ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.5 by root, Thu Sep 14 22:33:59 2006 UTC vs.
Revision 1.78 by root, Wed Dec 5 19:03:26 2018 UTC

1/* 1/*
2 CrossFire, A Multiplayer game for X-windows 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 3 *
4 Copyright (C) 2002 Mark Wedel & Crossfire Development Team 4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 Copyright (C) 1992 Frank Tore Johansen 5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
6 6 *
7 This program is free software; you can redistribute it and/or modify 7 * Deliantra is free software: you can redistribute it and/or modify it under
8 it under the terms of the GNU General Public License as published by 8 * the terms of the Affero GNU General Public License as published by the
9 the Free Software Foundation; either version 2 of the License, or 9 * Free Software Foundation, either version 3 of the License, or (at your
10 (at your option) any later version. 10 * option) any later version.
11 11 *
12 This program is distributed in the hope that it will be useful, 12 * This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details. 15 * GNU General Public License for more details.
16 16 *
17 You should have received a copy of the GNU General Public License 17 * You should have received a copy of the Affero GNU General Public License
18 along with this program; if not, write to the Free Software 18 * and the GNU General Public License along with this program. If not, see
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 * <http://www.gnu.org/licenses/>.
20 20 *
21 The authors can be reached via e-mail at <crossfire@schmorp.de> 21 * The authors can be reached via e-mail to <support@deliantra.net>
22*/ 22 */
23
24/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
25 23
26#include <global.h> 24#include <global.h>
27#include <funcpoint.h>
28#include <math.h> 25#include <cmath>
29 26
27#define SEE_IN_DARK_RADIUS 2
28#define MAX_VISION 10 // maximum visible radius
30 29
31/* Distance must be less than this for the object to be blocked. 30// los flags
32 * An object is 1.0 wide, so if set to 0.5, it means the object 31enum {
33 * that blocks half the view (0.0 is complete block) will 32 FLG_XI = 0x01, // we have an x-parent
34 * block view in our tables. 33 FLG_YI = 0x02, // we have an y-parent
35 * .4 or less lets you see through walls. .5 is about right. 34 FLG_BLOCKED = 0x04, // this space blocks the view
36 */ 35 FLG_QUEUED = 0x80 // already queued in queue, or border
36};
37 37
38#define SPACE_BLOCK 0.5 38// it is important for performance reasons that this structure
39 39// has a size easily computable by the cpu (*8 is perfect).
40typedef struct blstr 40// it is possible to move culled and visible into flags, at
41// some speed loss.
42struct los_info
41{ 43{
42 int x[4], y[4]; 44 uint8 flags; // FLG_xxx
43 int index; 45 uint8 culled; // culled from "tree"
44} blocks; 46 uint8 visible;
47 uint8 pad0;
45 48
49 sint8 xo, yo; // obscure angle
50 sint8 xe, ye; // angle deviation
51};
52
53// temporary storage for the los algorithm,
54// one los_info for each lightable map space
46blocks block[MAP_CLIENT_X][MAP_CLIENT_Y]; 55static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
47 56
48static void expand_lighted_sight (object *op); 57struct point8
49
50/*
51 * Used to initialise the array used by the LOS routines.
52 * What this sets if that x,y blocks the view of bx,by
53 * This then sets up a relation - for example, something
54 * at 5,4 blocks view at 5,3 which blocks view at 5,2
55 * etc. So when we check 5,4 and find it block, we have
56 * the data to know that 5,3 and 5,2 and 5,1 should also
57 * be blocked.
58 */
59
60static void
61set_block (int x, int y, int bx, int by)
62{ 58{
63 int index = block[x][y].index, i;
64
65 /* Due to flipping, we may get duplicates - better safe than sorry.
66 */
67 for (i = 0; i < index; i++)
68 {
69 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
70 return;
71 }
72
73 block[x][y].x[index] = bx;
74 block[x][y].y[index] = by;
75 block[x][y].index++;
76#ifdef LOS_DEBUG
77 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
78#endif
79}
80
81/*
82 * initialises the array used by the LOS routines.
83 */
84
85/* since we are only doing the upper left quadrant, only
86 * these spaces could possibly get blocked, since these
87 * are the only ones further out that are still possibly in the
88 * sightline.
89 */
90
91void
92init_block (void)
93{
94 int x, y, dx, dy, i;
95 static int block_x[3] = { -1, -1, 0 }, block_y[3] =
96 {
97 -1, 0, -1};
98
99 for (x = 0; x < MAP_CLIENT_X; x++)
100 for (y = 0; y < MAP_CLIENT_Y; y++)
101 {
102 block[x][y].index = 0;
103 }
104
105
106 /* The table should be symmetric, so only do the upper left
107 * quadrant - makes the processing easier.
108 */
109 for (x = 1; x <= MAP_CLIENT_X / 2; x++)
110 {
111 for (y = 1; y <= MAP_CLIENT_Y / 2; y++)
112 {
113 for (i = 0; i < 3; i++)
114 {
115 dx = x + block_x[i];
116 dy = y + block_y[i];
117
118 /* center space never blocks */
119 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
120 continue;
121
122 /* If its a straight line, its blocked */
123 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
124 {
125 /* For simplicity, we mirror the coordinates to block the other
126 * quadrants.
127 */
128 set_block (x, y, dx, dy);
129 if (x == MAP_CLIENT_X / 2)
130 {
131 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
132 }
133 else if (y == MAP_CLIENT_Y / 2)
134 {
135 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
136 }
137 }
138 else
139 {
140 float d1, r, s, l;
141
142 /* We use the algorihm that found out how close the point
143 * (x,y) is to the line from dx,dy to the center of the viewable
144 * area. l is the distance from x,y to the line.
145 * r is more a curiosity - it lets us know what direction (left/right)
146 * the line is off
147 */
148
149 d1 = (float) (pow (MAP_CLIENT_X / 2 - dx, 2) + pow (MAP_CLIENT_Y / 2 - dy, 2));
150 r = (float) ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
151 s = (float) ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
152 l = FABS (sqrt (d1) * s);
153
154 if (l <= SPACE_BLOCK)
155 {
156 /* For simplicity, we mirror the coordinates to block the other
157 * quadrants.
158 */
159 set_block (x, y, dx, dy);
160 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
161 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
162 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
163 }
164 }
165 }
166 }
167 }
168}
169
170/*
171 * Used to initialise the array used by the LOS routines.
172 * x,y are indexes into the blocked[][] array.
173 * This recursively sets the blocked line of sight view.
174 * From the blocked[][] array, we know for example
175 * that if some particular space is blocked, it blocks
176 * the view of the spaces 'behind' it, and those blocked
177 * spaces behind it may block other spaces, etc.
178 * In this way, the chain of visibility is set.
179 */
180
181static void
182set_wall (object *op, int x, int y)
183{
184 int i;
185
186 for (i = 0; i < block[x][y].index; i++)
187 {
188 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
189
190 /* ax, ay are the values as adjusted to be in the
191 * socket look structure.
192 */
193 ax = dx - (MAP_CLIENT_X - op->contr->socket.mapx) / 2;
194 ay = dy - (MAP_CLIENT_Y - op->contr->socket.mapy) / 2;
195
196 if (ax < 0 || ax >= op->contr->socket.mapx || ay < 0 || ay >= op->contr->socket.mapy)
197 continue;
198#if 0
199 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
200#endif
201 /* we need to adjust to the fact that the socket
202 * code wants the los to start from the 0,0
203 * and not be relative to middle of los array.
204 */
205 op->contr->blocked_los[ax][ay] = 100;
206 set_wall (op, dx, dy);
207 }
208}
209
210/*
211 * Used to initialise the array used by the LOS routines.
212 * op is the object, x and y values based on MAP_CLIENT_X and Y.
213 * this is because they index the blocked[][] arrays.
214 */
215
216static void
217check_wall (object *op, int x, int y)
218{
219 int ax, ay; 59 sint8 x, y;
60};
220 61
221 if (!block[x][y].index) 62// minimum size, but must be a power of two
222 return; 63#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
223 64
224 /* ax, ay are coordinates as indexed into the look window */ 65// a queue of spaces to calculate
225 ax = x - (MAP_CLIENT_X - op->contr->socket.mapx) / 2; 66static point8 queue [QUEUE_LENGTH];
226 ay = y - (MAP_CLIENT_Y - op->contr->socket.mapy) / 2; 67static int q1, q2; // queue start, end
227
228 /* If the converted coordinates are outside the viewable
229 * area for the client, return now.
230 */
231 if (ax < 0 || ay < 0 || ax >= op->contr->socket.mapx || ay >= op->contr->socket.mapy)
232 return;
233
234#if 0
235 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
236 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
237#endif
238
239 /* If this space is already blocked, prune the processing - presumably
240 * whatever has set this space to be blocked has done the work and already
241 * done the dependency chain.
242 */
243 if (op->contr->blocked_los[ax][ay] == 100)
244 return;
245
246
247 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
248 set_wall (op, x, y);
249}
250 68
251/* 69/*
252 * Clears/initialises the los-array associated to the player 70 * Clears/initialises the los-array associated to the player
253 * controlling the object. 71 * controlling the object.
254 */ 72 */
255
256void 73void
257clear_los (object *op) 74player::clear_los (sint8 value)
258{ 75{
259 /* This is safer than using the socket->mapx, mapy because 76 memset (los, value, sizeof (los));
260 * we index the blocked_los as a 2 way array, so clearing
261 * the first z spaces may not not cover the spaces we are
262 * actually going to use
263 */
264 (void) memset ((void *) op->contr->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
265} 77}
266 78
267/* 79// enqueue a single mapspace, but only if it hasn't
268 * expand_sight goes through the array of what the given player is 80// been enqueued yet.
269 * able to see, and expands the visible area a bit, so the player will,
270 * to a certain degree, be able to see into corners.
271 * This is somewhat suboptimal, would be better to improve the formula.
272 */
273
274static void 81static void
275expand_sight (object *op) 82enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
276{ 83{
277 int i, x, y, dx, dy; 84 sint8 x = LOS_X0 + dx;
85 sint8 y = LOS_Y0 + dy;
278 86
279 for (x = 1; x < op->contr->socket.mapx - 1; x++) /* loop over inner squares */ 87 los_info &l = los[x][y];
280 for (y = 1; y < op->contr->socket.mapy - 1; y++) 88
89 l.flags |= flags;
90
91 if (ecb_expect_false (l.flags & FLG_QUEUED))
92 return;
93
94 l.flags |= FLG_QUEUED;
95
96 queue[q1].x = dx;
97 queue[q1].y = dy;
98
99 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
100}
101
102// run the los algorithm
103// this is a variant of a spiral los algorithm taken from
104// http://www.geocities.com/temerra/los_rays.html
105// which has been simplified and changed considerably, but
106// still is basically the same algorithm.
107static void
108calculate_los (player *pl)
109{
110 {
111 memset (los, 0, sizeof (los));
112
113 // we keep one line for ourselves, for the border flag
114 // so the client area is actually MAP_CLIENT_(X|Y) - 2
115 int half_x = min (LOS_X0 - 1, pl->ns->mapx / 2);
116 int half_y = min (LOS_Y0 - 1, pl->ns->mapy / 2);
117
118 // create borders, the corners are not touched
119 for (int dx = -half_x; dx <= half_x; ++dx)
120 los [dx + LOS_X0][LOS_Y0 - (half_y + 1)].flags =
121 los [dx + LOS_X0][LOS_Y0 + (half_y + 1)].flags = FLG_QUEUED;
122
123 for (int dy = -half_y; dy <= half_y; ++dy)
124 los [LOS_X0 - (half_x + 1)][dy + LOS_Y0].flags =
125 los [LOS_X0 + (half_x + 1)][dy + LOS_Y0].flags = FLG_QUEUED;
126
127 // now reset the los area and also add blocked flags
128 // which supposedly is faster than doing it inside the
129 // spiral path algorithm below, except when very little
130 // area is visible, in which case it is slower. which evens
131 // out los calculation times between large and small los maps.
132 // apply_lights also iterates over this area, maybe these
133 // two passes could be combined somehow.
134 unordered_mapwalk (mapwalk_buf, pl->viewpoint, -half_x, -half_y, half_x, half_y)
281 { 135 {
282 if (!op->contr->blocked_los[x][y] && 136 los_info &l = los [LOS_X0 + dx][LOS_Y0 + dy];
283 !(get_map_flags (op->map, NULL, 137 l.flags = m->at (nx, ny).flags () & P_BLOCKSVIEW ? FLG_BLOCKED : 0;
284 op->x - op->contr->socket.mapx / 2 + x, 138 }
285 op->y - op->contr->socket.mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))) 139 }
140
141 q1 = 0; q2 = 0; // initialise queue, not strictly required
142 enqueue (0, 0); // enqueue center
143
144 // treat the origin specially
145 los[LOS_X0][LOS_Y0].visible = 1;
146 pl->los[LOS_X0][LOS_Y0] = 0;
147
148 // loop over all enqueued points until the queue is empty
149 // the order in which this is done ensures that we
150 // never touch a mapspace whose input spaces we haven't checked
151 // yet.
152 while (q1 != q2)
153 {
154 sint8 dx = queue[q2].x;
155 sint8 dy = queue[q2].y;
156
157 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
158
159 sint8 x = LOS_X0 + dx;
160 sint8 y = LOS_Y0 + dy;
161
162 los_info &l = los[x][y];
163
164 if (ecb_expect_true (l.flags & (FLG_XI | FLG_YI)))
165 {
166 l.culled = 1;
167 l.xo = l.yo = l.xe = l.ye = 0;
168
169 // check contributing spaces, first horizontal
170 if (ecb_expect_true (l.flags & FLG_XI))
171 {
172 los_info *xi = &los[x - sign (dx)][y];
173
174 // don't cull unless obscured
175 l.culled &= !xi->visible;
176
177 /* merge input space */
178 if (ecb_expect_false (xi->xo || xi->yo))
179 {
180 // The X input can provide two main pieces of information:
181 // 1. Progressive X obscurity.
182 // 2. Recessive Y obscurity.
183
184 // Progressive X obscurity, favouring recessive input angle
185 if (xi->xe > 0 && l.xo == 0)
186 {
187 l.xe = xi->xe - xi->yo;
188 l.ye = xi->ye + xi->yo;
189 l.xo = xi->xo;
190 l.yo = xi->yo;
191 }
192
193 // Recessive Y obscurity
194 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
195 {
196 l.ye = xi->yo + xi->ye;
197 l.xe = xi->xe - xi->yo;
198 l.xo = xi->xo;
199 l.yo = xi->yo;
200 }
201 }
202 }
203
204 // check contributing spaces, last vertical, identical structure
205 if (ecb_expect_true (l.flags & FLG_YI))
206 {
207 los_info *yi = &los[x][y - sign (dy)];
208
209 // don't cull unless obscured
210 l.culled &= !yi->visible;
211
212 /* merge input space */
213 if (ecb_expect_false (yi->yo || yi->xo))
214 {
215 // The Y input can provide two main pieces of information:
216 // 1. Progressive Y obscurity.
217 // 2. Recessive X obscurity.
218
219 // Progressive Y obscurity, favouring recessive input angle
220 if (yi->ye > 0 && l.yo == 0)
221 {
222 l.ye = yi->ye - yi->xo;
223 l.xe = yi->xe + yi->xo;
224 l.yo = yi->yo;
225 l.xo = yi->xo;
226 }
227
228 // Recessive X obscurity
229 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
230 {
231 l.xe = yi->xo + yi->xe;
232 l.ye = yi->ye - yi->xo;
233 l.yo = yi->yo;
234 l.xo = yi->xo;
235 }
236 }
237 }
238
239 if (l.flags & FLG_BLOCKED)
240 {
241 l.xo = l.xe = abs (dx);
242 l.yo = l.ye = abs (dy);
243
244 // we obscure dependents, but might be visible
245 // copy the los from the square towards the player,
246 // so outward diagonal corners are lit.
247 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
248
249 l.visible = false;
250 }
251 else
252 {
253 // we are not blocked, so calculate visibility, by checking
254 // whether we are inside or outside the shadow
255 l.visible = (l.xe <= 0 || l.xe > l.xo)
256 && (l.ye <= 0 || l.ye > l.yo);
257
258 pl->los[x][y] = l.culled ? LOS_BLOCKED
259 : l.visible ? 0
260 : 3;
261 }
262
263 }
264
265 // Expands by the unit length in each component's current direction.
266 // If a component has no direction, then it is expanded in both of its
267 // positive and negative directions.
268 if (!l.culled)
269 {
270 if (dx >= 0) enqueue (dx + 1, dy, FLG_XI);
271 if (dx <= 0) enqueue (dx - 1, dy, FLG_XI);
272 if (dy >= 0) enqueue (dx, dy + 1, FLG_YI);
273 if (dy <= 0) enqueue (dx, dy - 1, FLG_YI);
274 }
275 }
276}
277
278/* radius, distance => lightness adjust */
279static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
280static sint8 vision_atten[MAX_VISION + 1][MAX_VISION * 3 / 2 + 1];
281
282static struct los_init
283{
284 los_init ()
285 {
286 assert (("QUEUE_LENGTH, MAP_CLIENT_X and MAP_CLIENT_Y *must* be powers of two",
287 !(QUEUE_LENGTH & (QUEUE_LENGTH - 1))));
288
289 /* for lights */
290 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
291 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
292 {
293 // max intensity
294 int intensity = min (LOS_MAX, abs (radius) + 1);
295
296 // actual intensity
297 intensity = max (0, lerp_ru (distance, 0, abs (radius) + 1, intensity, 0));
298
299 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
300 ? min (3, intensity)
301 : LOS_MAX - intensity;
302 }
303
304 /* for general vision */
305 for (int radius = 0; radius <= MAX_VISION; ++radius)
306 for (int distance = 0; distance <= MAX_VISION * 3 / 2; ++distance)
307 vision_atten [radius][distance] = distance <= radius ? clamp (lerp (radius, 0, MAX_DARKNESS, 3, 0), 0, 3) : 4;
308 }
309} los_init;
310
311// the following functions cannot be static, due to c++ stupidity :/
312namespace {
313 // brighten area, ignore los
314 sint8
315 los_brighten_nolos (sint8 b, sint8 l)
316 {
317 return min (b, l);
318 }
319
320 // brighten area, but respect los
321 sint8
322 los_brighten (sint8 b, sint8 l)
323 {
324 return b == LOS_BLOCKED ? b : min (b, l);
325 }
326
327 // darken area, respect los
328 sint8
329 los_darken (sint8 b, sint8 l)
330 {
331 return max (b, l);
332 }
333};
334
335template<sint8 change_it (sint8, sint8)>
336static void
337apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
338{
339 // min or max the circular area around basex, basey
340 dx += LOS_X0;
341 dy += LOS_Y0;
342
343 int hx = pl->ns->mapx / 2;
344 int hy = pl->ns->mapy / 2;
345
346 int ax0 = max (LOS_X0 - hx, dx - light);
347 int ay0 = max (LOS_Y0 - hy, dy - light);
348 int ax1 = min (dx + light, LOS_X0 + hx);
349 int ay1 = min (dy + light, LOS_Y0 + hy);
350
351 for (int ax = ax0; ax <= ax1; ax++)
352 for (int ay = ay0; ay <= ay1; ay++)
353 pl->los[ax][ay] =
354 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
355}
356
357/* add light, by finding all (non-null) nearby light sources, then
358 * mark those squares specially.
359 */
360static void
361apply_lights (player *pl)
362{
363 object *op = pl->viewpoint;
364 int darklevel = op->map->darklevel ();
365
366 int half_x = pl->ns->mapx / 2;
367 int half_y = pl->ns->mapy / 2;
368
369 int pass2 = 0; // negative lights have an extra pass
370
371 maprect *rects = pl->viewpoint->map->split_to_tiles (
372 mapwalk_buf,
373 pl->viewpoint->x - half_x - MAX_LIGHT_RADIUS,
374 pl->viewpoint->y - half_y - MAX_LIGHT_RADIUS,
375 pl->viewpoint->x + half_x + MAX_LIGHT_RADIUS + 1,
376 pl->viewpoint->y + half_y + MAX_LIGHT_RADIUS + 1
377 );
378
379 /* If the player can see in the dark, increase light/vision radius */
380 int bonus = op->flag [FLAG_SEE_IN_DARK] ? SEE_IN_DARK_RADIUS : 0;
381
382 if (!darklevel)
383 pass2 = 1;
384 else
385 {
386 /* first, make everything totally dark */
387 for (int dx = -half_x; dx <= half_x; dx++)
388 for (int dy = -half_x; dy <= half_y; dy++)
389 max_it (pl->los[dx + LOS_X0][dy + LOS_Y0], LOS_MAX);
390
391 /*
392 * Only process the area of interest.
393 * the basex, basey values represent the position in the op->contr->los
394 * array. Its easier to just increment them here (and start with the right
395 * value) than to recalculate them down below.
396 */
397 for (maprect *r = rects; r->m; ++r)
398 rect_mapwalk (r, 0, 0)
286 { 399 {
400 mapspace &ms = m->at (nx, ny);
401 ms.update ();
402 sint8 light = ms.light;
287 403
288 for (i = 1; i <= 8; i += 1) 404 if (ecb_expect_false (light))
289 { /* mark all directions */ 405 if (light < 0)
290 dx = x + freearr_x[i]; 406 pass2 = 1;
291 dy = y + freearr_y[i]; 407 else
292 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */ 408 {
293 op->contr->blocked_los[dx][dy] = -1; 409 light = clamp (light + bonus, 0, MAX_LIGHT_RADIUS);
410 apply_light<los_brighten> (pl, dx - pl->viewpoint->x, dy - pl->viewpoint->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
294 } 411 }
295 } 412 }
413
414 /* grant some vision to the player, based on outside, outdoor, and darklevel */
415 {
416 int light;
417
418 if (!op->map->outdoor) // not outdoor, darkness becomes light radius
419 light = MAX_DARKNESS - op->map->darkness;
420 else if (op->map->darkness > 0) // outdoor and darkness > 0 => use darkness as max radius
421 light = lerp_rd (maptile::outdoor_darkness + 0, 0, MAX_DARKNESS, MAX_DARKNESS - op->map->darkness, 0);
422 else // outdoor and darkness <= 0 => start wide and decrease quickly
423 light = lerp (maptile::outdoor_darkness + op->map->darkness, 0, MAX_DARKNESS, MAX_VISION, 2);
424
425 light = clamp (light + bonus, 0, MAX_VISION);
426
427 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
296 } 428 }
297
298 if (MAP_DARKNESS (op->map) > 0) /* player is on a dark map */
299 expand_lighted_sight (op);
300
301
302 /* clear mark squares */
303 for (x = 0; x < op->contr->socket.mapx; x++)
304 for (y = 0; y < op->contr->socket.mapy; y++)
305 if (op->contr->blocked_los[x][y] < 0)
306 op->contr->blocked_los[x][y] = 0;
307}
308
309
310
311
312/* returns true if op carries one or more lights
313 * This is a trivial function now days, but it used to
314 * be a bit longer. Probably better for callers to just
315 * check the op->glow_radius instead of calling this.
316 */
317
318int
319has_carried_lights (const object *op)
320{
321 /* op may glow! */
322 if (op->glow_radius > 0)
323 return 1;
324
325 return 0;
326}
327
328static void
329expand_lighted_sight (object *op)
330{
331 int x, y, darklevel, ax, ay, basex, basey, mflags, light, x1, y1;
332 mapstruct *m = op->map;
333 sint16 nx, ny;
334
335 darklevel = MAP_DARKNESS (m);
336
337 /* If the player can see in the dark, lower the darklevel for him */
338 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK))
339 darklevel -= 2;
340
341 /* add light, by finding all (non-null) nearby light sources, then
342 * mark those squares specially. If the darklevel<1, there is no
343 * reason to do this, so we skip this function
344 */
345
346 if (darklevel < 1)
347 return;
348
349 /* Do a sanity check. If not valid, some code below may do odd
350 * things.
351 */
352 if (darklevel > MAX_DARKNESS)
353 {
354 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, op->map->path, darklevel);
355 darklevel = MAX_DARKNESS;
356 } 429 }
357 430
358 /* First, limit player furthest (unlighted) vision */ 431 // when we fly high, we have some minimum viewable area around us, like x-ray
359 for (x = 0; x < op->contr->socket.mapx; x++) 432 if (op->move_type & MOVE_FLY_HIGH)
360 for (y = 0; y < op->contr->socket.mapy; y++) 433 apply_light<los_brighten_nolos> (pl, 0, 0, 9, vision_atten [9]);
361 if (op->contr->blocked_los[x][y] != 100)
362 op->contr->blocked_los[x][y] = MAX_LIGHT_RADII;
363 434
364 /* the spaces[] darkness value contains the information we need. 435 // possibly do 2nd pass for rare negative glow radii
365 * Only process the area of interest. 436 // for effect, those are always considered to be stronger than anything else
366 * the basex, basey values represent the position in the op->contr->blocked_los 437 // but they can't darken a place completely
367 * array. Its easier to just increment them here (and start with the right 438 if (pass2)
368 * value) than to recalculate them down below. 439 for (maprect *r = rects; r->m; ++r)
369 */ 440 rect_mapwalk (r, 0, 0)
370 for (x = (op->x - op->contr->socket.mapx / 2 - MAX_LIGHT_RADII), basex = -MAX_LIGHT_RADII;
371 x <= (op->x + op->contr->socket.mapx / 2 + MAX_LIGHT_RADII); x++, basex++)
372 {
373
374 for (y = (op->y - op->contr->socket.mapy / 2 - MAX_LIGHT_RADII), basey = -MAX_LIGHT_RADII;
375 y <= (op->y + op->contr->socket.mapy / 2 + MAX_LIGHT_RADII); y++, basey++)
376 { 441 {
377 m = op->map; 442 mapspace &ms = m->at (nx, ny);
378 nx = x; 443 ms.update ();
379 ny = y; 444 sint8 light = ms.light;
380 445
381 mflags = get_map_flags (m, &m, nx, ny, &nx, &ny); 446 if (ecb_expect_false (light < 0))
382
383 if (mflags & P_OUT_OF_MAP)
384 continue;
385
386 /* This space is providing light, so we need to brighten up the
387 * spaces around here.
388 */
389 light = GET_MAP_LIGHT (m, nx, ny);
390 if (light != 0)
391 { 447 {
392#if 0 448 light = clamp (light - bonus, 0, MAX_DARKNESS);
393 LOG (llevDebug, "expand_lighted_sight: Found light at x=%d, y=%d, basex=%d, basey=%d\n", x, y, basex, basey); 449 apply_light<los_darken> (pl, dx - pl->viewpoint->x, dy - pl->viewpoint->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
394#endif
395 for (ax = basex - light; ax <= basex + light; ax++)
396 {
397 if (ax < 0 || ax >= op->contr->socket.mapx)
398 continue;
399 for (ay = basey - light; ay <= basey + light; ay++)
400 {
401 if (ay < 0 || ay >= op->contr->socket.mapy)
402 continue;
403
404 /* If the space is fully blocked, do nothing. Otherwise, we
405 * brighten the space. The further the light is away from the
406 * source (basex-x), the less effect it has. Though light used
407 * to dim in a square manner, it now dims in a circular manner
408 * using the the pythagorean theorem. glow_radius still
409 * represents the radius
410 */
411 if (op->contr->blocked_los[ax][ay] != 100)
412 {
413 x1 = abs (basex - ax) * abs (basex - ax);
414 y1 = abs (basey - ay) * abs (basey - ay);
415 if (light > 0)
416 op->contr->blocked_los[ax][ay] -= MAX ((light - isqrt (x1 + y1)), 0);
417 if (light < 0)
418 op->contr->blocked_los[ax][ay] -= MIN ((light + isqrt (x1 + y1)), 0);
419 }
420 } /* for ay */
421 } /* for ax */
422 } /* if this space is providing light */
423 } /* for y */
424 } /* for x */
425
426 /* Outdoor should never really be completely pitch black dark like
427 * a dungeon, so let the player at least see a little around themselves
428 */
429 if (op->map->outdoor && darklevel > (MAX_DARKNESS - 3))
430 {
431 if (op->contr->blocked_los[op->contr->socket.mapx / 2][op->contr->socket.mapy / 2] > (MAX_DARKNESS - 3))
432 op->contr->blocked_los[op->contr->socket.mapx / 2][op->contr->socket.mapy / 2] = MAX_DARKNESS - 3;
433
434 for (x = -1; x <= 1; x++)
435 for (y = -1; y <= 1; y++)
436 {
437 if (op->contr->blocked_los[x + op->contr->socket.mapx / 2][y + op->contr->socket.mapy / 2] > (MAX_DARKNESS - 2))
438 op->contr->blocked_los[x + op->contr->socket.mapx / 2][y + op->contr->socket.mapy / 2] = MAX_DARKNESS - 2;
439 } 450 }
440 } 451 }
441 /* grant some vision to the player, based on the darklevel */
442 for (x = darklevel - MAX_DARKNESS; x < MAX_DARKNESS + 1 - darklevel; x++)
443 for (y = darklevel - MAX_DARKNESS; y < MAX_DARKNESS + 1 - darklevel; y++)
444 if (!(op->contr->blocked_los[x + op->contr->socket.mapx / 2][y + op->contr->socket.mapy / 2] == 100))
445 op->contr->blocked_los[x + op->contr->socket.mapx / 2][y + op->contr->socket.mapy / 2] -=
446 MAX (0, 6 - darklevel - MAX (abs (x), abs (y)));
447} 452}
448 453
449/* blinded_sight() - sets all veiwable squares to blocked except 454/* blinded_sight() - sets all viewable squares to blocked except
450 * for the one the central one that the player occupies. A little 455 * for the one the central one that the player occupies. A little
451 * odd that you can see yourself (and what your standing on), but 456 * odd that you can see yourself (and what your standing on), but
452 * really need for any reasonable game play. 457 * really need for any reasonable game play.
453 */ 458 */
454
455static void 459static void
456blinded_sight (object *op) 460blinded_sight (player *pl)
457{ 461{
458 int x, y; 462 pl->los[LOS_X0][LOS_Y0] = 1;
459
460 for (x = 0; x < op->contr->socket.mapx; x++)
461 for (y = 0; y < op->contr->socket.mapy; y++)
462 op->contr->blocked_los[x][y] = 100;
463
464 op->contr->blocked_los[op->contr->socket.mapx / 2][op->contr->socket.mapy / 2] = 0;
465} 463}
466 464
467/* 465/*
468 * update_los() recalculates the array which specifies what is 466 * update_los() recalculates the array which specifies what is
469 * visible for the given player-object. 467 * visible for the given player-object.
470 */ 468 */
471
472void 469void
473update_los (object *op) 470player::update_los ()
474{ 471{
475 int dx = op->contr->socket.mapx / 2, dy = op->contr->socket.mapy / 2, x, y; 472 if (ob->flag [FLAG_REMOVED])//D really needed?
476
477 if (QUERY_FLAG (op, FLAG_REMOVED))
478 return; 473 return;
479 474
475 if (ob->flag [FLAG_WIZLOOK])
480 clear_los (op); 476 clear_los (0);
481 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ ) 477 else if (viewpoint->flag [FLAG_BLIND]) /* player is blind */
482 return; 478 {
483 479 clear_los ();
484 /* For larger maps, this is more efficient than the old way which
485 * used the chaining of the block array. Since many space views could
486 * be blocked by different spaces in front, this mean that a lot of spaces
487 * could be examined multile times, as each path would be looked at.
488 */
489 for (x = (MAP_CLIENT_X - op->contr->socket.mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->socket.mapx) / 2 + 1; x++)
490 for (y = (MAP_CLIENT_Y - op->contr->socket.mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->socket.mapy) / 2 + 1; y++)
491 check_wall (op, x, y);
492
493
494 /* do the los of the player. 3 (potential) cases */
495 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
496 blinded_sight (op); 480 blinded_sight (this);
481 }
497 else 482 else
498 expand_sight (op);
499
500 if (QUERY_FLAG (op, FLAG_XRAYS))
501 { 483 {
502 int x, y; 484 clear_los ();
503 485 calculate_los (this);
504 for (x = -2; x <= 2; x++) 486 apply_lights (this);
505 for (y = -2; y <= 2; y++)
506 op->contr->blocked_los[dx + x][dy + y] = 0;
507 } 487 }
488
489 if (viewpoint->flag [FLAG_XRAYS])
490 for (int dx = -2; dx <= 2; dx++)
491 for (int dy = -2; dy <= 2; dy++)
492 min_it (los[dx + LOS_X0][dy + LOS_Y0], 1);
508} 493}
509 494
510/* update all_map_los is like update_all_los below, 495/* update all_map_los is like update_all_los below,
511 * but updates everyone on the map, no matter where they 496 * but updates everyone on the map, no matter where they
512 * are. This generally should not be used, as a per 497 * are. This generally should not be used, as a per
513 * specific map change doesn't make much sense when tiling 498 * specific map change doesn't make much sense when tiling
514 * is considered (lowering darkness would certainly be a 499 * is considered (lowering darkness would certainly be a
515 * strange effect if done on a tile map, as it makes 500 * strange effect if done on a tile map, as it makes
516 * the distinction between maps much more obvious to the 501 * the distinction between maps much more obvious to the
517 * players, which is should not be. 502 * players, which is should not be.
518 * Currently, this function is called from the 503 * Currently, this function is called from the
519 * change_map_light function 504 * change_map_light function
520 */ 505 */
521void 506void
522update_all_map_los (mapstruct *map) 507update_all_map_los (maptile *map)
523{ 508{
524 player *pl; 509 for_all_players_on_map (pl, map)
525
526 for (pl = first_player; pl != NULL; pl = pl->next)
527 {
528 if (pl->ob->map == map)
529 pl->do_los = 1; 510 pl->do_los = 1;
530 }
531} 511}
532
533 512
534/* 513/*
535 * This function makes sure that update_los() will be called for all 514 * This function makes sure that update_los() will be called for all
536 * players on the given map within the next frame. 515 * players on the given map within the next frame.
537 * It is triggered by removal or inserting of objects which blocks 516 * It is triggered by removal or inserting of objects which blocks
541 * means that just being on the same map is not sufficient - the 520 * means that just being on the same map is not sufficient - the
542 * space that changes must be withing your viewable area. 521 * space that changes must be withing your viewable area.
543 * 522 *
544 * map is the map that changed, x and y are the coordinates. 523 * map is the map that changed, x and y are the coordinates.
545 */ 524 */
546
547void 525void
548update_all_los (const mapstruct *map, int x, int y) 526update_all_los (const maptile *map, int x, int y)
549{ 527{
550 player *pl; 528 map->at (x, y).invalidate ();
551 529
552 for (pl = first_player; pl != NULL; pl = pl->next) 530 for_all_players (pl)
553 { 531 {
554 /* Player should not have a null map, but do this 532 /* Player should not have a null map, but do this
555 * check as a safety 533 * check as a safety
556 */ 534 */
557 if (!pl->ob->map) 535 if (!pl->ob || !pl->ob->map || !pl->ns)
558 continue; 536 continue;
559 537
560 /* Same map is simple case - see if pl is close enough. 538 rv_vector rv;
561 * Note in all cases, we did the check for same map first, 539
562 * and then see if the player is close enough and update 540 get_rangevector_from_mapcoord (pl->ob->map, x, y, pl->ob, &rv);
563 * los if that is the case. If the player is on the
564 * corresponding map, but not close enough, then the
565 * player can't be on another map that may be closer,
566 * so by setting it up this way, we trim processing
567 * some.
568 */ 541
569 if (pl->ob->map == map) 542 if ((abs (rv.distance_x) <= pl->ns->mapx / 2) && (abs (rv.distance_y) <= pl->ns->mapy / 2))
570 {
571 if ((abs (pl->ob->x - x) <= pl->socket.mapx / 2) && (abs (pl->ob->y - y) <= pl->socket.mapy / 2))
572 pl->do_los = 1; 543 pl->do_los = 1;
573 }
574 /* Now we check to see if player is on adjacent
575 * maps to the one that changed and also within
576 * view. The tile_maps[] could be null, but in that
577 * case it should never match the pl->ob->map, so
578 * we want ever try to dereference any of the data in it.
579 */
580
581 /* The logic for 0 and 3 is to see how far the player is
582 * from the edge of the map (height/width) - pl->ob->(x,y)
583 * and to add current position on this map - that gives a
584 * distance.
585 * For 1 and 2, we check to see how far the given
586 * coordinate (x,y) is from the corresponding edge,
587 * and then add the players location, which gives
588 * a distance.
589 */
590 else if (pl->ob->map == map->tile_map[0])
591 {
592 if ((abs (pl->ob->x - x) <= pl->socket.mapx / 2) && (abs (y + MAP_HEIGHT (map->tile_map[0]) - pl->ob->y) <= pl->socket.mapy / 2))
593 pl->do_los = 1;
594 }
595 else if (pl->ob->map == map->tile_map[2])
596 {
597 if ((abs (pl->ob->x - x) <= pl->socket.mapx / 2) && (abs (pl->ob->y + MAP_HEIGHT (map) - y) <= pl->socket.mapy / 2))
598 pl->do_los = 1;
599 }
600 else if (pl->ob->map == map->tile_map[1])
601 {
602 if ((abs (pl->ob->x + MAP_WIDTH (map) - x) <= pl->socket.mapx / 2) && (abs (pl->ob->y - y) <= pl->socket.mapy / 2))
603 pl->do_los = 1;
604 }
605 else if (pl->ob->map == map->tile_map[3])
606 {
607 if ((abs (x + MAP_WIDTH (map->tile_map[3]) - pl->ob->x) <= pl->socket.mapx / 2) && (abs (pl->ob->y - y) <= pl->socket.mapy / 2))
608 pl->do_los = 1;
609 }
610 } 544 }
611} 545}
612 546
547static const int season_darkness[5][HOURS_PER_DAY] = {
548 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
549 { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
550 { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
551 { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
552 { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
553 { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
554};
555
613/* 556/*
614 * Debug-routine which dumps the array which specifies the visible 557 * Tell players the time and compute the darkness level for all maps in the game.
615 * area of a player. Triggered by the z key in DM mode. 558 * MUST be called exactly once per hour.
616 */ 559 */
617
618void 560void
619print_los (object *op) 561maptile::adjust_daylight ()
620{ 562{
621 int x, y; 563 timeofday_t tod;
622 char buf[50], buf2[10];
623 564
624 strcpy (buf, " "); 565 get_tod (&tod);
625 for (x = 0; x < op->contr->socket.mapx; x++) 566
567 // log the time to log-1 every hour, and to chat every day
626 { 568 {
627 sprintf (buf2, "%2d", x); 569 char todbuf[512];
628 strcat (buf, buf2); 570
571 format_tod (todbuf, sizeof (todbuf), &tod);
572
573 for_all_players (pl)
574 pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
629 } 575 }
630 new_draw_info (NDI_UNIQUE, 0, op, buf); 576
631 for (y = 0; y < op->contr->socket.mapy; y++) 577 /* If the light level isn't changing, no reason to do all
632 { 578 * the work below.
633 sprintf (buf, "%2d:", y); 579 */
634 for (x = 0; x < op->contr->socket.mapx; x++) 580 sint8 new_darkness = season_darkness[tod.season][tod.hour];
635 { 581
636 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]); 582 if (new_darkness == maptile::outdoor_darkness)
637 strcat (buf, buf2); 583 return;
638 } 584
639 new_draw_info (NDI_UNIQUE, 0, op, buf); 585 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
640 } 586 new_darkness > maptile::outdoor_darkness
587 ? "It becomes darker."
588 : "It becomes brighter.");
589
590 maptile::outdoor_darkness = new_darkness;
591
592 // we simply update the los for all players, which is unnecessarily
593 // costly, but should do for the moment.
594 for_all_players (pl)
595 pl->do_los = 1;
641} 596}
642 597
643/* 598/*
644 * make_sure_seen: The object is supposed to be visible through walls, thus 599 * make_sure_seen: The object is supposed to be visible through walls, thus
645 * check if any players are nearby, and edit their LOS array. 600 * check if any players are nearby, and edit their LOS array.
646 */ 601 */
647
648void 602void
649make_sure_seen (const object *op) 603make_sure_seen (const object *op)
650{ 604{
651 player *pl; 605 for_all_players (pl)
652
653 for (pl = first_player; pl; pl = pl->next)
654 if (pl->ob->map == op->map && 606 if (pl->ob->map == op->map &&
655 pl->ob->y - pl->socket.mapy / 2 <= op->y && 607 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
656 pl->ob->y + pl->socket.mapy / 2 >= op->y && pl->ob->x - pl->socket.mapx / 2 <= op->x && pl->ob->x + pl->socket.mapx / 2 >= op->x) 608 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
657 pl->blocked_los[pl->socket.mapx / 2 + op->x - pl->ob->x][pl->socket.mapy / 2 + op->y - pl->ob->y] = 0; 609 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_Y0] = 0;
658} 610}
659 611
660/* 612/*
661 * make_sure_not_seen: The object which is supposed to be visible through 613 * make_sure_not_seen: The object which is supposed to be visible through
662 * walls has just been removed from the map, so update the los of any 614 * walls has just been removed from the map, so update the los of any
663 * players within its range 615 * players within its range
664 */ 616 */
665
666void 617void
667make_sure_not_seen (const object *op) 618make_sure_not_seen (const object *op)
668{ 619{
669 player *pl; 620 for_all_players (pl)
670
671 for (pl = first_player; pl; pl = pl->next)
672 if (pl->ob->map == op->map && 621 if (pl->ob->map == op->map &&
673 pl->ob->y - pl->socket.mapy / 2 <= op->y && 622 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
674 pl->ob->y + pl->socket.mapy / 2 >= op->y && pl->ob->x - pl->socket.mapx / 2 <= op->x && pl->ob->x + pl->socket.mapx / 2 >= op->x) 623 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
675 pl->do_los = 1; 624 pl->do_los = 1;
676} 625}
626

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines