ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.24 by root, Sun Mar 11 02:12:44 2007 UTC vs.
Revision 1.50 by root, Tue Dec 23 22:04:17 2008 UTC

1/* 1/*
2 * CrossFire, A Multiplayer game for X-windows 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (C) 2005, 2006, 2007 Marc Lehmann & Crossfire+ Development Team 4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * Copyright (C) 2002 Mark Wedel & Crossfire Development Team 5 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
6 * Copyright (C) 1992 Frank Tore Johansen 6 * Copyright (©) 1992,2007 Frank Tore Johansen
7 * 7 *
8 * This program is free software; you can redistribute it and/or modify 8 * Deliantra is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by 9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or 10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version. 11 * (at your option) any later version.
12 * 12 *
13 * This program is distributed in the hope that it will be useful, 13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details. 16 * GNU General Public License for more details.
17 * 17 *
18 * You should have received a copy of the GNU General Public License 18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software 19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 * 20 *
22 * The authors can be reached via e-mail at <crossfire@schmorp.de> 21 * The authors can be reached via e-mail to <support@deliantra.net>
23 */ 22 */
24
25/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
26 23
27#include <global.h> 24#include <global.h>
28#include <funcpoint.h>
29#include <math.h> 25#include <cmath>
30 26
31/* Distance must be less than this for the object to be blocked. 27// los flags
32 * An object is 1.0 wide, so if set to 0.5, it means the object 28enum {
33 * that blocks half the view (0.0 is complete block) will 29 FLG_XI = 0x01, // we have an x-parent
34 * block view in our tables. 30 FLG_YI = 0x02, // we have an y-parent
35 * .4 or less lets you see through walls. .5 is about right. 31 FLG_BLOCKED = 0x04, // this space blocks the view
36 */ 32 FLG_QUEUED = 0x80 // already queued in queue, or border
33};
37 34
38#define SPACE_BLOCK 0.5 35struct los_info
39
40typedef struct blstr
41{ 36{
42 int x[4], y[4]; 37 uint8 flags; // FLG_xxx
43 int index; 38 uint8 culled; // culled from "tree"
44} blocks; 39 uint8 visible;
40 uint8 pad0;
45 41
46// 31/32 == a speed hack 42 sint8 xo, yo; // obscure angle
47// we would like to use 32 for speed, but the code loops endlessly 43 sint8 xe, ye; // angle deviation
48// then, reason not yet identified, so only make the array use 32, 44};
49// not the define's.
50blocks block[MAP_CLIENT_X][MAP_CLIENT_Y == 31 ? 32 : MAP_CLIENT_Y];
51 45
52static void expand_lighted_sight (object *op); 46// temporary storage for the los algorithm,
47// one los_info for each lightable map space
48static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
53 49
54/* 50struct point
55 * Used to initialise the array used by the LOS routines.
56 * What this sets if that x,y blocks the view of bx,by
57 * This then sets up a relation - for example, something
58 * at 5,4 blocks view at 5,3 which blocks view at 5,2
59 * etc. So when we check 5,4 and find it block, we have
60 * the data to know that 5,3 and 5,2 and 5,1 should also
61 * be blocked.
62 */
63
64static void
65set_block (int x, int y, int bx, int by)
66{ 51{
67 int index = block[x][y].index, i;
68
69 /* Due to flipping, we may get duplicates - better safe than sorry.
70 */
71 for (i = 0; i < index; i++)
72 {
73 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
74 return;
75 }
76
77 block[x][y].x[index] = bx;
78 block[x][y].y[index] = by;
79 block[x][y].index++;
80#ifdef LOS_DEBUG
81 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
82#endif
83}
84
85/*
86 * initialises the array used by the LOS routines.
87 */
88
89/* since we are only doing the upper left quadrant, only
90 * these spaces could possibly get blocked, since these
91 * are the only ones further out that are still possibly in the
92 * sightline.
93 */
94
95void
96init_block (void)
97{
98 int x, y, dx, dy, i;
99 static int block_x[3] = { -1, -1, 0 },
100 block_y[3] = { -1, 0, -1 };
101
102 for (x = 0; x < MAP_CLIENT_X; x++)
103 for (y = 0; y < MAP_CLIENT_Y; y++)
104 block[x][y].index = 0;
105
106
107 /* The table should be symmetric, so only do the upper left
108 * quadrant - makes the processing easier.
109 */
110 for (x = 1; x <= MAP_CLIENT_X / 2; x++)
111 {
112 for (y = 1; y <= MAP_CLIENT_Y / 2; y++)
113 {
114 for (i = 0; i < 3; i++)
115 {
116 dx = x + block_x[i];
117 dy = y + block_y[i];
118
119 /* center space never blocks */
120 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
121 continue;
122
123 /* If its a straight line, its blocked */
124 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
125 {
126 /* For simplicity, we mirror the coordinates to block the other
127 * quadrants.
128 */
129 set_block (x, y, dx, dy);
130 if (x == MAP_CLIENT_X / 2)
131 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
132 else if (y == MAP_CLIENT_Y / 2)
133 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
134 }
135 else
136 {
137 float d1, r, s, l;
138
139 /* We use the algorihm that found out how close the point
140 * (x,y) is to the line from dx,dy to the center of the viewable
141 * area. l is the distance from x,y to the line.
142 * r is more a curiosity - it lets us know what direction (left/right)
143 * the line is off
144 */
145
146 d1 = (float) (pow (MAP_CLIENT_X / 2 - dx, 2.f) + pow (MAP_CLIENT_Y / 2 - dy, 2.f));
147 r = (float) ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
148 s = (float) ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
149 l = FABS (sqrt (d1) * s);
150
151 if (l <= SPACE_BLOCK)
152 {
153 /* For simplicity, we mirror the coordinates to block the other
154 * quadrants.
155 */
156 set_block (x, y, dx, dy);
157 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
158 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
159 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
160 }
161 }
162 }
163 }
164 }
165}
166
167/*
168 * Used to initialise the array used by the LOS routines.
169 * x,y are indexes into the blocked[][] array.
170 * This recursively sets the blocked line of sight view.
171 * From the blocked[][] array, we know for example
172 * that if some particular space is blocked, it blocks
173 * the view of the spaces 'behind' it, and those blocked
174 * spaces behind it may block other spaces, etc.
175 * In this way, the chain of visibility is set.
176 */
177static void
178set_wall (object *op, int x, int y)
179{
180 int i;
181
182 for (i = 0; i < block[x][y].index; i++)
183 {
184 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
185
186 /* ax, ay are the values as adjusted to be in the
187 * socket look structure.
188 */
189 ax = dx - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
190 ay = dy - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
191
192 if (ax < 0 || ax >= op->contr->ns->mapx || ay < 0 || ay >= op->contr->ns->mapy)
193 continue;
194#if 0
195 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
196#endif
197 /* we need to adjust to the fact that the socket
198 * code wants the los to start from the 0,0
199 * and not be relative to middle of los array.
200 */
201 op->contr->blocked_los[ax][ay] = 100;
202 set_wall (op, dx, dy);
203 }
204}
205
206/*
207 * Used to initialise the array used by the LOS routines.
208 * op is the object, x and y values based on MAP_CLIENT_X and Y.
209 * this is because they index the blocked[][] arrays.
210 */
211
212static void
213check_wall (object *op, int x, int y)
214{
215 int ax, ay; 52 sint8 x, y;
53};
216 54
217 if (!block[x][y].index) 55// minimum size, but must be a power of two
218 return; 56#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
219 57
220 /* ax, ay are coordinates as indexed into the look window */ 58// a queue of spaces to calculate
221 ax = x - (MAP_CLIENT_X - op->contr->ns->mapx) / 2; 59static point queue [QUEUE_LENGTH];
222 ay = y - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2; 60static int q1, q2; // queue start, end
223
224 /* If the converted coordinates are outside the viewable
225 * area for the client, return now.
226 */
227 if (ax < 0 || ay < 0 || ax >= op->contr->ns->mapx || ay >= op->contr->ns->mapy)
228 return;
229
230#if 0
231 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
232 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
233#endif
234
235 /* If this space is already blocked, prune the processing - presumably
236 * whatever has set this space to be blocked has done the work and already
237 * done the dependency chain.
238 */
239 if (op->contr->blocked_los[ax][ay] == 100)
240 return;
241
242
243 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
244 set_wall (op, x, y);
245}
246 61
247/* 62/*
248 * Clears/initialises the los-array associated to the player 63 * Clears/initialises the los-array associated to the player
249 * controlling the object. 64 * controlling the object.
250 */ 65 */
251
252void 66void
253clear_los (object *op) 67player::clear_los (sint8 value)
254{ 68{
255 /* This is safer than using the ns->mapx, mapy because 69 memset (los, value, sizeof (los));
256 * we index the blocked_los as a 2 way array, so clearing
257 * the first z spaces may not not cover the spaces we are
258 * actually going to use
259 */
260 (void) memset ((void *) op->contr->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
261} 70}
262 71
263/* 72// enqueue a single mapspace, but only if it hasn't
264 * expand_sight goes through the array of what the given player is 73// been enqueued yet.
265 * able to see, and expands the visible area a bit, so the player will,
266 * to a certain degree, be able to see into corners.
267 * This is somewhat suboptimal, would be better to improve the formula.
268 */
269
270static void 74static void
271expand_sight (object *op) 75enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
272{ 76{
273 int i, x, y, dx, dy; 77 sint8 x = LOS_X0 + dx;
78 sint8 y = LOS_Y0 + dy;
274 79
275 for (x = 1; x < op->contr->ns->mapx - 1; x++) /* loop over inner squares */ 80 los_info &l = los[x][y];
276 for (y = 1; y < op->contr->ns->mapy - 1; y++) 81
82 l.flags |= flags;
83
84 if (l.flags & FLG_QUEUED)
85 return;
86
87 l.flags |= FLG_QUEUED;
88
89 queue[q1].x = dx;
90 queue[q1].y = dy;
91
92 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
93}
94
95// run the los algorithm
96// this is a variant of a spiral los algorithm taken from
97// http://www.geocities.com/temerra/los_rays.html
98// which has been simplified and changed considerably, but
99// still is basically the same algorithm.
100static void
101calculate_los (player *pl)
102{
103 {
104 // we keep one line for ourselves, for the border flag
105 // so the client area is actually MAP_CLIENT_(X|Y) - 2
106 int half_x = min (LOS_X0 - 1, pl->ns->mapx / 2);
107 int half_y = min (LOS_Y0 - 1, pl->ns->mapy / 2);
108
109 // create borders, the corners are not touched
110 for (int dx = -half_x; dx <= half_x; ++dx)
111 los [dx + LOS_X0][LOS_Y0 - (half_y + 1)].flags =
112 los [dx + LOS_X0][LOS_Y0 + (half_y + 1)].flags = FLG_QUEUED;
113
114 for (int dy = -half_y; dy <= half_y; ++dy)
115 los [LOS_X0 - (half_x + 1)][dy + LOS_Y0].flags =
116 los [LOS_X0 + (half_x + 1)][dy + LOS_Y0].flags = FLG_QUEUED;
117
118 // now reset the los area and also add blocked flags
119 // which supposedly is faster than doing it inside the
120 // spiral path algorithm below, except when very little
121 // area is visible, in which case it is slower, evening
122 // out los calculation times between large and small los maps.
123 // apply_lights also iterates over this area, maybe these
124 // two passes could be combined somehow.
125 rectangular_mapspace_iterate_begin (pl->observe, -half_x, half_x, -half_y, half_y)
126 los_info &l = los [LOS_X0 + dx][LOS_Y0 + dy];
127 l.flags = m && m->at (nx, ny).flags () & P_BLOCKSVIEW ? FLG_BLOCKED : 0;
128 rectangular_mapspace_iterate_end
129 }
130
131 q1 = 0; q2 = 0; // initialise queue, not strictly required
132 enqueue (0, 0); // enqueue center
133
134 // treat the origin specially
135 los[LOS_X0][LOS_Y0].visible = 1;
136 pl->los[LOS_X0][LOS_Y0] = 0;
137
138 // loop over all enqueued points until the queue is empty
139 // the order in which this is done ensures that we
140 // never touch a mapspace whose input spaces we haven't checked
141 // yet.
142 while (q1 != q2)
143 {
144 sint8 dx = queue[q2].x;
145 sint8 dy = queue[q2].y;
146
147 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
148
149 sint8 x = LOS_X0 + dx;
150 sint8 y = LOS_Y0 + dy;
151
152 los_info &l = los[x][y];
153
154 if (expect_true (l.flags & (FLG_XI | FLG_YI)))
277 { 155 {
278 if (!op->contr->blocked_los[x][y] && 156 l.culled = 1;
279 !(get_map_flags (op->map, NULL, 157 l.xo = l.yo = l.xe = l.ye = 0;
280 op->x - op->contr->ns->mapx / 2 + x, 158
281 op->y - op->contr->ns->mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))) 159 // check contributing spaces, first horizontal
160 if (expect_true (l.flags & FLG_XI))
282 { 161 {
162 los_info *xi = &los[x - sign (dx)][y];
283 163
284 for (i = 1; i <= 8; i += 1) 164 // don't cull unless obscured
285 { /* mark all directions */ 165 l.culled &= !xi->visible;
286 dx = x + freearr_x[i]; 166
287 dy = y + freearr_y[i]; 167 /* merge input space */
288 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */ 168 if (expect_false (xi->xo || xi->yo))
289 op->contr->blocked_los[dx][dy] = -1; 169 {
170 // The X input can provide two main pieces of information:
171 // 1. Progressive X obscurity.
172 // 2. Recessive Y obscurity.
173
174 // Progressive X obscurity, favouring recessive input angle
175 if (xi->xe > 0 && l.xo == 0)
176 {
177 l.xe = xi->xe - xi->yo;
178 l.ye = xi->ye + xi->yo;
179 l.xo = xi->xo;
180 l.yo = xi->yo;
181 }
182
183 // Recessive Y obscurity
184 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
185 {
186 l.ye = xi->yo + xi->ye;
187 l.xe = xi->xe - xi->yo;
188 l.xo = xi->xo;
189 l.yo = xi->yo;
190 }
290 } 191 }
291 } 192 }
193
194 // check contributing spaces, last vertical, identical structure
195 if (expect_true (l.flags & FLG_YI))
196 {
197 los_info *yi = &los[x][y - sign (dy)];
198
199 // don't cull unless obscured
200 l.culled &= !yi->visible;
201
202 /* merge input space */
203 if (expect_false (yi->yo || yi->xo))
204 {
205 // The Y input can provide two main pieces of information:
206 // 1. Progressive Y obscurity.
207 // 2. Recessive X obscurity.
208
209 // Progressive Y obscurity, favouring recessive input angle
210 if (yi->ye > 0 && l.yo == 0)
211 {
212 l.ye = yi->ye - yi->xo;
213 l.xe = yi->xe + yi->xo;
214 l.yo = yi->yo;
215 l.xo = yi->xo;
216 }
217
218 // Recessive X obscurity
219 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
220 {
221 l.xe = yi->xo + yi->xe;
222 l.ye = yi->ye - yi->xo;
223 l.yo = yi->yo;
224 l.xo = yi->xo;
225 }
226 }
227 }
228
229 if (l.flags & FLG_BLOCKED)
230 {
231 l.xo = l.xe = abs (dx);
232 l.yo = l.ye = abs (dy);
233
234 // we obscure dependents, but might be visible
235 // copy the los from the square towards the player,
236 // so outward diagonal corners are lit.
237 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
238
239 l.visible = false;
240 }
241 else
242 {
243 // we are not blocked, so calculate visibility, by checking
244 // whether we are inside or outside the shadow
245 l.visible = (l.xe <= 0 || l.xe > l.xo)
246 && (l.ye <= 0 || l.ye > l.yo);
247
248 pl->los[x][y] = l.culled ? LOS_BLOCKED
249 : l.visible ? 0
250 : 3;
251 }
252
292 } 253 }
293 254
294 if (op->map->darkness > 0) /* player is on a dark map */ 255 // Expands by the unit length in each component's current direction.
295 expand_lighted_sight (op); 256 // If a component has no direction, then it is expanded in both of its
296 257 // positive and negative directions.
297 /* clear mark squares */ 258 if (!l.culled)
298 for (x = 0; x < op->contr->ns->mapx; x++) 259 {
299 for (y = 0; y < op->contr->ns->mapy; y++) 260 if (dx >= 0) enqueue (dx + 1, dy, FLG_XI);
300 if (op->contr->blocked_los[x][y] < 0) 261 if (dx <= 0) enqueue (dx - 1, dy, FLG_XI);
301 op->contr->blocked_los[x][y] = 0; 262 if (dy >= 0) enqueue (dx, dy + 1, FLG_YI);
263 if (dy <= 0) enqueue (dx, dy - 1, FLG_YI);
264 }
265 }
302} 266}
303 267
304/* returns true if op carries one or more lights 268/* returns true if op carries one or more lights
305 * This is a trivial function now days, but it used to 269 * This is a trivial function now days, but it used to
306 * be a bit longer. Probably better for callers to just 270 * be a bit longer. Probably better for callers to just
307 * check the op->glow_radius instead of calling this. 271 * check the op->glow_radius instead of calling this.
308 */ 272 */
309
310int 273int
311has_carried_lights (const object *op) 274has_carried_lights (const object *op)
312{ 275{
313 /* op may glow! */ 276 /* op may glow! */
314 if (op->glow_radius > 0) 277 if (op->glow_radius > 0)
315 return 1; 278 return 1;
316 279
317 return 0; 280 return 0;
318} 281}
319 282
283/* radius, distance => lightness adjust */
284static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
285static sint8 vision_atten[MAX_DARKNESS + 1][MAX_DARKNESS * 3 / 2 + 1];
286
287static struct los_init
288{
289 los_init ()
290 {
291 assert (("QUEUE_LENGTH, MAP_CLIENT_X and MAP_CLIENT_Y *must* be powers of two",
292 !(QUEUE_LENGTH & (QUEUE_LENGTH - 1))));
293
294 /* for lights */
295 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
296 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
297 {
298 // max intensity
299 int intensity = min (LOS_MAX, abs (radius) + 1);
300
301 // actual intensity
302 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
303
304 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
305 ? min (3, intensity)
306 : LOS_MAX - intensity;
307 }
308
309 /* for general vision */
310 for (int radius = 0; radius <= MAX_DARKNESS; ++radius)
311 for (int distance = 0; distance <= MAX_DARKNESS * 3 / 2; ++distance)
312 {
313 vision_atten [radius][distance] = distance <= radius ? 3 : 4;
314 }
315 }
316} los_init;
317
318sint8
319los_brighten (sint8 b, sint8 l)
320{
321 return b == LOS_BLOCKED ? b : min (b, l);
322}
323
324sint8
325los_darken (sint8 b, sint8 l)
326{
327 return max (b, l);
328}
329
330template<sint8 change_it (sint8, sint8)>
320static void 331static void
321expand_lighted_sight (object *op) 332apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
322{ 333{
323 int x, y, darklevel, ax, ay, basex, basey, mflags, light, x1, y1; 334 // min or max the circular area around basex, basey
324 maptile *m = op->map; 335 dx += LOS_X0;
325 sint16 nx, ny; 336 dy += LOS_Y0;
326 337
327 darklevel = m->darkness; 338 int hx = pl->ns->mapx / 2;
339 int hy = pl->ns->mapy / 2;
340
341 int ax0 = max (LOS_X0 - hx, dx - light);
342 int ay0 = max (LOS_Y0 - hy, dy - light);
343 int ax1 = min (dx + light, LOS_X0 + hx);
344 int ay1 = min (dy + light, LOS_Y0 + hy);
345
346 for (int ax = ax0; ax <= ax1; ax++)
347 for (int ay = ay0; ay <= ay1; ay++)
348 pl->los[ax][ay] =
349 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
350}
351
352/* add light, by finding all (non-null) nearby light sources, then
353 * mark those squares specially.
354 */
355static void
356apply_lights (player *pl)
357{
358 object *op = pl->observe;
359 int darklevel = op->map->darklevel ();
328 360
329 /* If the player can see in the dark, lower the darklevel for him */ 361 /* If the player can see in the dark, lower the darklevel for him */
330 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK)) 362 if (op->flag [FLAG_SEE_IN_DARK])
331 darklevel -= 2; 363 darklevel = max (0, darklevel - 2);
332 364
333 /* add light, by finding all (non-null) nearby light sources, then 365 int half_x = pl->ns->mapx / 2;
334 * mark those squares specially. If the darklevel<1, there is no 366 int half_y = pl->ns->mapy / 2;
335 * reason to do this, so we skip this function
336 */
337 367
368 int pass2 = 0; // negative lights have an extra pass
369
338 if (darklevel < 1) 370 if (!darklevel)
339 return; 371 pass2 = 1;
340 372 else
341 /* Do a sanity check. If not valid, some code below may do odd
342 * things.
343 */
344 if (darklevel > MAX_DARKNESS)
345 { 373 {
346 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel); 374 /* first, make everything totally dark */
347 darklevel = MAX_DARKNESS; 375 for (int dx = -half_x; dx <= half_x; dx++)
376 for (int dy = -half_x; dy <= half_y; dy++)
377 max_it (pl->los[dx + LOS_X0][dy + LOS_Y0], LOS_MAX);
378
379 /*
380 * Only process the area of interest.
381 * the basex, basey values represent the position in the op->contr->los
382 * array. Its easier to just increment them here (and start with the right
383 * value) than to recalculate them down below.
384 */
385 rectangular_mapspace_iterate_begin (pl->observe, -half_x - MAX_LIGHT_RADIUS, half_x + MAX_LIGHT_RADIUS, -half_y - MAX_LIGHT_RADIUS, half_y + MAX_LIGHT_RADIUS)
386 if (m)
387 {
388 mapspace &ms = m->at (nx, ny);
389 ms.update ();
390 sint8 light = ms.light;
391
392 if (expect_false (light))
393 if (light < 0)
394 pass2 = 1;
395 else
396 apply_light<los_brighten> (pl, dx, dy, light, light_atten [light + MAX_LIGHT_RADIUS]);
397 }
398 rectangular_mapspace_iterate_end
399
400 /* grant some vision to the player, based on the darklevel */
401 {
402 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_DARKNESS);
403
404 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
405 }
348 } 406 }
349 407
350 /* First, limit player furthest (unlighted) vision */ 408 // possibly do 2nd pass for rare negative glow radii
351 for (x = 0; x < op->contr->ns->mapx; x++) 409 // for effect, those are always considered to be stronger than anything else
352 for (y = 0; y < op->contr->ns->mapy; y++) 410 // but they can't darken a place completely
353 if (op->contr->blocked_los[x][y] != 100) 411 if (pass2)
354 op->contr->blocked_los[x][y] = MAX_LIGHT_RADII; 412 rectangular_mapspace_iterate_begin (pl->observe, -half_x - MAX_LIGHT_RADIUS, half_x + MAX_LIGHT_RADIUS, -half_y - MAX_LIGHT_RADIUS, half_y + MAX_LIGHT_RADIUS)
355 413 if (m)
356 /* the spaces[] darkness value contains the information we need.
357 * Only process the area of interest.
358 * the basex, basey values represent the position in the op->contr->blocked_los
359 * array. Its easier to just increment them here (and start with the right
360 * value) than to recalculate them down below.
361 */
362 for (x = (op->x - op->contr->ns->mapx / 2 - MAX_LIGHT_RADII), basex = -MAX_LIGHT_RADII;
363 x <= (op->x + op->contr->ns->mapx / 2 + MAX_LIGHT_RADII); x++, basex++)
364 {
365
366 for (y = (op->y - op->contr->ns->mapy / 2 - MAX_LIGHT_RADII), basey = -MAX_LIGHT_RADII;
367 y <= (op->y + op->contr->ns->mapy / 2 + MAX_LIGHT_RADII); y++, basey++)
368 { 414 {
369 m = op->map; 415 mapspace &ms = m->at (nx, ny);
370 nx = x; 416 ms.update ();
371 ny = y; 417 sint8 light = ms.light;
372 418
373 mflags = get_map_flags (m, &m, nx, ny, &nx, &ny); 419 if (expect_false (light < 0))
374 420 apply_light<los_darken> (pl, dx, dy, -light, light_atten [light + MAX_LIGHT_RADIUS]);
375 if (mflags & P_OUT_OF_MAP)
376 continue;
377
378 /* This space is providing light, so we need to brighten up the
379 * spaces around here.
380 */
381 light = GET_MAP_LIGHT (m, nx, ny);
382 if (light != 0)
383 {
384#if 0
385 LOG (llevDebug, "expand_lighted_sight: Found light at x=%d, y=%d, basex=%d, basey=%d\n", x, y, basex, basey);
386#endif
387 for (ax = basex - light; ax <= basex + light; ax++)
388 {
389 if (ax < 0 || ax >= op->contr->ns->mapx)
390 continue;
391
392 for (ay = basey - light; ay <= basey + light; ay++)
393 {
394 if (ay < 0 || ay >= op->contr->ns->mapy)
395 continue;
396
397 /* If the space is fully blocked, do nothing. Otherwise, we
398 * brighten the space. The further the light is away from the
399 * source (basex-x), the less effect it has. Though light used
400 * to dim in a square manner, it now dims in a circular manner
401 * using the the pythagorean theorem. glow_radius still
402 * represents the radius
403 */
404 if (op->contr->blocked_los[ax][ay] != 100)
405 {
406 x1 = abs (basex - ax) * abs (basex - ax);
407 y1 = abs (basey - ay) * abs (basey - ay);
408
409 if (light > 0) op->contr->blocked_los[ax][ay] -= max (light - isqrt (x1 + y1), 0);
410 if (light < 0) op->contr->blocked_los[ax][ay] -= min (light + isqrt (x1 + y1), 0);
411 }
412 }
413 }
414 }
415 } 421 }
416 } 422 rectangular_mapspace_iterate_end
417
418 /* Outdoor should never really be completely pitch black dark like
419 * a dungeon, so let the player at least see a little around themselves
420 */
421 if (op->map->outdoor && darklevel > (MAX_DARKNESS - 3))
422 {
423 if (op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] > (MAX_DARKNESS - 3))
424 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = MAX_DARKNESS - 3;
425
426 for (x = -1; x <= 1; x++)
427 for (y = -1; y <= 1; y++)
428 {
429 if (op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] > (MAX_DARKNESS - 2))
430 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] = MAX_DARKNESS - 2;
431 }
432 }
433
434 /* grant some vision to the player, based on the darklevel */
435 for (x = darklevel - MAX_DARKNESS; x < MAX_DARKNESS + 1 - darklevel; x++)
436 for (y = darklevel - MAX_DARKNESS; y < MAX_DARKNESS + 1 - darklevel; y++)
437 if (!(op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] == 100))
438 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] -=
439 MAX (0, 6 - darklevel - MAX (abs (x), abs (y)));
440} 423}
441 424
442/* blinded_sight() - sets all veiwable squares to blocked except 425/* blinded_sight() - sets all viewable squares to blocked except
443 * for the one the central one that the player occupies. A little 426 * for the one the central one that the player occupies. A little
444 * odd that you can see yourself (and what your standing on), but 427 * odd that you can see yourself (and what your standing on), but
445 * really need for any reasonable game play. 428 * really need for any reasonable game play.
446 */ 429 */
447static void 430static void
448blinded_sight (object *op) 431blinded_sight (player *pl)
449{ 432{
450 int x, y; 433 pl->los[LOS_X0][LOS_Y0] = 1;
451
452 for (x = 0; x < op->contr->ns->mapx; x++)
453 for (y = 0; y < op->contr->ns->mapy; y++)
454 op->contr->blocked_los[x][y] = 100;
455
456 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = 0;
457} 434}
458 435
459/* 436/*
460 * update_los() recalculates the array which specifies what is 437 * update_los() recalculates the array which specifies what is
461 * visible for the given player-object. 438 * visible for the given player-object.
462 */ 439 */
463
464void 440void
465update_los (object *op) 441player::update_los ()
466{ 442{
467 int dx = op->contr->ns->mapx / 2, dy = op->contr->ns->mapy / 2, x, y; 443 if (ob->flag [FLAG_REMOVED])//D really needed?
468
469 if (QUERY_FLAG (op, FLAG_REMOVED))
470 return; 444 return;
471 445
446 if (ob->flag [FLAG_WIZLOOK])
472 clear_los (op); 447 clear_los (0);
473 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ ) 448 else if (observe->flag [FLAG_BLIND]) /* player is blind */
474 return; 449 {
475 450 clear_los ();
476 /* For larger maps, this is more efficient than the old way which
477 * used the chaining of the block array. Since many space views could
478 * be blocked by different spaces in front, this mean that a lot of spaces
479 * could be examined multile times, as each path would be looked at.
480 */
481 for (x = (MAP_CLIENT_X - op->contr->ns->mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->ns->mapx) / 2 + 1; x++)
482 for (y = (MAP_CLIENT_Y - op->contr->ns->mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->ns->mapy) / 2 + 1; y++)
483 check_wall (op, x, y);
484
485 /* do the los of the player. 3 (potential) cases */
486 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
487 blinded_sight (op); 451 blinded_sight (this);
452 }
488 else 453 else
489 expand_sight (op); 454 {
455 clear_los ();
456 calculate_los (this);
457 apply_lights (this);
458 }
490 459
491 //TODO: no range-checking whatsoever :( 460 if (observe->flag [FLAG_XRAYS])
492 if (QUERY_FLAG (op, FLAG_XRAYS))
493 for (int x = -2; x <= 2; x++) 461 for (int dx = -2; dx <= 2; dx++)
494 for (int y = -2; y <= 2; y++) 462 for (int dy = -2; dy <= 2; dy++)
495 op->contr->blocked_los[dx + x][dy + y] = 0; 463 min_it (los[dx + LOS_X0][dy + LOS_Y0], 1);
496} 464}
497 465
498/* update all_map_los is like update_all_los below, 466/* update all_map_los is like update_all_los below,
499 * but updates everyone on the map, no matter where they 467 * but updates everyone on the map, no matter where they
500 * are. This generally should not be used, as a per 468 * are. This generally should not be used, as a per
507 * change_map_light function 475 * change_map_light function
508 */ 476 */
509void 477void
510update_all_map_los (maptile *map) 478update_all_map_los (maptile *map)
511{ 479{
512 for_all_players (pl) 480 for_all_players_on_map (pl, map)
513 if (pl->ob && pl->ob->map == map)
514 pl->do_los = 1; 481 pl->do_los = 1;
515} 482}
516 483
517/* 484/*
518 * This function makes sure that update_los() will be called for all 485 * This function makes sure that update_los() will be called for all
519 * players on the given map within the next frame. 486 * players on the given map within the next frame.
527 * map is the map that changed, x and y are the coordinates. 494 * map is the map that changed, x and y are the coordinates.
528 */ 495 */
529void 496void
530update_all_los (const maptile *map, int x, int y) 497update_all_los (const maptile *map, int x, int y)
531{ 498{
499 map->at (x, y).invalidate ();
500
532 for_all_players (pl) 501 for_all_players (pl)
533 { 502 {
534 /* Player should not have a null map, but do this 503 /* Player should not have a null map, but do this
535 * check as a safety 504 * check as a safety
536 */ 505 */
588 pl->do_los = 1; 557 pl->do_los = 1;
589 } 558 }
590 } 559 }
591} 560}
592 561
562static const int season_darkness[5][HOURS_PER_DAY] = {
563 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
564 { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
565 { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
566 { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
567 { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
568 { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
569};
570
593/* 571/*
594 * Debug-routine which dumps the array which specifies the visible 572 * Tell players the time and compute the darkness level for all maps in the game.
595 * area of a player. Triggered by the z key in DM mode. 573 * MUST be called exactly once per hour.
596 */ 574 */
597void 575void
598print_los (object *op) 576maptile::adjust_daylight ()
599{ 577{
600 int x, y; 578 timeofday_t tod;
601 char buf[50], buf2[10];
602 579
603 strcpy (buf, " "); 580 get_tod (&tod);
604 581
605 for (x = 0; x < op->contr->ns->mapx; x++) 582 // log the time to log-1 every hour, and to chat every day
606 { 583 {
607 sprintf (buf2, "%2d", x); 584 char todbuf[512];
608 strcat (buf, buf2); 585
586 format_tod (todbuf, sizeof (todbuf), &tod);
587
588 for_all_players (pl)
589 pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
609 } 590 }
610 591
611 new_draw_info (NDI_UNIQUE, 0, op, buf); 592 /* If the light level isn't changing, no reason to do all
593 * the work below.
594 */
595 sint8 new_darkness = season_darkness[tod.season][tod.hour];
612 596
613 for (y = 0; y < op->contr->ns->mapy; y++) 597 if (new_darkness == maptile::outdoor_darkness)
614 { 598 return;
615 sprintf (buf, "%2d:", y);
616 599
617 for (x = 0; x < op->contr->ns->mapx; x++) 600 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
618 { 601 new_darkness > maptile::outdoor_darkness
619 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]); 602 ? "It becomes darker."
620 strcat (buf, buf2); 603 : "It becomes brighter.");
621 }
622 604
623 new_draw_info (NDI_UNIQUE, 0, op, buf); 605 maptile::outdoor_darkness = new_darkness;
624 } 606
607 // we simply update the los for all players, which is unnecessarily
608 // costly, but should do for the moment.
609 for_all_players (pl)
610 pl->do_los = 1;
625} 611}
626 612
627/* 613/*
628 * make_sure_seen: The object is supposed to be visible through walls, thus 614 * make_sure_seen: The object is supposed to be visible through walls, thus
629 * check if any players are nearby, and edit their LOS array. 615 * check if any players are nearby, and edit their LOS array.
630 */ 616 */
631
632void 617void
633make_sure_seen (const object *op) 618make_sure_seen (const object *op)
634{ 619{
635 for_all_players (pl) 620 for_all_players (pl)
636 if (pl->ob->map == op->map && 621 if (pl->ob->map == op->map &&
637 pl->ob->y - pl->ns->mapy / 2 <= op->y && 622 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
638 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x) 623 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
639 pl->blocked_los[pl->ns->mapx / 2 + op->x - pl->ob->x][pl->ns->mapy / 2 + op->y - pl->ob->y] = 0; 624 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_Y0] = 0;
640} 625}
641 626
642/* 627/*
643 * make_sure_not_seen: The object which is supposed to be visible through 628 * make_sure_not_seen: The object which is supposed to be visible through
644 * walls has just been removed from the map, so update the los of any 629 * walls has just been removed from the map, so update the los of any
645 * players within its range 630 * players within its range
646 */ 631 */
647
648void 632void
649make_sure_not_seen (const object *op) 633make_sure_not_seen (const object *op)
650{ 634{
651 for_all_players (pl) 635 for_all_players (pl)
652 if (pl->ob->map == op->map && 636 if (pl->ob->map == op->map &&

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines