ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.37 by root, Thu Dec 18 02:49:22 2008 UTC vs.
Revision 1.49 by root, Tue Dec 23 22:03:06 2008 UTC

19 * along with this program. If not, see <http://www.gnu.org/licenses/>. 19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 * 20 *
21 * The authors can be reached via e-mail to <support@deliantra.net> 21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */ 22 */
23 23
24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */ 24#include <bench.h>//D
25
26#include <global.h> 25#include <global.h>
27#include <math.h> 26#include <cmath>
28 27
29/* Distance must be less than this for the object to be blocked. 28// los flags
30 * An object is 1.0 wide, so if set to 0.5, it means the object 29enum {
31 * that blocks half the view (0.0 is complete block) will 30 FLG_XI = 0x01, // we have an x-parent
32 * block view in our tables. 31 FLG_YI = 0x02, // we have an y-parent
33 * .4 or less lets you see through walls. .5 is about right. 32 FLG_BLOCKED = 0x04, // this space blocks the view
34 */ 33 FLG_QUEUED = 0x80 // already queued in queue, or border
35#define SPACE_BLOCK 0.5 34};
36 35
37typedef struct blstr 36struct los_info
38{ 37{
39 int x[4], y[4]; 38 uint8 flags; // FLG_xxx
40 int index; 39 uint8 culled; // culled from "tree"
41} blocks; 40 uint8 visible;
41 uint8 pad0;
42 42
43// 31/32 == a speed hack 43 sint8 xo, yo; // obscure angle
44// we would like to use 32 for speed, but the code loops endlessly 44 sint8 xe, ye; // angle deviation
45// then, reason not yet identified, so only make the array use 32, 45};
46// not the define's.
47blocks block[MAP_CLIENT_X][MAP_CLIENT_Y == 31 ? 32 : MAP_CLIENT_Y];
48 46
49static void expand_lighted_sight (object *op); 47// temporary storage for the los algorithm,
48// one los_info for each lightable map space
49static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
50 50
51/* 51struct point
52 * Used to initialise the array used by the LOS routines.
53 * What this sets if that x,y blocks the view of bx,by
54 * This then sets up a relation - for example, something
55 * at 5,4 blocks view at 5,3 which blocks view at 5,2
56 * etc. So when we check 5,4 and find it block, we have
57 * the data to know that 5,3 and 5,2 and 5,1 should also
58 * be blocked.
59 */
60
61static void
62set_block (int x, int y, int bx, int by)
63{ 52{
64 int index = block[x][y].index, i;
65
66 /* Due to flipping, we may get duplicates - better safe than sorry.
67 */
68 for (i = 0; i < index; i++)
69 {
70 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
71 return;
72 }
73
74 block[x][y].x[index] = bx;
75 block[x][y].y[index] = by;
76 block[x][y].index++;
77#ifdef LOS_DEBUG
78 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
79#endif
80}
81
82/*
83 * initialises the array used by the LOS routines.
84 */
85
86/* since we are only doing the upper left quadrant, only
87 * these spaces could possibly get blocked, since these
88 * are the only ones further out that are still possibly in the
89 * sightline.
90 */
91void
92init_block (void)
93{
94 static int block_x[3] = { -1, -1, 0 },
95 block_y[3] = { -1, 0, -1 };
96
97 for (int x = 0; x < MAP_CLIENT_X; x++)
98 for (int y = 0; y < MAP_CLIENT_Y; y++)
99 block[x][y].index = 0;
100
101 /* The table should be symmetric, so only do the upper left
102 * quadrant - makes the processing easier.
103 */
104 for (int x = 1; x <= MAP_CLIENT_X / 2; x++)
105 {
106 for (int y = 1; y <= MAP_CLIENT_Y / 2; y++)
107 {
108 for (int i = 0; i < 3; i++)
109 {
110 int dx = x + block_x[i];
111 int dy = y + block_y[i];
112
113 /* center space never blocks */
114 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
115 continue;
116
117 /* If its a straight line, its blocked */
118 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
119 {
120 /* For simplicity, we mirror the coordinates to block the other
121 * quadrants.
122 */
123 set_block (x, y, dx, dy);
124 if (x == MAP_CLIENT_X / 2)
125 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
126 else if (y == MAP_CLIENT_Y / 2)
127 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
128 }
129 else
130 {
131 float d1, r, s, l;
132
133 /* We use the algorithm that found out how close the point
134 * (x,y) is to the line from dx,dy to the center of the viewable
135 * area. l is the distance from x,y to the line.
136 * r is more a curiosity - it lets us know what direction (left/right)
137 * the line is off
138 */
139
140 d1 = (powf (MAP_CLIENT_X / 2 - dx, 2.f) + powf (MAP_CLIENT_Y / 2 - dy, 2.f));
141 r = ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
142 s = ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
143 l = fabs (sqrtf (d1) * s);
144
145 if (l <= SPACE_BLOCK)
146 {
147 /* For simplicity, we mirror the coordinates to block the other
148 * quadrants.
149 */
150 set_block (x, y, dx, dy);
151 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
152 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
153 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
154 }
155 }
156 }
157 }
158 }
159}
160
161/*
162 * Used to initialise the array used by the LOS routines.
163 * x,y are indexes into the blocked[][] array.
164 * This recursively sets the blocked line of sight view.
165 * From the blocked[][] array, we know for example
166 * that if some particular space is blocked, it blocks
167 * the view of the spaces 'behind' it, and those blocked
168 * spaces behind it may block other spaces, etc.
169 * In this way, the chain of visibility is set.
170 */
171static void
172set_wall (object *op, int x, int y)
173{
174 for (int i = 0; i < block[x][y].index; i++)
175 {
176 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
177
178 /* ax, ay are the values as adjusted to be in the
179 * socket look structure.
180 */
181 ax = dx - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
182 ay = dy - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
183
184 if (ax < 0 || ax >= op->contr->ns->mapx || ay < 0 || ay >= op->contr->ns->mapy)
185 continue;
186#if 0
187 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
188#endif
189 /* we need to adjust to the fact that the socket
190 * code wants the los to start from the 0,0
191 * and not be relative to middle of los array.
192 */
193 op->contr->blocked_los[ax][ay] = LOS_BLOCKED;
194 set_wall (op, dx, dy);
195 }
196}
197
198/*
199 * Used to initialise the array used by the LOS routines.
200 * op is the object, x and y values based on MAP_CLIENT_X and Y.
201 * this is because they index the blocked[][] arrays.
202 */
203static void
204check_wall (object *op, int x, int y)
205{
206 int ax, ay; 53 sint8 x, y;
54};
207 55
208 if (!block[x][y].index) 56// minimum size, but must be a power of two
209 return; 57#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
210 58
211 /* ax, ay are coordinates as indexed into the look window */ 59// a queue of spaces to calculate
212 ax = x - (MAP_CLIENT_X - op->contr->ns->mapx) / 2; 60static point queue [QUEUE_LENGTH];
213 ay = y - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2; 61static int q1, q2; // queue start, end
214
215 /* If the converted coordinates are outside the viewable
216 * area for the client, return now.
217 */
218 if (ax < 0 || ay < 0 || ax >= op->contr->ns->mapx || ay >= op->contr->ns->mapy)
219 return;
220
221#if 0
222 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
223 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
224#endif
225
226 /* If this space is already blocked, prune the processing - presumably
227 * whatever has set this space to be blocked has done the work and already
228 * done the dependency chain.
229 */
230 if (op->contr->blocked_los[ax][ay] == LOS_BLOCKED)
231 return;
232
233 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
234 set_wall (op, x, y);
235}
236 62
237/* 63/*
238 * Clears/initialises the los-array associated to the player 64 * Clears/initialises the los-array associated to the player
239 * controlling the object. 65 * controlling the object.
240 */ 66 */
241
242void 67void
243clear_los (player *pl) 68player::clear_los (sint8 value)
244{ 69{
245 /* This is safer than using the ns->mapx, mapy because 70 memset (los, value, sizeof (los));
246 * we index the blocked_los as a 2 way array, so clearing
247 * the first z spaces may not not cover the spaces we are
248 * actually going to use
249 */
250 memset (pl->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
251} 71}
252 72
253/* 73// enqueue a single mapspace, but only if it hasn't
254 * expand_sight goes through the array of what the given player is 74// been enqueued yet.
255 * able to see, and expands the visible area a bit, so the player will,
256 * to a certain degree, be able to see into corners.
257 * This is somewhat suboptimal, would be better to improve the formula.
258 */
259static void 75static void
260expand_sight (object *op) 76enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
261{ 77{
262 for (int x = 1; x < op->contr->ns->mapx - 1; x++) /* loop over inner squares */ 78 sint8 x = LOS_X0 + dx;
263 for (int y = 1; y < op->contr->ns->mapy - 1; y++) 79 sint8 y = LOS_Y0 + dy;
264 if (!op->contr->blocked_los[x][y] && 80
265 !(get_map_flags (op->map, NULL, 81 los_info &l = los[x][y];
266 op->x - op->contr->ns->mapx / 2 + x, 82
267 op->y - op->contr->ns->mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))) 83 l.flags |= flags;
84
85 if (l.flags & FLG_QUEUED)
86 return;
87
88 l.flags |= FLG_QUEUED;
89
90 queue[q1].x = dx;
91 queue[q1].y = dy;
92
93 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
94}
95
96// run the los algorithm
97// this is a variant of a spiral los algorithm taken from
98// http://www.geocities.com/temerra/los_rays.html
99// which has been simplified and changed considerably, but
100// still is basically the same algorithm.
101static void
102calculate_los (player *pl)
103{
104 {
105 // we keep one line for ourselves, for the border flag
106 // so the client area is actually MAP_CLIENT_(X|Y) - 2
107 int half_x = min (LOS_X0 - 1, pl->ns->mapx / 2);
108 int half_y = min (LOS_Y0 - 1, pl->ns->mapy / 2);
109
110 // create borders, the corners are not touched
111 for (int dx = -half_x; dx <= half_x; ++dx)
112 los [dx + LOS_X0][LOS_Y0 - (half_y + 1)].flags =
113 los [dx + LOS_X0][LOS_Y0 + (half_y + 1)].flags = FLG_QUEUED;
114
115 for (int dy = -half_y; dy <= half_y; ++dy)
116 los [LOS_X0 - (half_x + 1)][dy + LOS_Y0].flags =
117 los [LOS_X0 + (half_x + 1)][dy + LOS_Y0].flags = FLG_QUEUED;
118
119 // now reset the los area and also add blocked flags
120 // which supposedly is faster than doing it inside the
121 // spiral path algorithm below, except when very little
122 // area is visible, in which case it is slower, evening
123 // out los calculation times between large and small los maps.
124 // apply_lights also iterates over this area, maybe these
125 // two passes could be combined somehow.
126 rectangular_mapspace_iterate_begin (pl->observe, -half_x, half_x, -half_y, half_y)
127 los_info &l = los [LOS_X0 + dx][LOS_Y0 + dy];
128 l.flags = m && m->at (nx, ny).flags () & P_BLOCKSVIEW ? FLG_BLOCKED : 0;
129 rectangular_mapspace_iterate_end
130 }
131
132 q1 = 0; q2 = 0; // initialise queue, not strictly required
133 enqueue (0, 0); // enqueue center
134
135 // treat the origin specially
136 los[LOS_X0][LOS_Y0].visible = 1;
137 pl->los[LOS_X0][LOS_Y0] = 0;
138
139 // loop over all enqueued points until the queue is empty
140 // the order in which this is done ensures that we
141 // never touch a mapspace whose input spaces we haven't checked
142 // yet.
143 while (q1 != q2)
144 {
145 sint8 dx = queue[q2].x;
146 sint8 dy = queue[q2].y;
147
148 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
149
150 sint8 x = LOS_X0 + dx;
151 sint8 y = LOS_Y0 + dy;
152
153 los_info &l = los[x][y];
154
155 if (expect_true (l.flags & (FLG_XI | FLG_YI)))
156 {
157 l.culled = 1;
158 l.xo = l.yo = l.xe = l.ye = 0;
159
160 // check contributing spaces, first horizontal
161 if (expect_true (l.flags & FLG_XI))
268 { 162 {
269 for (int i = 1; i <= 8; i += 1) 163 los_info *xi = &los[x - sign (dx)][y];
270 { /* mark all directions */
271 int dx = x + freearr_x[i];
272 int dy = y + freearr_y[i];
273 164
274 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */ 165 // don't cull unless obscured
275 op->contr->blocked_los[dx][dy] = -1; 166 l.culled &= !xi->visible;
167
168 /* merge input space */
169 if (expect_false (xi->xo || xi->yo))
170 {
171 // The X input can provide two main pieces of information:
172 // 1. Progressive X obscurity.
173 // 2. Recessive Y obscurity.
174
175 // Progressive X obscurity, favouring recessive input angle
176 if (xi->xe > 0 && l.xo == 0)
177 {
178 l.xe = xi->xe - xi->yo;
179 l.ye = xi->ye + xi->yo;
180 l.xo = xi->xo;
181 l.yo = xi->yo;
182 }
183
184 // Recessive Y obscurity
185 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
186 {
187 l.ye = xi->yo + xi->ye;
188 l.xe = xi->xe - xi->yo;
189 l.xo = xi->xo;
190 l.yo = xi->yo;
191 }
192 }
276 } 193 }
194
195 // check contributing spaces, last vertical, identical structure
196 if (expect_true (l.flags & FLG_YI))
197 {
198 los_info *yi = &los[x][y - sign (dy)];
199
200 // don't cull unless obscured
201 l.culled &= !yi->visible;
202
203 /* merge input space */
204 if (expect_false (yi->yo || yi->xo))
205 {
206 // The Y input can provide two main pieces of information:
207 // 1. Progressive Y obscurity.
208 // 2. Recessive X obscurity.
209
210 // Progressive Y obscurity, favouring recessive input angle
211 if (yi->ye > 0 && l.yo == 0)
212 {
213 l.ye = yi->ye - yi->xo;
214 l.xe = yi->xe + yi->xo;
215 l.yo = yi->yo;
216 l.xo = yi->xo;
217 }
218
219 // Recessive X obscurity
220 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
221 {
222 l.xe = yi->xo + yi->xe;
223 l.ye = yi->ye - yi->xo;
224 l.yo = yi->yo;
225 l.xo = yi->xo;
226 }
227 }
228 }
229
230 if (l.flags & FLG_BLOCKED)
231 {
232 l.xo = l.xe = abs (dx);
233 l.yo = l.ye = abs (dy);
234
235 // we obscure dependents, but might be visible
236 // copy the los from the square towards the player,
237 // so outward diagonal corners are lit.
238 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
239
240 l.visible = false;
241 }
242 else
243 {
244 // we are not blocked, so calculate visibility, by checking
245 // whether we are inside or outside the shadow
246 l.visible = (l.xe <= 0 || l.xe > l.xo)
247 && (l.ye <= 0 || l.ye > l.yo);
248
249 pl->los[x][y] = l.culled ? LOS_BLOCKED
250 : l.visible ? 0
251 : 3;
252 }
253
254 }
255
256 // Expands by the unit length in each component's current direction.
257 // If a component has no direction, then it is expanded in both of its
258 // positive and negative directions.
259 if (!l.culled)
277 } 260 {
278 261 if (dx >= 0) enqueue (dx + 1, dy, FLG_XI);
279 if (op->map->darkness > 0) /* player is on a dark map */ 262 if (dx <= 0) enqueue (dx - 1, dy, FLG_XI);
280 expand_lighted_sight (op); 263 if (dy >= 0) enqueue (dx, dy + 1, FLG_YI);
281 264 if (dy <= 0) enqueue (dx, dy - 1, FLG_YI);
282 /* clear mark squares */ 265 }
283 for (int x = 0; x < op->contr->ns->mapx; x++) 266 }
284 for (int y = 0; y < op->contr->ns->mapy; y++)
285 if (op->contr->blocked_los[x][y] < 0)
286 op->contr->blocked_los[x][y] = 0;
287} 267}
288 268
289/* returns true if op carries one or more lights 269/* returns true if op carries one or more lights
290 * This is a trivial function now days, but it used to 270 * This is a trivial function now days, but it used to
291 * be a bit longer. Probably better for callers to just 271 * be a bit longer. Probably better for callers to just
300 280
301 return 0; 281 return 0;
302} 282}
303 283
304/* radius, distance => lightness adjust */ 284/* radius, distance => lightness adjust */
305static sint8 darkness[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1]; 285static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
286static sint8 vision_atten[MAX_DARKNESS + 1][MAX_DARKNESS * 3 / 2 + 1];
306 287
307static struct darkness_init 288static struct los_init
308{ 289{
309 darkness_init () 290 los_init ()
310 { 291 {
292 assert (("QUEUE_LENGTH, MAP_CLIENT_X and MAP_CLIENT_Y *must* be powers of two",
293 !(QUEUE_LENGTH & (QUEUE_LENGTH - 1))));
294
295 /* for lights */
311 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius) 296 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
312 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance) 297 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
313 { 298 {
314 // max intensity 299 // max intensity
315 int intensity = min (LOS_MAX, abs (radius) + 1); 300 int intensity = min (LOS_MAX, abs (radius) + 1);
316 301
317 // actual intensity 302 // actual intensity
318 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0)); 303 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
319 304
320 darkness [radius + MAX_LIGHT_RADIUS][distance] = radius < 0 305 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
321 ? min (3, intensity) 306 ? min (3, intensity)
322 : LOS_MAX - intensity; 307 : LOS_MAX - intensity;
323 } 308 }
309
310 /* for general vision */
311 for (int radius = 0; radius <= MAX_DARKNESS; ++radius)
312 for (int distance = 0; distance <= MAX_DARKNESS * 3 / 2; ++distance)
313 {
314 vision_atten [radius][distance] = distance <= radius ? 3 : 4;
315 }
324 } 316 }
325} darkness_init; 317} los_init;
326 318
319sint8
320los_brighten (sint8 b, sint8 l)
321{
322 return b == LOS_BLOCKED ? b : min (b, l);
323}
324
325sint8
326los_darken (sint8 b, sint8 l)
327{
328 return max (b, l);
329}
330
331template<sint8 change_it (sint8, sint8)>
327static void 332static void
328expand_lighted_sight (object *op) 333apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
329{ 334{
330 int x, y, darklevel, basex, basey, mflags, light, x1, y1; 335 // min or max the circular area around basex, basey
331 maptile *m = op->map; 336 dx += LOS_X0;
332 sint16 nx, ny; 337 dy += LOS_Y0;
333 338
334 darklevel = m->darkness; 339 int hx = pl->ns->mapx / 2;
340 int hy = pl->ns->mapy / 2;
341
342 int ax0 = max (LOS_X0 - hx, dx - light);
343 int ay0 = max (LOS_Y0 - hy, dy - light);
344 int ax1 = min (dx + light, LOS_X0 + hx);
345 int ay1 = min (dy + light, LOS_Y0 + hy);
346
347 for (int ax = ax0; ax <= ax1; ax++)
348 for (int ay = ay0; ay <= ay1; ay++)
349 pl->los[ax][ay] =
350 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
351}
352
353/* add light, by finding all (non-null) nearby light sources, then
354 * mark those squares specially.
355 */
356static void
357apply_lights (player *pl)
358{
359 object *op = pl->observe;
360 int darklevel = op->map->darklevel ();
335 361
336 /* If the player can see in the dark, lower the darklevel for him */ 362 /* If the player can see in the dark, lower the darklevel for him */
337 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK)) 363 if (op->flag [FLAG_SEE_IN_DARK])
338 darklevel -= LOS_MAX / 2; 364 darklevel = max (0, darklevel - 2);
339 365
340 /* add light, by finding all (non-null) nearby light sources, then 366 int half_x = pl->ns->mapx / 2;
341 * mark those squares specially. If the darklevel<1, there is no 367 int half_y = pl->ns->mapy / 2;
342 * reason to do this, so we skip this function
343 */
344 368
369 int pass2 = 0; // negative lights have an extra pass
370
345 if (darklevel < 1) 371 if (!darklevel)
346 return; 372 pass2 = 1;
347 373 else
348 /* Do a sanity check. If not valid, some code below may do odd
349 * things.
350 */
351 if (darklevel > MAX_DARKNESS)
352 { 374 {
353 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel); 375 /* first, make everything totally dark */
354 darklevel = MAX_DARKNESS; 376 for (int dx = -half_x; dx <= half_x; dx++)
377 for (int dy = -half_x; dy <= half_y; dy++)
378 max_it (pl->los[dx + LOS_X0][dy + LOS_Y0], LOS_MAX);
379
380 /*
381 * Only process the area of interest.
382 * the basex, basey values represent the position in the op->contr->los
383 * array. Its easier to just increment them here (and start with the right
384 * value) than to recalculate them down below.
385 */
386 rectangular_mapspace_iterate_begin (pl->observe, -half_x - MAX_LIGHT_RADIUS, half_x + MAX_LIGHT_RADIUS, -half_y - MAX_LIGHT_RADIUS, half_y + MAX_LIGHT_RADIUS)
387 if (m)
388 {
389 mapspace &ms = m->at (nx, ny);
390 ms.update ();
391 sint8 light = ms.light;
392
393 if (expect_false (light))
394 if (light < 0)
395 pass2 = 1;
396 else
397 apply_light<los_brighten> (pl, dx, dy, light, light_atten [light + MAX_LIGHT_RADIUS]);
398 }
399 rectangular_mapspace_iterate_end
400
401 /* grant some vision to the player, based on the darklevel */
402 {
403 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_DARKNESS);
404
405 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
406 }
355 } 407 }
356 408
357 /* first, make everything totally dark */
358 for (x = 0; x < op->contr->ns->mapx; x++)
359 for (y = 0; y < op->contr->ns->mapy; y++)
360 if (op->contr->blocked_los[x][y] != LOS_BLOCKED)
361 op->contr->blocked_los[x][y] = LOS_MAX;
362
363 int half_x = op->contr->ns->mapx / 2;
364 int half_y = op->contr->ns->mapy / 2;
365
366 int min_x = op->x - half_x - MAX_LIGHT_RADIUS;
367 int min_y = op->y - half_y - MAX_LIGHT_RADIUS;
368 int max_x = op->x + half_x + MAX_LIGHT_RADIUS;
369 int max_y = op->y + half_y + MAX_LIGHT_RADIUS;
370
371 int pass2 = 0; // negative lights have an extra pass
372
373 /*
374 * Only process the area of interest.
375 * the basex, basey values represent the position in the op->contr->blocked_los
376 * array. Its easier to just increment them here (and start with the right
377 * value) than to recalculate them down below.
378 */
379 for (int x = min_x, basex = -MAX_LIGHT_RADIUS; x <= max_x; x++, basex++)
380 for (int y = min_y, basey = -MAX_LIGHT_RADIUS; y <= max_y; y++, basey++)
381 {
382 maptile *m = op->map;
383 sint16 nx = x;
384 sint16 ny = y;
385
386 if (!xy_normalise (m, nx, ny))
387 continue;
388
389 mapspace &ms = m->at (nx, ny);
390 ms.update ();
391 sint8 light = ms.light;
392
393 if (expect_false (light))
394 if (light < 0)
395 pass2 = 1;
396 else
397 {
398 /* This space is providing light, so we need to brighten up the
399 * spaces around here.
400 */
401 const sint8 *darkness_table = darkness [light + MAX_LIGHT_RADIUS];
402
403 for (int ax = max (0, basex - light); ax <= min (basex + light, op->contr->ns->mapx - 1); ax++)
404 for (int ay = max (0, basey - light); ay <= min (basey + light, op->contr->ns->mapy - 1); ay++)
405 if (op->contr->blocked_los[ax][ay] != LOS_BLOCKED)
406 min_it (op->contr->blocked_los[ax][ay], darkness_table [idistance (ax - basex, ay - basey)]);
407 }
408 }
409
410 // psosibly do 2nd pass for rare negative glow radii 409 // possibly do 2nd pass for rare negative glow radii
411 if (expect_false (pass2)) 410 // for effect, those are always considered to be stronger than anything else
412 for (x = min_x, basex = -MAX_LIGHT_RADIUS; x <= max_x; x++, basex++) 411 // but they can't darken a place completely
413 for (y = min_y, basey = -MAX_LIGHT_RADIUS; y <= max_y; y++, basey++) 412 if (pass2)
413 rectangular_mapspace_iterate_begin (pl->observe, -half_x - MAX_LIGHT_RADIUS, half_x + MAX_LIGHT_RADIUS, -half_y - MAX_LIGHT_RADIUS, half_y + MAX_LIGHT_RADIUS)
414 if (m)
414 { 415 {
415 maptile *m = op->map;
416 sint16 nx = x;
417 sint16 ny = y;
418
419 if (!xy_normalise (m, nx, ny))
420 continue;
421
422 mapspace &ms = m->at (nx, ny); 416 mapspace &ms = m->at (nx, ny);
423 ms.update (); 417 ms.update ();
424 sint8 light = ms.light; 418 sint8 light = ms.light;
425 419
426 if (expect_false (light < 0)) 420 if (expect_false (light < 0))
427 { 421 apply_light<los_darken> (pl, dx, dy, -light, light_atten [light + MAX_LIGHT_RADIUS]);
428 const sint8 *darkness_table = darkness [light + MAX_LIGHT_RADIUS];
429
430 for (int ax = max (0, basex + light); ax <= min (basex - light, op->contr->ns->mapx - 1); ax++)
431 for (int ay = max (0, basey + light); ay <= min (basey - light, op->contr->ns->mapy - 1); ay++)
432 if (op->contr->blocked_los[ax][ay] != LOS_BLOCKED)
433 max_it (op->contr->blocked_los[ax][ay], darkness_table [idistance (ax - basex, ay - basey)]);
434 }
435 } 422 }
436 423 rectangular_mapspace_iterate_end
437 /* Outdoor should never really be completely pitch black dark like
438 * a dungeon, so let the player at least see a little around themselves
439 */
440 if (op->map->outdoor && darklevel > MAX_DARKNESS - 3)
441 {
442 if (op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] > (LOS_MAX - 3))
443 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = LOS_MAX - 3;
444
445 for (x = -1; x <= 1; x++)
446 for (y = -1; y <= 1; y++)
447 if (op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] > (LOS_MAX - 2))
448 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] = LOS_MAX - 2;
449 }
450
451 /* grant some vision to the player, based on the darklevel */
452 for (x = darklevel - MAX_DARKNESS; x < MAX_DARKNESS + 1 - darklevel; x++)
453 for (y = darklevel - MAX_DARKNESS; y < MAX_DARKNESS + 1 - darklevel; y++)
454 if (!(op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] == LOS_BLOCKED))
455 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] -=
456 max (0, 6 - darklevel - max (abs (x), abs (y)));
457} 424}
458 425
459/* blinded_sight() - sets all viewable squares to blocked except 426/* blinded_sight() - sets all viewable squares to blocked except
460 * for the one the central one that the player occupies. A little 427 * for the one the central one that the player occupies. A little
461 * odd that you can see yourself (and what your standing on), but 428 * odd that you can see yourself (and what your standing on), but
462 * really need for any reasonable game play. 429 * really need for any reasonable game play.
463 */ 430 */
464static void 431static void
465blinded_sight (object *op) 432blinded_sight (player *pl)
466{ 433{
467 int x, y; 434 pl->los[LOS_X0][LOS_Y0] = 1;
468
469 for (x = 0; x < op->contr->ns->mapx; x++)
470 for (y = 0; y < op->contr->ns->mapy; y++)
471 op->contr->blocked_los[x][y] = LOS_BLOCKED;
472
473 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = 0;
474} 435}
475 436
476/* 437/*
477 * update_los() recalculates the array which specifies what is 438 * update_los() recalculates the array which specifies what is
478 * visible for the given player-object. 439 * visible for the given player-object.
479 */ 440 */
480void 441void
481update_los (object *op) 442player::update_los ()
482{ 443{
483 int dx = op->contr->ns->mapx / 2, dy = op->contr->ns->mapy / 2, x, y; 444 if (ob->flag [FLAG_REMOVED])//D really needed?
484
485 if (QUERY_FLAG (op, FLAG_REMOVED))
486 return; 445 return;
487 446
488 clear_los (op->contr); 447 if (ob->flag [FLAG_WIZLOOK])
489 448 clear_los (0);
490 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ ) 449 else if (observe->flag [FLAG_BLIND]) /* player is blind */
491 return; 450 {
492 451 clear_los ();
493 /* For larger maps, this is more efficient than the old way which
494 * used the chaining of the block array. Since many space views could
495 * be blocked by different spaces in front, this mean that a lot of spaces
496 * could be examined multile times, as each path would be looked at.
497 */
498 for (x = (MAP_CLIENT_X - op->contr->ns->mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->ns->mapx) / 2 + 1; x++)
499 for (y = (MAP_CLIENT_Y - op->contr->ns->mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->ns->mapy) / 2 + 1; y++)
500 check_wall (op, x, y);
501
502 /* do the los of the player. 3 (potential) cases */
503 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
504 blinded_sight (op); 452 blinded_sight (this);
453 }
505 else 454 else
506 expand_sight (op); 455 {
456 clear_los ();
457 calculate_los (this);
458 apply_lights (this);
459 }
507 460
508 //TODO: no range-checking whatsoever :( 461 if (observe->flag [FLAG_XRAYS])
509 if (QUERY_FLAG (op, FLAG_XRAYS))
510 for (int x = -2; x <= 2; x++) 462 for (int dx = -2; dx <= 2; dx++)
511 for (int y = -2; y <= 2; y++) 463 for (int dy = -2; dy <= 2; dy++)
512 op->contr->blocked_los[dx + x][dy + y] = 0; 464 min_it (los[dx + LOS_X0][dy + LOS_Y0], 1);
513} 465}
514 466
515/* update all_map_los is like update_all_los below, 467/* update all_map_los is like update_all_los below,
516 * but updates everyone on the map, no matter where they 468 * but updates everyone on the map, no matter where they
517 * are. This generally should not be used, as a per 469 * are. This generally should not be used, as a per
524 * change_map_light function 476 * change_map_light function
525 */ 477 */
526void 478void
527update_all_map_los (maptile *map) 479update_all_map_los (maptile *map)
528{ 480{
529 for_all_players (pl) 481 for_all_players_on_map (pl, map)
530 if (pl->ob && pl->ob->map == map)
531 pl->do_los = 1; 482 pl->do_los = 1;
532} 483}
533 484
534/* 485/*
535 * This function makes sure that update_los() will be called for all 486 * This function makes sure that update_los() will be called for all
536 * players on the given map within the next frame. 487 * players on the given map within the next frame.
544 * map is the map that changed, x and y are the coordinates. 495 * map is the map that changed, x and y are the coordinates.
545 */ 496 */
546void 497void
547update_all_los (const maptile *map, int x, int y) 498update_all_los (const maptile *map, int x, int y)
548{ 499{
500 map->at (x, y).invalidate ();
501
549 for_all_players (pl) 502 for_all_players (pl)
550 { 503 {
551 /* Player should not have a null map, but do this 504 /* Player should not have a null map, but do this
552 * check as a safety 505 * check as a safety
553 */ 506 */
605 pl->do_los = 1; 558 pl->do_los = 1;
606 } 559 }
607 } 560 }
608} 561}
609 562
563static const int season_darkness[5][HOURS_PER_DAY] = {
564 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
565 { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
566 { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
567 { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
568 { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
569 { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
570};
571
610/* 572/*
611 * Debug-routine which dumps the array which specifies the visible 573 * Tell players the time and compute the darkness level for all maps in the game.
612 * area of a player. Triggered by the z key in DM mode. 574 * MUST be called exactly once per hour.
613 */ 575 */
614void 576void
615print_los (object *op) 577maptile::adjust_daylight ()
616{ 578{
617 int x, y; 579 timeofday_t tod;
618 char buf[50], buf2[10];
619 580
620 strcpy (buf, " "); 581 get_tod (&tod);
621 582
622 for (x = 0; x < op->contr->ns->mapx; x++) 583 // log the time to log-1 every hour, and to chat every day
623 { 584 {
624 sprintf (buf2, "%2d", x); 585 char todbuf[512];
625 strcat (buf, buf2); 586
587 format_tod (todbuf, sizeof (todbuf), &tod);
588
589 for_all_players (pl)
590 pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
626 } 591 }
627 592
628 new_draw_info (NDI_UNIQUE, 0, op, buf); 593 /* If the light level isn't changing, no reason to do all
594 * the work below.
595 */
596 sint8 new_darkness = season_darkness[tod.season][tod.hour];
629 597
630 for (y = 0; y < op->contr->ns->mapy; y++) 598 if (new_darkness == maptile::outdoor_darkness)
631 { 599 return;
632 sprintf (buf, "%2d:", y);
633 600
634 for (x = 0; x < op->contr->ns->mapx; x++) 601 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
635 { 602 new_darkness > maptile::outdoor_darkness
636 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]); 603 ? "It becomes darker."
637 strcat (buf, buf2); 604 : "It becomes brighter.");
638 }
639 605
640 new_draw_info (NDI_UNIQUE, 0, op, buf); 606 maptile::outdoor_darkness = new_darkness;
641 } 607
608 // we simply update the los for all players, which is unnecessarily
609 // costly, but should do for the moment.
610 for_all_players (pl)
611 pl->do_los = 1;
642} 612}
643 613
644/* 614/*
645 * make_sure_seen: The object is supposed to be visible through walls, thus 615 * make_sure_seen: The object is supposed to be visible through walls, thus
646 * check if any players are nearby, and edit their LOS array. 616 * check if any players are nearby, and edit their LOS array.
647 */ 617 */
648
649void 618void
650make_sure_seen (const object *op) 619make_sure_seen (const object *op)
651{ 620{
652 for_all_players (pl) 621 for_all_players (pl)
653 if (pl->ob->map == op->map && 622 if (pl->ob->map == op->map &&
654 pl->ob->y - pl->ns->mapy / 2 <= op->y && 623 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
655 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x) 624 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
656 pl->blocked_los[pl->ns->mapx / 2 + op->x - pl->ob->x][pl->ns->mapy / 2 + op->y - pl->ob->y] = 0; 625 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_Y0] = 0;
657} 626}
658 627
659/* 628/*
660 * make_sure_not_seen: The object which is supposed to be visible through 629 * make_sure_not_seen: The object which is supposed to be visible through
661 * walls has just been removed from the map, so update the los of any 630 * walls has just been removed from the map, so update the los of any
662 * players within its range 631 * players within its range
663 */ 632 */
664
665void 633void
666make_sure_not_seen (const object *op) 634make_sure_not_seen (const object *op)
667{ 635{
668 for_all_players (pl) 636 for_all_players (pl)
669 if (pl->ob->map == op->map && 637 if (pl->ob->map == op->map &&

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines