
267/* 72// enqueue a single mapspace, but only if it hasn't
268 * expand_sight goes through the array of what the given player is 73// been enqueued yet.
269 * able to see, and expands the visible area a bit, so the player will,
270 * to a certain degree, be able to see into corners.
271 * This is somewhat suboptimal, would be better to improve the formula.
272 */
273
274static void 74static void
275expand_sight (object *op) 75enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
276{ 76{
277 int i, x, y, dx, dy; 77 sint8 x = LOS_X0 + dx;
78 sint8 y = LOS_Y0 + dy;
278 79
279 for (x = 1; x < op->contr->socket->mapx - 1; x++) /* loop over inner squares */ 80 if (x < 0 || x >= MAP_CLIENT_X) return;
280 for (y = 1; y < op->contr->socket->mapy - 1; y++) 81 if (y < 0 || y >= MAP_CLIENT_Y) return;
82
83 los_info &l = los[x][y];
84
85 l.flags |= flags;
86
87 if (l.queued)
88 return;
89
90 l.queued = 1;
91
92 queue[q1].x = dx;
93 queue[q1].y = dy;
94
95 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
96}
97
98// run the los algorithm
99// this is a variant of a spiral los algorithm taken from
100// http://www.geocities.com/temerra/los_rays.html
101// which has been simplified and changed considerably, but
102// still is basically the same algorithm.
103static void
104calculate_los (player *pl)
105{
106 int max_radius = max (pl->ns->mapx, pl->ns->mapy) / 2;
107
108 memset (los, 0, sizeof (los));
109
110 q1 = 0; q2 = 0; // initialise queue, not strictly required
111 enqueue (0, 0); // enqueue center
112
113 // treat the origin specially
114 los[LOS_X0][LOS_Y0].visible = 1;
115 pl->los[LOS_X0][LOS_Y0] = 0;
116
117 // loop over all enqueued points until the queue is empty
118 // the order in which this is done ensures that we
119 // never touch a mapspace whose input spaces we haven't checked
120 // yet.
121 while (q1 != q2)
122 {
123 sint8 dx = queue[q2].x;
124 sint8 dy = queue[q2].y;
125
126 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
127
128 sint8 x = LOS_X0 + dx;
129 sint8 y = LOS_Y0 + dy;
130
131 //int distance = idistance (dx, dy); if (distance > max_radius) continue;//D
132 int distance = 0;//D
133
134 los_info &l = los[x][y];
135
136 if (expect_true (l.flags & (LOS_XI | LOS_YI)))
281 { 137 {
282 if (!op->contr->blocked_los[x][y] && 138 l.culled = 1;
283 !(get_map_flags (op->map, NULL, 139
284 op->x - op->contr->socket->mapx / 2 + x, 140 // check contributing spaces, first horizontal
285 op->y - op->contr->socket->mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))) 141 if (expect_true (l.flags & LOS_XI))
286 { 142 {
143 los_info *xi = &los[x - sign (dx)][y];
287 144
288 for (i = 1; i <= 8; i += 1) 145 // don't cull unless obscured
289 { /* mark all directions */ 146 l.culled &= !xi->visible;
290 dx = x + freearr_x[i]; 147
291 dy = y + freearr_y[i]; 148 /* merge input space */
292 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */ 149 if (expect_false (xi->xo || xi->yo))
293 op->contr->blocked_los[dx][dy] = -1; 150 {
151 // The X input can provide two main pieces of information:
152 // 1. Progressive X obscurity.
153 // 2. Recessive Y obscurity.
154
155 // Progressive X obscurity, favouring recessive input angle
156 if (xi->xe > 0 && l.xo == 0)
157 {
158 l.xe = xi->xe - xi->yo;
159 l.ye = xi->ye + xi->yo;
160 l.xo = xi->xo;
161 l.yo = xi->yo;
162 }
163
164 // Recessive Y obscurity
165 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
166 {
167 l.ye = xi->yo + xi->ye;
168 l.xe = xi->xe - xi->yo;
169 l.xo = xi->xo;
170 l.yo = xi->yo;
171 }
294 } 172 }
295 } 173 }
174
175 // check contributing spaces, last vertical, identical structure
176 if (expect_true (l.flags & LOS_YI))
177 {
178 los_info *yi = &los[x][y - sign (dy)];
179
180 // don't cull unless obscured
181 l.culled &= !yi->visible;
182
183 /* merge input space */
184 if (expect_false (yi->yo || yi->xo))
185 {
186 // The Y input can provide two main pieces of information:
187 // 1. Progressive Y obscurity.
188 // 2. Recessive X obscurity.
189
190 // Progressive Y obscurity, favouring recessive input angle
191 if (yi->ye > 0 && l.yo == 0)
192 {
193 l.ye = yi->ye - yi->xo;
194 l.xe = yi->xe + yi->xo;
195 l.yo = yi->yo;
196 l.xo = yi->xo;
197 }
198
199 // Recessive X obscurity
200 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
201 {
202 l.xe = yi->xo + yi->xe;
203 l.ye = yi->ye - yi->xo;
204 l.yo = yi->yo;
205 l.xo = yi->xo;
206 }
207 }
208 }
209
210 // check whether this space blocks the view
211 maptile *m = pl->observe->map;
212 sint16 nx = pl->observe->x + dx;
213 sint16 ny = pl->observe->y + dy;
214
215 if (expect_true (!xy_normalise (m, nx, ny))
216 || expect_false (m->at (nx, ny).flags () & P_BLOCKSVIEW))
217 {
218 l.xo = l.xe = abs (dx);
219 l.yo = l.ye = abs (dy);
220
221 // we obscure dependents, but might be visible
222 // copy the los from the square towards the player,
223 // so outward diagonal corners are lit.
224 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
225 l.visible = false;
226 }
227 else
228 {
229 // we are not blocked, so calculate visibility, by checking
230 // whether we are inside or outside the shadow
231 l.visible = (l.xe <= 0 || l.xe > l.xo)
232 && (l.ye <= 0 || l.ye > l.yo);
233
234 pl->los[x][y] = l.culled ? LOS_BLOCKED
235 : l.visible ? max (0, 2 - max_radius + distance)
236 : 3;
237 }
238
296 } 239 }
297 240
298 if (MAP_DARKNESS (op->map) > 0) /* player is on a dark map */ 241 // Expands by the unit length in each component's current direction.
299 expand_lighted_sight (op); 242 // If a component has no direction, then it is expanded in both of its
300 243 // positive and negative directions.
301 244 if (!l.culled)
302 /* clear mark squares */ 245 {
303 for (x = 0; x < op->contr->socket->mapx; x++) 246 if (dx >= 0) enqueue (dx + 1, dy, LOS_XI);
304 for (y = 0; y < op->contr->socket->mapy; y++) 247 if (dx <= 0) enqueue (dx - 1, dy, LOS_XI);
305 if (op->contr->blocked_los[x][y] < 0) 248 if (dy >= 0) enqueue (dx, dy + 1, LOS_YI);
306 op->contr->blocked_los[x][y] = 0; 249 if (dy <= 0) enqueue (dx, dy - 1, LOS_YI);
250 }
251 }
307} 252}
308
309
310
311 253
312/* returns true if op carries one or more lights 254/* returns true if op carries one or more lights
313 * This is a trivial function now days, but it used to 255 * This is a trivial function now days, but it used to
314 * be a bit longer. Probably better for callers to just 256 * be a bit longer. Probably better for callers to just
315 * check the op->glow_radius instead of calling this. 257 * check the op->glow_radius instead of calling this.
316 */ 258 */
317
318int 259int
319has_carried_lights (const object *op) 260has_carried_lights (const object *op)
320{ 261{
321 /* op may glow! */ 262 /* op may glow! */
322 if (op->glow_radius > 0) 263 if (op->glow_radius > 0)
323 return 1; 264 return 1;
324 265
325 return 0; 266 return 0;
326} 267}
327 268
269/* radius, distance => lightness adjust */
270static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
271static sint8 vision_atten[MAX_DARKNESS + 1][MAX_DARKNESS * 3 / 2 + 1];
272
273static struct los_init
274{
275 los_init ()
276 {
277 /* for lights */
278 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
279 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
280 {
281 // max intensity
282 int intensity = min (LOS_MAX, abs (radius) + 1);
283
284 // actual intensity
285 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
286
287 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
288 ? min (3, intensity)
289 : LOS_MAX - intensity;
290 }
291
292 /* for general vision */
293 for (int radius = 0; radius <= MAX_DARKNESS; ++radius)
294 for (int distance = 0; distance <= MAX_DARKNESS * 3 / 2; ++distance)
295 {
296 vision_atten [radius][distance] = distance <= radius ? 3 : 4;
297 }
298 }
299} los_init;
300
301sint8
302los_brighten (sint8 b, sint8 l)
303{
304 return b == LOS_BLOCKED ? b : min (b, l);
305}
306
307sint8
308los_darken (sint8 b, sint8 l)
309{
310 return max (b, l);
311}
312
313template<sint8 change_it (sint8, sint8)>
328static void 314static void
329expand_lighted_sight (object *op) 315apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
330{ 316{
331 int x, y, darklevel, ax, ay, basex, basey, mflags, light, x1, y1; 317 // min or max the circular area around basex, basey
332 maptile *m = op->map; 318 dx += LOS_X0;
333 sint16 nx, ny; 319 dy += LOS_Y0;
334 320
335 darklevel = MAP_DARKNESS (m); 321 int hx = pl->ns->mapx / 2;
322 int hy = pl->ns->mapy / 2;
323
324 int ax0 = max (LOS_X0 - hx, dx - light);
325 int ay0 = max (LOS_Y0 - hy, dy - light);
326 int ax1 = min (dx + light, LOS_X0 + hx);
327 int ay1 = min (dy + light, LOS_Y0 + hy);
328
329 for (int ax = ax0; ax <= ax1; ax++)
330 for (int ay = ay0; ay <= ay1; ay++)
331 pl->los[ax][ay] =
332 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
333}
334
335/* add light, by finding all (non-null) nearby light sources, then
336 * mark those squares specially.
337 */
338static void
339apply_lights (player *pl)
340{
341 object *op = pl->observe;
342 int darklevel = op->map->darklevel ();
336 343
337 /* If the player can see in the dark, lower the darklevel for him */ 344 /* If the player can see in the dark, lower the darklevel for him */
338 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK)) 345 if (op->flag [FLAG_SEE_IN_DARK])
339 darklevel -= 2; 346 darklevel = max (0, darklevel - 2);
340 347
341 /* add light, by finding all (non-null) nearby light sources, then 348 int half_x = pl->ns->mapx / 2;
342 * mark those squares specially. If the darklevel<1, there is no 349 int half_y = pl->ns->mapy / 2;
343 * reason to do this, so we skip this function
344 */
345 350
351 int min_x = op->x - half_x - MAX_LIGHT_RADIUS;
352 int min_y = op->y - half_y - MAX_LIGHT_RADIUS;
353 int max_x = op->x + half_x + MAX_LIGHT_RADIUS;
354 int max_y = op->y + half_y + MAX_LIGHT_RADIUS;
355
356 int pass2 = 0; // negative lights have an extra pass
357
346 if (darklevel < 1) 358 if (!darklevel)
347 return; 359 pass2 = 1;
348 360 else
349 /* Do a sanity check. If not valid, some code below may do odd
350 * things.
351 */
352 if (darklevel > MAX_DARKNESS)
353 { 361 {
354 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, op->map->path, darklevel); 362 /* first, make everything totally dark */
355 darklevel = MAX_DARKNESS; 363 for (int dx = -half_x; dx <= half_x; dx++)
364 for (int dy = -half_x; dy <= half_y; dy++)
365 if (pl->los[dx + LOS_X0][dy + LOS_Y0] != LOS_BLOCKED)
366 pl->los[dx + LOS_X0][dy + LOS_Y0] = LOS_MAX;
367
368 /*
369 * Only process the area of interest.
370 * the basex, basey values represent the position in the op->contr->los
371 * array. Its easier to just increment them here (and start with the right
372 * value) than to recalculate them down below.
373 */
374 for (int x = min_x; x <= max_x; x++)
375 for (int y = min_y; y <= max_y; y++)
376 {
377 maptile *m = pl->observe->map;
378 sint16 nx = x;
379 sint16 ny = y;
380
381 if (!xy_normalise (m, nx, ny))
382 continue;
383
384 mapspace &ms = m->at (nx, ny);
385 ms.update ();
386 sint8 light = ms.light;
387
388 if (expect_false (light))
389 if (light < 0)
390 pass2 = 1;
391 else
392 apply_light<los_brighten> (pl, x - op->x, y - op->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
393 }
394
395 /* grant some vision to the player, based on the darklevel */
396 {
397 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_DARKNESS);
398
399 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
400 }
356 } 401 }
357 402
358 /* First, limit player furthest (unlighted) vision */ 403 // possibly do 2nd pass for rare negative glow radii
359 for (x = 0; x < op->contr->socket->mapx; x++) 404 // for effect, those are always considered to be stronger than anything else
360 for (y = 0; y < op->contr->socket->mapy; y++) 405 // but they can't darken a place completely
361 if (op->contr->blocked_los[x][y] != 100) 406 if (pass2)
362 op->contr->blocked_los[x][y] = MAX_LIGHT_RADII; 407 for (int x = min_x; x <= max_x; x++)
363 408 for (int y = min_y; y <= max_y; y++)
364 /* the spaces[] darkness value contains the information we need.
365 * Only process the area of interest.
366 * the basex, basey values represent the position in the op->contr->blocked_los
367 * array. Its easier to just increment them here (and start with the right
368 * value) than to recalculate them down below.
369 */
370 for (x = (op->x - op->contr->socket->mapx / 2 - MAX_LIGHT_RADII), basex = -MAX_LIGHT_RADII;
371 x <= (op->x + op->contr->socket->mapx / 2 + MAX_LIGHT_RADII); x++, basex++)
372 {
373
374 for (y = (op->y - op->contr->socket->mapy / 2 - MAX_LIGHT_RADII), basey = -MAX_LIGHT_RADII;
375 y <= (op->y + op->contr->socket->mapy / 2 + MAX_LIGHT_RADII); y++, basey++)
376 { 409 {
377 m = op->map; 410 maptile *m = pl->observe->map;
378 nx = x; 411 sint16 nx = x;
379 ny = y; 412 sint16 ny = y;
380 413
381 mflags = get_map_flags (m, &m, nx, ny, &nx, &ny); 414 if (!xy_normalise (m, nx, ny))
382
383 if (mflags & P_OUT_OF_MAP)
384 continue; 415 continue;
385 416
386 /* This space is providing light, so we need to brighten up the 417 mapspace &ms = m->at (nx, ny);
387 * spaces around here. 418 ms.update ();
388 */ 419 sint8 light = ms.light;
389 light = GET_MAP_LIGHT (m, nx, ny);
390 if (light != 0)
391 {
392#if 0
393 LOG (llevDebug, "expand_lighted_sight: Found light at x=%d, y=%d, basex=%d, basey=%d\n", x, y, basex, basey);
394#endif
395 for (ax = basex - light; ax <= basex + light; ax++)
396 {
397 if (ax < 0 || ax >= op->contr->socket->mapx)
398 continue;
399 for (ay = basey - light; ay <= basey + light; ay++)
400 {
401 if (ay < 0 || ay >= op->contr->socket->mapy)
402 continue;
403 420
404 /* If the space is fully blocked, do nothing. Otherwise, we 421 if (expect_false (light < 0))
405 * brighten the space. The further the light is away from the 422 apply_light<los_darken> (pl, x - op->x, y - op->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
406 * source (basex-x), the less effect it has. Though light used
407 * to dim in a square manner, it now dims in a circular manner
408 * using the the pythagorean theorem. glow_radius still
409 * represents the radius
410 */
411 if (op->contr->blocked_los[ax][ay] != 100)
412 {
413 x1 = abs (basex - ax) * abs (basex - ax);
414 y1 = abs (basey - ay) * abs (basey - ay);
415 if (light > 0)
416 op->contr->blocked_los[ax][ay] -= MAX ((light - isqrt (x1 + y1)), 0);
417 if (light < 0)
418 op->contr->blocked_los[ax][ay] -= MIN ((light + isqrt (x1 + y1)), 0);
419 }
420 } /* for ay */
421 } /* for ax */
422 } /* if this space is providing light */
423 } /* for y */
424 } /* for x */
425
426 /* Outdoor should never really be completely pitch black dark like
427 * a dungeon, so let the player at least see a little around themselves
428 */
429 if (op->map->outdoor && darklevel > (MAX_DARKNESS - 3))
430 {
431 if (op->contr->blocked_los[op->contr->socket->mapx / 2][op->contr->socket->mapy / 2] > (MAX_DARKNESS - 3))
432 op->contr->blocked_los[op->contr->socket->mapx / 2][op->contr->socket->mapy / 2] = MAX_DARKNESS - 3;
433
434 for (x = -1; x <= 1; x++)
435 for (y = -1; y <= 1; y++)
436 {
437 if (op->contr->blocked_los[x + op->contr->socket->mapx / 2][y + op->contr->socket->mapy / 2] > (MAX_DARKNESS - 2))
438 op->contr->blocked_los[x + op->contr->socket->mapx / 2][y + op->contr->socket->mapy / 2] = MAX_DARKNESS - 2;
439 } 423 }
440 }
441 /* grant some vision to the player, based on the darklevel */
442 for (x = darklevel - MAX_DARKNESS; x < MAX_DARKNESS + 1 - darklevel; x++)
443 for (y = darklevel - MAX_DARKNESS; y < MAX_DARKNESS + 1 - darklevel; y++)
444 if (!(op->contr->blocked_los[x + op->contr->socket->mapx / 2][y + op->contr->socket->mapy / 2] == 100))
445 op->contr->blocked_los[x + op->contr->socket->mapx / 2][y + op->contr->socket->mapy / 2] -=
446 MAX (0, 6 - darklevel - MAX (abs (x), abs (y)));
447} 424}
448 425
449/* blinded_sight() - sets all veiwable squares to blocked except 426/* blinded_sight() - sets all viewable squares to blocked except
450 * for the one the central one that the player occupies. A little 427 * for the one the central one that the player occupies. A little
451 * odd that you can see yourself (and what your standing on), but 428 * odd that you can see yourself (and what your standing on), but
452 * really need for any reasonable game play. 429 * really need for any reasonable game play.
453 */ 430 */
454
455static void 431static void
456blinded_sight (object *op) 432blinded_sight (player *pl)
457{ 433{
458 int x, y; 434 pl->los[LOS_X0][LOS_Y0] = 1;
459
460 for (x = 0; x < op->contr->socket->mapx; x++)
461 for (y = 0; y < op->contr->socket->mapy; y++)
462 op->contr->blocked_los[x][y] = 100;
463
464 op->contr->blocked_los[op->contr->socket->mapx / 2][op->contr->socket->mapy / 2] = 0;
465} 435}
466 436
467/* 437/*
468 * update_los() recalculates the array which specifies what is 438 * update_los() recalculates the array which specifies what is
469 * visible for the given player-object. 439 * visible for the given player-object.
470 */ 440 */
471
472void 441void
473update_los (object *op) 442player::update_los ()
474{ 443{
475 int dx = op->contr->socket->mapx / 2, dy = op->contr->socket->mapy / 2, x, y; 444 if (ob->flag [FLAG_REMOVED])//D really needed?
476
477 if (QUERY_FLAG (op, FLAG_REMOVED))
478 return; 445 return;
479 446
480 clear_los (op); 447 clear_los ();
481 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ )
482 return;
483 448
484 /* For larger maps, this is more efficient than the old way which 449 if (ob->flag [FLAG_WIZLOOK])
485 * used the chaining of the block array. Since many space views could 450 memset (los, 0, sizeof (los));
486 * be blocked by different spaces in front, this mean that a lot of spaces 451 else if (observe->flag [FLAG_BLIND]) /* player is blind */
487 * could be examined multile times, as each path would be looked at.
488 */
489 for (x = (MAP_CLIENT_X - op->contr->socket->mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->socket->mapx) / 2 + 1; x++)
490 for (y = (MAP_CLIENT_Y - op->contr->socket->mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->socket->mapy) / 2 + 1; y++)
491 check_wall (op, x, y);
492
493
494 /* do the los of the player. 3 (potential) cases */
495 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
496 blinded_sight (op); 452 blinded_sight (this);
497 else 453 else
498 expand_sight (op);
499
500 if (QUERY_FLAG (op, FLAG_XRAYS))
501 { 454 {
502 int x, y; 455 calculate_los (this);
503 456 apply_lights (this);
504 for (x = -2; x <= 2; x++)
505 for (y = -2; y <= 2; y++)
506 op->contr->blocked_los[dx + x][dy + y] = 0;
507 } 457 }
458
459 if (observe->flag [FLAG_XRAYS])
460 for (int dx = -2; dx <= 2; dx++)
461 for (int dy = -2; dy <= 2; dy++)
462 min_it (los[dx + LOS_X0][dy + LOS_X0], 1);
508} 463}
509 464
510/* update all_map_los is like update_all_los below, 465/* update all_map_los is like update_all_los below,
511 * but updates everyone on the map, no matter where they 466 * but updates everyone on the map, no matter where they
512 * are. This generally should not be used, as a per 467 * are. This generally should not be used, as a per
513 * specific map change doesn't make much sense when tiling 468 * specific map change doesn't make much sense when tiling
514 * is considered (lowering darkness would certainly be a 469 * is considered (lowering darkness would certainly be a
515 * strange effect if done on a tile map, as it makes 470 * strange effect if done on a tile map, as it makes
516 * the distinction between maps much more obvious to the 471 * the distinction between maps much more obvious to the
517 * players, which is should not be. 472 * players, which is should not be.
519 * change_map_light function 474 * change_map_light function
520 */ 475 */
521void 476void
522update_all_map_los (maptile *map) 477update_all_map_los (maptile *map)
523{ 478{
524 player *pl; 479 for_all_players_on_map (pl, map)
525
526 for (pl = first_player; pl != NULL; pl = pl->next)
527 {
528 if (pl->ob->map == map)
529 pl->do_los = 1; 480 pl->do_los = 1;
530 }
531} 481}
532
533 482
534/* 483/*
535 * This function makes sure that update_los() will be called for all 484 * This function makes sure that update_los() will be called for all
536 * players on the given map within the next frame. 485 * players on the given map within the next frame.
537 * It is triggered by removal or inserting of objects which blocks 486 * It is triggered by removal or inserting of objects which blocks
541 * means that just being on the same map is not sufficient - the 490 * means that just being on the same map is not sufficient - the
542 * space that changes must be withing your viewable area. 491 * space that changes must be withing your viewable area.
543 * 492 *
544 * map is the map that changed, x and y are the coordinates. 493 * map is the map that changed, x and y are the coordinates.
545 */ 494 */
546
547void 495void
548update_all_los (const maptile *map, int x, int y) 496update_all_los (const maptile *map, int x, int y)
549{ 497{
550 player *pl; 498 map->at (x, y).invalidate ();
551 499
552 for (pl = first_player; pl != NULL; pl = pl->next) 500 for_all_players (pl)
553 { 501 {
554 /* Player should not have a null map, but do this 502 /* Player should not have a null map, but do this
555 * check as a safety 503 * check as a safety
556 */ 504 */
557 if (!pl->ob->map) 505 if (!pl->ob || !pl->ob->map || !pl->ns)
558 continue; 506 continue;
559 507
560 /* Same map is simple case - see if pl is close enough. 508 /* Same map is simple case - see if pl is close enough.
561 * Note in all cases, we did the check for same map first, 509 * Note in all cases, we did the check for same map first,
562 * and then see if the player is close enough and update 510 * and then see if the player is close enough and update
566 * so by setting it up this way, we trim processing 514 * so by setting it up this way, we trim processing
567 * some. 515 * some.
568 */ 516 */
569 if (pl->ob->map == map) 517 if (pl->ob->map == map)
570 { 518 {
571 if ((abs (pl->ob->x - x) <= pl->socket->mapx / 2) && (abs (pl->ob->y - y) <= pl->socket->mapy / 2)) 519 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
572 pl->do_los = 1; 520 pl->do_los = 1;
573 } 521 }
522
574 /* Now we check to see if player is on adjacent 523 /* Now we check to see if player is on adjacent
575 * maps to the one that changed and also within 524 * maps to the one that changed and also within
576 * view. The tile_maps[] could be null, but in that 525 * view. The tile_maps[] could be null, but in that
577 * case it should never match the pl->ob->map, so 526 * case it should never match the pl->ob->map, so
578 * we want ever try to dereference any of the data in it. 527 * we want ever try to dereference any of the data in it.
579 */ 528 *
580
581 /* The logic for 0 and 3 is to see how far the player is 529 * The logic for 0 and 3 is to see how far the player is
582 * from the edge of the map (height/width) - pl->ob->(x,y) 530 * from the edge of the map (height/width) - pl->ob->(x,y)
583 * and to add current position on this map - that gives a 531 * and to add current position on this map - that gives a
584 * distance. 532 * distance.
585 * For 1 and 2, we check to see how far the given 533 * For 1 and 2, we check to see how far the given
586 * coordinate (x,y) is from the corresponding edge, 534 * coordinate (x,y) is from the corresponding edge,
587 * and then add the players location, which gives 535 * and then add the players location, which gives
588 * a distance. 536 * a distance.
589 */ 537 */
590 else if (pl->ob->map == map->tile_map[0]) 538 else if (pl->ob->map == map->tile_map[0])
591 { 539 {
592 if ((abs (pl->ob->x - x) <= pl->socket->mapx / 2) && (abs (y + MAP_HEIGHT (map->tile_map[0]) - pl->ob->y) <= pl->socket->mapy / 2)) 540 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
593 pl->do_los = 1; 541 pl->do_los = 1;
594 } 542 }
595 else if (pl->ob->map == map->tile_map[2]) 543 else if (pl->ob->map == map->tile_map[2])
596 { 544 {
597 if ((abs (pl->ob->x - x) <= pl->socket->mapx / 2) && (abs (pl->ob->y + MAP_HEIGHT (map) - y) <= pl->socket->mapy / 2)) 545 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
598 pl->do_los = 1; 546 pl->do_los = 1;
599 } 547 }
600 else if (pl->ob->map == map->tile_map[1]) 548 else if (pl->ob->map == map->tile_map[1])
601 { 549 {
602 if ((abs (pl->ob->x + MAP_WIDTH (map) - x) <= pl->socket->mapx / 2) && (abs (pl->ob->y - y) <= pl->socket->mapy / 2)) 550 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
603 pl->do_los = 1; 551 pl->do_los = 1;
604 } 552 }
605 else if (pl->ob->map == map->tile_map[3]) 553 else if (pl->ob->map == map->tile_map[3])
606 { 554 {
607 if ((abs (x + MAP_WIDTH (map->tile_map[3]) - pl->ob->x) <= pl->socket->mapx / 2) && (abs (pl->ob->y - y) <= pl->socket->mapy / 2)) 555 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
608 pl->do_los = 1; 556 pl->do_los = 1;
609 } 557 }
610 } 558 }
611} 559}
612 560
561static const int season_darkness[5][HOURS_PER_DAY] = {
562 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
563 { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
564 { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
565 { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
566 { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
567 { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
568};
569
613/* 570/*
614 * Debug-routine which dumps the array which specifies the visible 571 * Tell players the time and compute the darkness level for all maps in the game.
615 * area of a player. Triggered by the z key in DM mode. 572 * MUST be called exactly once per hour.
616 */ 573 */
617
618void 574void
619print_los (object *op) 575maptile::adjust_daylight ()
620{ 576{
621 int x, y; 577 timeofday_t tod;
622 char buf[50], buf2[10];
623 578
624 strcpy (buf, " "); 579 get_tod (&tod);
625 for (x = 0; x < op->contr->socket->mapx; x++) 580
581 // log the time to log-1 every hour, and to chat every day
626 { 582 {
627 sprintf (buf2, "%2d", x); 583 char todbuf[512];
628 strcat (buf, buf2); 584
585 format_tod (todbuf, sizeof (todbuf), &tod);
586
587 for_all_players (pl)
588 pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
629 } 589 }
630 new_draw_info (NDI_UNIQUE, 0, op, buf); 590
631 for (y = 0; y < op->contr->socket->mapy; y++) 591 /* If the light level isn't changing, no reason to do all
632 { 592 * the work below.
633 sprintf (buf, "%2d:", y); 593 */
634 for (x = 0; x < op->contr->socket->mapx; x++) 594 sint8 new_darkness = season_darkness[tod.season][tod.hour];
635 { 595
636 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]); 596 if (new_darkness == maptile::outdoor_darkness)
637 strcat (buf, buf2); 597 return;
638 } 598
639 new_draw_info (NDI_UNIQUE, 0, op, buf); 599 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
640 } 600 new_darkness > maptile::outdoor_darkness
601 ? "It becomes darker."
602 : "It becomes brighter.");
603
604 maptile::outdoor_darkness = new_darkness;
605
606 // we simply update the los for all players, which is unnecessarily
607 // costly, but should do for the moment.
608 for_all_players (pl)
609 pl->do_los = 1;
641} 610}
642 611
643/* 612/*
644 * make_sure_seen: The object is supposed to be visible through walls, thus 613 * make_sure_seen: The object is supposed to be visible through walls, thus
645 * check if any players are nearby, and edit their LOS array. 614 * check if any players are nearby, and edit their LOS array.
646 */ 615 */
647
648void 616void
649make_sure_seen (const object *op) 617make_sure_seen (const object *op)
650{ 618{
651 player *pl; 619 for_all_players (pl)
652
653 for (pl = first_player; pl; pl = pl->next)
654 if (pl->ob->map == op->map && 620 if (pl->ob->map == op->map &&
655 pl->ob->y - pl->socket->mapy / 2 <= op->y && 621 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
656 pl->ob->y + pl->socket->mapy / 2 >= op->y && pl->ob->x - pl->socket->mapx / 2 <= op->x && pl->ob->x + pl->socket->mapx / 2 >= op->x) 622 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
657 pl->blocked_los[pl->socket->mapx / 2 + op->x - pl->ob->x][pl->socket->mapy / 2 + op->y - pl->ob->y] = 0; 623 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_X0] = 0;
658} 624}
659 625
660/* 626/*
661 * make_sure_not_seen: The object which is supposed to be visible through 627 * make_sure_not_seen: The object which is supposed to be visible through
662 * walls has just been removed from the map, so update the los of any 628 * walls has just been removed from the map, so update the los of any
663 * players within its range 629 * players within its range
664 */ 630 */
665
666void 631void
667make_sure_not_seen (const object *op) 632make_sure_not_seen (const object *op)
668{ 633{
669 player *pl; 634 for_all_players (pl)
670
671 for (pl = first_player; pl; pl = pl->next)
672 if (pl->ob->map == op->map && 635 if (pl->ob->map == op->map &&
673 pl->ob->y - pl->socket->mapy / 2 <= op->y && 636 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
674 pl->ob->y + pl->socket->mapy / 2 >= op->y && pl->ob->x - pl->socket->mapx / 2 <= op->x && pl->ob->x + pl->socket->mapx / 2 >= op->x) 637 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
675 pl->do_los = 1; 638 pl->do_los = 1;
676} 639}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines