ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
(Generate patch)

Comparing deliantra/server/common/los.C (file contents):
Revision 1.21 by root, Thu Feb 15 03:19:02 2007 UTC vs.
Revision 1.52 by root, Fri Dec 26 10:36:42 2008 UTC

1/* 1/*
2 * CrossFire, A Multiplayer game for X-windows 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (C) 2005, 2006, 2007 Marc Lehmann & Crossfire+ Development Team 4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * Copyright (C) 2002 Mark Wedel & Crossfire Development Team 5 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
6 * Copyright (C) 1992 Frank Tore Johansen 6 * Copyright (©) 1992,2007 Frank Tore Johansen
7 * 7 *
8 * This program is free software; you can redistribute it and/or modify 8 * Deliantra is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by 9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or 10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version. 11 * (at your option) any later version.
12 * 12 *
13 * This program is distributed in the hope that it will be useful, 13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details. 16 * GNU General Public License for more details.
17 * 17 *
18 * You should have received a copy of the GNU General Public License 18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software 19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 * 20 *
22 * The authors can be reached via e-mail at <crossfire@schmorp.de> 21 * The authors can be reached via e-mail to <support@deliantra.net>
23 */ 22 */
24
25/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
26 23
27#include <global.h> 24#include <global.h>
28#include <funcpoint.h>
29#include <math.h> 25#include <cmath>
30 26
31/* Distance must be less than this for the object to be blocked. 27#define SEE_IN_DARK_RADIUS 3
32 * An object is 1.0 wide, so if set to 0.5, it means the object
33 * that blocks half the view (0.0 is complete block) will
34 * block view in our tables.
35 * .4 or less lets you see through walls. .5 is about right.
36 */
37 28
38#define SPACE_BLOCK 0.5 29// los flags
30enum {
31 FLG_XI = 0x01, // we have an x-parent
32 FLG_YI = 0x02, // we have an y-parent
33 FLG_BLOCKED = 0x04, // this space blocks the view
34 FLG_QUEUED = 0x80 // already queued in queue, or border
35};
39 36
40typedef struct blstr 37struct los_info
41{ 38{
42 int x[4], y[4]; 39 uint8 flags; // FLG_xxx
43 int index; 40 uint8 culled; // culled from "tree"
44} blocks; 41 uint8 visible;
42 uint8 pad0;
45 43
44 sint8 xo, yo; // obscure angle
45 sint8 xe, ye; // angle deviation
46};
47
48// temporary storage for the los algorithm,
49// one los_info for each lightable map space
46blocks block[MAP_CLIENT_X][MAP_CLIENT_Y]; 50static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
47 51
48static void expand_lighted_sight (object *op); 52struct point
49
50/*
51 * Used to initialise the array used by the LOS routines.
52 * What this sets if that x,y blocks the view of bx,by
53 * This then sets up a relation - for example, something
54 * at 5,4 blocks view at 5,3 which blocks view at 5,2
55 * etc. So when we check 5,4 and find it block, we have
56 * the data to know that 5,3 and 5,2 and 5,1 should also
57 * be blocked.
58 */
59
60static void
61set_block (int x, int y, int bx, int by)
62{ 53{
63 int index = block[x][y].index, i;
64
65 /* Due to flipping, we may get duplicates - better safe than sorry.
66 */
67 for (i = 0; i < index; i++)
68 {
69 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
70 return;
71 }
72
73 block[x][y].x[index] = bx;
74 block[x][y].y[index] = by;
75 block[x][y].index++;
76#ifdef LOS_DEBUG
77 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
78#endif
79}
80
81/*
82 * initialises the array used by the LOS routines.
83 */
84
85/* since we are only doing the upper left quadrant, only
86 * these spaces could possibly get blocked, since these
87 * are the only ones further out that are still possibly in the
88 * sightline.
89 */
90
91void
92init_block (void)
93{
94 int x, y, dx, dy, i;
95 static int block_x[3] = { -1, -1, 0 }, block_y[3] =
96 {
97 -1, 0, -1};
98
99 for (x = 0; x < MAP_CLIENT_X; x++)
100 for (y = 0; y < MAP_CLIENT_Y; y++)
101 {
102 block[x][y].index = 0;
103 }
104
105
106 /* The table should be symmetric, so only do the upper left
107 * quadrant - makes the processing easier.
108 */
109 for (x = 1; x <= MAP_CLIENT_X / 2; x++)
110 {
111 for (y = 1; y <= MAP_CLIENT_Y / 2; y++)
112 {
113 for (i = 0; i < 3; i++)
114 {
115 dx = x + block_x[i];
116 dy = y + block_y[i];
117
118 /* center space never blocks */
119 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
120 continue;
121
122 /* If its a straight line, its blocked */
123 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
124 {
125 /* For simplicity, we mirror the coordinates to block the other
126 * quadrants.
127 */
128 set_block (x, y, dx, dy);
129 if (x == MAP_CLIENT_X / 2)
130 {
131 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
132 }
133 else if (y == MAP_CLIENT_Y / 2)
134 {
135 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
136 }
137 }
138 else
139 {
140 float d1, r, s, l;
141
142 /* We use the algorihm that found out how close the point
143 * (x,y) is to the line from dx,dy to the center of the viewable
144 * area. l is the distance from x,y to the line.
145 * r is more a curiosity - it lets us know what direction (left/right)
146 * the line is off
147 */
148
149 d1 = (float) (pow (MAP_CLIENT_X / 2 - dx, 2.f) + pow (MAP_CLIENT_Y / 2 - dy, 2.f));
150 r = (float) ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
151 s = (float) ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
152 l = FABS (sqrt (d1) * s);
153
154 if (l <= SPACE_BLOCK)
155 {
156 /* For simplicity, we mirror the coordinates to block the other
157 * quadrants.
158 */
159 set_block (x, y, dx, dy);
160 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
161 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
162 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
163 }
164 }
165 }
166 }
167 }
168}
169
170/*
171 * Used to initialise the array used by the LOS routines.
172 * x,y are indexes into the blocked[][] array.
173 * This recursively sets the blocked line of sight view.
174 * From the blocked[][] array, we know for example
175 * that if some particular space is blocked, it blocks
176 * the view of the spaces 'behind' it, and those blocked
177 * spaces behind it may block other spaces, etc.
178 * In this way, the chain of visibility is set.
179 */
180
181static void
182set_wall (object *op, int x, int y)
183{
184 int i;
185
186 for (i = 0; i < block[x][y].index; i++)
187 {
188 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
189
190 /* ax, ay are the values as adjusted to be in the
191 * socket look structure.
192 */
193 ax = dx - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
194 ay = dy - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
195
196 if (ax < 0 || ax >= op->contr->ns->mapx || ay < 0 || ay >= op->contr->ns->mapy)
197 continue;
198#if 0
199 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
200#endif
201 /* we need to adjust to the fact that the socket
202 * code wants the los to start from the 0,0
203 * and not be relative to middle of los array.
204 */
205 op->contr->blocked_los[ax][ay] = 100;
206 set_wall (op, dx, dy);
207 }
208}
209
210/*
211 * Used to initialise the array used by the LOS routines.
212 * op is the object, x and y values based on MAP_CLIENT_X and Y.
213 * this is because they index the blocked[][] arrays.
214 */
215
216static void
217check_wall (object *op, int x, int y)
218{
219 int ax, ay; 54 sint8 x, y;
55};
220 56
221 if (!block[x][y].index) 57// minimum size, but must be a power of two
222 return; 58#define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
223 59
224 /* ax, ay are coordinates as indexed into the look window */ 60// a queue of spaces to calculate
225 ax = x - (MAP_CLIENT_X - op->contr->ns->mapx) / 2; 61static point queue [QUEUE_LENGTH];
226 ay = y - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2; 62static int q1, q2; // queue start, end
227
228 /* If the converted coordinates are outside the viewable
229 * area for the client, return now.
230 */
231 if (ax < 0 || ay < 0 || ax >= op->contr->ns->mapx || ay >= op->contr->ns->mapy)
232 return;
233
234#if 0
235 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
236 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
237#endif
238
239 /* If this space is already blocked, prune the processing - presumably
240 * whatever has set this space to be blocked has done the work and already
241 * done the dependency chain.
242 */
243 if (op->contr->blocked_los[ax][ay] == 100)
244 return;
245
246
247 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
248 set_wall (op, x, y);
249}
250 63
251/* 64/*
252 * Clears/initialises the los-array associated to the player 65 * Clears/initialises the los-array associated to the player
253 * controlling the object. 66 * controlling the object.
254 */ 67 */
255
256void 68void
257clear_los (object *op) 69player::clear_los (sint8 value)
258{ 70{
259 /* This is safer than using the ns->mapx, mapy because 71 memset (los, value, sizeof (los));
260 * we index the blocked_los as a 2 way array, so clearing
261 * the first z spaces may not not cover the spaces we are
262 * actually going to use
263 */
264 (void) memset ((void *) op->contr->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
265} 72}
266 73
267/* 74// enqueue a single mapspace, but only if it hasn't
268 * expand_sight goes through the array of what the given player is 75// been enqueued yet.
269 * able to see, and expands the visible area a bit, so the player will,
270 * to a certain degree, be able to see into corners.
271 * This is somewhat suboptimal, would be better to improve the formula.
272 */
273
274static void 76static void
275expand_sight (object *op) 77enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
276{ 78{
277 int i, x, y, dx, dy; 79 sint8 x = LOS_X0 + dx;
80 sint8 y = LOS_Y0 + dy;
278 81
279 for (x = 1; x < op->contr->ns->mapx - 1; x++) /* loop over inner squares */ 82 los_info &l = los[x][y];
280 for (y = 1; y < op->contr->ns->mapy - 1; y++) 83
84 l.flags |= flags;
85
86 if (l.flags & FLG_QUEUED)
87 return;
88
89 l.flags |= FLG_QUEUED;
90
91 queue[q1].x = dx;
92 queue[q1].y = dy;
93
94 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
95}
96
97// run the los algorithm
98// this is a variant of a spiral los algorithm taken from
99// http://www.geocities.com/temerra/los_rays.html
100// which has been simplified and changed considerably, but
101// still is basically the same algorithm.
102static void
103calculate_los (player *pl)
104{
105 {
106 memset (los, 0, sizeof (los));
107
108 // we keep one line for ourselves, for the border flag
109 // so the client area is actually MAP_CLIENT_(X|Y) - 2
110 int half_x = min (LOS_X0 - 1, pl->ns->mapx / 2);
111 int half_y = min (LOS_Y0 - 1, pl->ns->mapy / 2);
112
113 // create borders, the corners are not touched
114 for (int dx = -half_x; dx <= half_x; ++dx)
115 los [dx + LOS_X0][LOS_Y0 - (half_y + 1)].flags =
116 los [dx + LOS_X0][LOS_Y0 + (half_y + 1)].flags = FLG_QUEUED;
117
118 for (int dy = -half_y; dy <= half_y; ++dy)
119 los [LOS_X0 - (half_x + 1)][dy + LOS_Y0].flags =
120 los [LOS_X0 + (half_x + 1)][dy + LOS_Y0].flags = FLG_QUEUED;
121
122 // now reset the los area and also add blocked flags
123 // which supposedly is faster than doing it inside the
124 // spiral path algorithm below, except when very little
125 // area is visible, in which case it is slower, evening
126 // out los calculation times between large and small los maps.
127 // apply_lights also iterates over this area, maybe these
128 // two passes could be combined somehow.
129 unordered_mapwalk (pl->observe, -half_x, -half_y, half_x, half_y)
281 { 130 {
282 if (!op->contr->blocked_los[x][y] && 131 los_info &l = los [LOS_X0 + dx][LOS_Y0 + dy];
283 !(get_map_flags (op->map, NULL, 132 l.flags = m->at (nx, ny).flags () & P_BLOCKSVIEW ? FLG_BLOCKED : 0;
284 op->x - op->contr->ns->mapx / 2 + x,
285 op->y - op->contr->ns->mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP)))
286 {
287
288 for (i = 1; i <= 8; i += 1)
289 { /* mark all directions */
290 dx = x + freearr_x[i];
291 dy = y + freearr_y[i];
292 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */
293 op->contr->blocked_los[dx][dy] = -1;
294 }
295 }
296 } 133 }
134 }
297 135
298 if (op->map->darkness > 0) /* player is on a dark map */ 136 q1 = 0; q2 = 0; // initialise queue, not strictly required
299 expand_lighted_sight (op); 137 enqueue (0, 0); // enqueue center
300 138
301 /* clear mark squares */ 139 // treat the origin specially
302 for (x = 0; x < op->contr->ns->mapx; x++) 140 los[LOS_X0][LOS_Y0].visible = 1;
303 for (y = 0; y < op->contr->ns->mapy; y++) 141 pl->los[LOS_X0][LOS_Y0] = 0;
304 if (op->contr->blocked_los[x][y] < 0) 142
305 op->contr->blocked_los[x][y] = 0; 143 // loop over all enqueued points until the queue is empty
144 // the order in which this is done ensures that we
145 // never touch a mapspace whose input spaces we haven't checked
146 // yet.
147 while (q1 != q2)
148 {
149 sint8 dx = queue[q2].x;
150 sint8 dy = queue[q2].y;
151
152 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
153
154 sint8 x = LOS_X0 + dx;
155 sint8 y = LOS_Y0 + dy;
156
157 los_info &l = los[x][y];
158
159 if (expect_true (l.flags & (FLG_XI | FLG_YI)))
160 {
161 l.culled = 1;
162 l.xo = l.yo = l.xe = l.ye = 0;
163
164 // check contributing spaces, first horizontal
165 if (expect_true (l.flags & FLG_XI))
166 {
167 los_info *xi = &los[x - sign (dx)][y];
168
169 // don't cull unless obscured
170 l.culled &= !xi->visible;
171
172 /* merge input space */
173 if (expect_false (xi->xo || xi->yo))
174 {
175 // The X input can provide two main pieces of information:
176 // 1. Progressive X obscurity.
177 // 2. Recessive Y obscurity.
178
179 // Progressive X obscurity, favouring recessive input angle
180 if (xi->xe > 0 && l.xo == 0)
181 {
182 l.xe = xi->xe - xi->yo;
183 l.ye = xi->ye + xi->yo;
184 l.xo = xi->xo;
185 l.yo = xi->yo;
186 }
187
188 // Recessive Y obscurity
189 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
190 {
191 l.ye = xi->yo + xi->ye;
192 l.xe = xi->xe - xi->yo;
193 l.xo = xi->xo;
194 l.yo = xi->yo;
195 }
196 }
197 }
198
199 // check contributing spaces, last vertical, identical structure
200 if (expect_true (l.flags & FLG_YI))
201 {
202 los_info *yi = &los[x][y - sign (dy)];
203
204 // don't cull unless obscured
205 l.culled &= !yi->visible;
206
207 /* merge input space */
208 if (expect_false (yi->yo || yi->xo))
209 {
210 // The Y input can provide two main pieces of information:
211 // 1. Progressive Y obscurity.
212 // 2. Recessive X obscurity.
213
214 // Progressive Y obscurity, favouring recessive input angle
215 if (yi->ye > 0 && l.yo == 0)
216 {
217 l.ye = yi->ye - yi->xo;
218 l.xe = yi->xe + yi->xo;
219 l.yo = yi->yo;
220 l.xo = yi->xo;
221 }
222
223 // Recessive X obscurity
224 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
225 {
226 l.xe = yi->xo + yi->xe;
227 l.ye = yi->ye - yi->xo;
228 l.yo = yi->yo;
229 l.xo = yi->xo;
230 }
231 }
232 }
233
234 if (l.flags & FLG_BLOCKED)
235 {
236 l.xo = l.xe = abs (dx);
237 l.yo = l.ye = abs (dy);
238
239 // we obscure dependents, but might be visible
240 // copy the los from the square towards the player,
241 // so outward diagonal corners are lit.
242 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
243
244 l.visible = false;
245 }
246 else
247 {
248 // we are not blocked, so calculate visibility, by checking
249 // whether we are inside or outside the shadow
250 l.visible = (l.xe <= 0 || l.xe > l.xo)
251 && (l.ye <= 0 || l.ye > l.yo);
252
253 pl->los[x][y] = l.culled ? LOS_BLOCKED
254 : l.visible ? 0
255 : 3;
256 }
257
258 }
259
260 // Expands by the unit length in each component's current direction.
261 // If a component has no direction, then it is expanded in both of its
262 // positive and negative directions.
263 if (!l.culled)
264 {
265 if (dx >= 0) enqueue (dx + 1, dy, FLG_XI);
266 if (dx <= 0) enqueue (dx - 1, dy, FLG_XI);
267 if (dy >= 0) enqueue (dx, dy + 1, FLG_YI);
268 if (dy <= 0) enqueue (dx, dy - 1, FLG_YI);
269 }
270 }
306} 271}
307 272
308/* returns true if op carries one or more lights 273/* returns true if op carries one or more lights
309 * This is a trivial function now days, but it used to 274 * This is a trivial function now days, but it used to
310 * be a bit longer. Probably better for callers to just 275 * be a bit longer. Probably better for callers to just
311 * check the op->glow_radius instead of calling this. 276 * check the op->glow_radius instead of calling this.
312 */ 277 */
313
314int 278int
315has_carried_lights (const object *op) 279has_carried_lights (const object *op)
316{ 280{
317 /* op may glow! */ 281 /* op may glow! */
318 if (op->glow_radius > 0) 282 if (op->glow_radius > 0)
319 return 1; 283 return 1;
320 284
321 return 0; 285 return 0;
322} 286}
323 287
288/* radius, distance => lightness adjust */
289static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
290static sint8 vision_atten[MAX_DARKNESS + SEE_IN_DARK_RADIUS + 1][(MAX_DARKNESS + SEE_IN_DARK_RADIUS) * 3 / 2 + 1];
291
292static struct los_init
293{
294 los_init ()
295 {
296 assert (("QUEUE_LENGTH, MAP_CLIENT_X and MAP_CLIENT_Y *must* be powers of two",
297 !(QUEUE_LENGTH & (QUEUE_LENGTH - 1))));
298
299 /* for lights */
300 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
301 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
302 {
303 // max intensity
304 int intensity = min (LOS_MAX, abs (radius) + 1);
305
306 // actual intensity
307 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
308
309 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
310 ? min (3, intensity)
311 : LOS_MAX - intensity;
312 }
313
314 /* for general vision */
315 for (int radius = 0; radius <= MAX_DARKNESS + SEE_IN_DARK_RADIUS; ++radius)
316 for (int distance = 0; distance <= (MAX_DARKNESS + SEE_IN_DARK_RADIUS) * 3 / 2; ++distance)
317 vision_atten [radius][distance] = distance <= radius ? 3 : 4;
318 }
319} los_init;
320
321sint8
322los_brighten (sint8 b, sint8 l)
323{
324 return b == LOS_BLOCKED ? b : min (b, l);
325}
326
327sint8
328los_darken (sint8 b, sint8 l)
329{
330 return max (b, l);
331}
332
333template<sint8 change_it (sint8, sint8)>
324static void 334static void
325expand_lighted_sight (object *op) 335apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
326{ 336{
327 int x, y, darklevel, ax, ay, basex, basey, mflags, light, x1, y1; 337 // min or max the circular area around basex, basey
328 maptile *m = op->map; 338 dx += LOS_X0;
329 sint16 nx, ny; 339 dy += LOS_Y0;
330 340
331 darklevel = m->darkness; 341 int hx = pl->ns->mapx / 2;
342 int hy = pl->ns->mapy / 2;
332 343
333 /* If the player can see in the dark, lower the darklevel for him */ 344 int ax0 = max (LOS_X0 - hx, dx - light);
334 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK)) 345 int ay0 = max (LOS_Y0 - hy, dy - light);
335 darklevel -= 2; 346 int ax1 = min (dx + light, LOS_X0 + hx);
347 int ay1 = min (dy + light, LOS_Y0 + hy);
336 348
349 for (int ax = ax0; ax <= ax1; ax++)
350 for (int ay = ay0; ay <= ay1; ay++)
351 pl->los[ax][ay] =
352 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
353}
354
337 /* add light, by finding all (non-null) nearby light sources, then 355/* add light, by finding all (non-null) nearby light sources, then
338 * mark those squares specially. If the darklevel<1, there is no 356 * mark those squares specially.
339 * reason to do this, so we skip this function
340 */ 357 */
358static void
359apply_lights (player *pl)
360{
361 object *op = pl->observe;
362 int darklevel = op->map->darklevel ();
341 363
364 int half_x = pl->ns->mapx / 2;
365 int half_y = pl->ns->mapy / 2;
366
367 int pass2 = 0; // negative lights have an extra pass
368
369 maprect *rects = pl->observe->map->split_to_tiles (
370 pl->observe->x - half_x - MAX_LIGHT_RADIUS,
371 pl->observe->y - half_y - MAX_LIGHT_RADIUS,
372 pl->observe->x + half_x + MAX_LIGHT_RADIUS + 1,
373 pl->observe->y + half_y + MAX_LIGHT_RADIUS + 1
374 );
375
342 if (darklevel < 1) 376 if (!darklevel)
343 return; 377 pass2 = 1;
344 378 else
345 /* Do a sanity check. If not valid, some code below may do odd
346 * things.
347 */
348 if (darklevel > MAX_DARKNESS)
349 { 379 {
350 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel); 380 /* first, make everything totally dark */
351 darklevel = MAX_DARKNESS; 381 for (int dx = -half_x; dx <= half_x; dx++)
382 for (int dy = -half_x; dy <= half_y; dy++)
383 max_it (pl->los[dx + LOS_X0][dy + LOS_Y0], LOS_MAX);
384
385 /*
386 * Only process the area of interest.
387 * the basex, basey values represent the position in the op->contr->los
388 * array. Its easier to just increment them here (and start with the right
389 * value) than to recalculate them down below.
390 */
391 for (maprect *r = rects; r->m; ++r)
392 rect_mapwalk (r, 0, 0)
393 {
394 mapspace &ms = m->at (nx, ny);
395 ms.update ();
396 sint8 light = ms.light;
397
398 if (expect_false (light))
399 if (light < 0)
400 pass2 = 1;
401 else
402 apply_light<los_brighten> (pl, dx - pl->observe->x, dy - pl->observe->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
403 }
404
405 /* grant some vision to the player, based on the darklevel */
406 {
407 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_DARKNESS);
408
409 /* If the player can see in the dark, lower the darklevel for him */
410 if (op->flag [FLAG_SEE_IN_DARK])
411 light += SEE_IN_DARK_RADIUS;
412
413 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
414 }
352 } 415 }
353 416
354 /* First, limit player furthest (unlighted) vision */ 417 // possibly do 2nd pass for rare negative glow radii
355 for (x = 0; x < op->contr->ns->mapx; x++) 418 // for effect, those are always considered to be stronger than anything else
356 for (y = 0; y < op->contr->ns->mapy; y++) 419 // but they can't darken a place completely
357 if (op->contr->blocked_los[x][y] != 100) 420 if (pass2)
358 op->contr->blocked_los[x][y] = MAX_LIGHT_RADII; 421 for (maprect *r = rects; r->m; ++r)
359 422 rect_mapwalk (r, 0, 0)
360 /* the spaces[] darkness value contains the information we need.
361 * Only process the area of interest.
362 * the basex, basey values represent the position in the op->contr->blocked_los
363 * array. Its easier to just increment them here (and start with the right
364 * value) than to recalculate them down below.
365 */
366 for (x = (op->x - op->contr->ns->mapx / 2 - MAX_LIGHT_RADII), basex = -MAX_LIGHT_RADII;
367 x <= (op->x + op->contr->ns->mapx / 2 + MAX_LIGHT_RADII); x++, basex++)
368 {
369
370 for (y = (op->y - op->contr->ns->mapy / 2 - MAX_LIGHT_RADII), basey = -MAX_LIGHT_RADII;
371 y <= (op->y + op->contr->ns->mapy / 2 + MAX_LIGHT_RADII); y++, basey++)
372 {
373 m = op->map;
374 nx = x;
375 ny = y;
376
377 mflags = get_map_flags (m, &m, nx, ny, &nx, &ny);
378
379 if (mflags & P_OUT_OF_MAP)
380 continue;
381
382 /* This space is providing light, so we need to brighten up the
383 * spaces around here.
384 */
385 light = GET_MAP_LIGHT (m, nx, ny);
386 if (light != 0)
387 {
388#if 0
389 LOG (llevDebug, "expand_lighted_sight: Found light at x=%d, y=%d, basex=%d, basey=%d\n", x, y, basex, basey);
390#endif
391 for (ax = basex - light; ax <= basex + light; ax++)
392 {
393 if (ax < 0 || ax >= op->contr->ns->mapx)
394 continue;
395
396 for (ay = basey - light; ay <= basey + light; ay++)
397 {
398 if (ay < 0 || ay >= op->contr->ns->mapy)
399 continue;
400
401 /* If the space is fully blocked, do nothing. Otherwise, we
402 * brighten the space. The further the light is away from the
403 * source (basex-x), the less effect it has. Though light used
404 * to dim in a square manner, it now dims in a circular manner
405 * using the the pythagorean theorem. glow_radius still
406 * represents the radius
407 */
408 if (op->contr->blocked_los[ax][ay] != 100)
409 {
410 x1 = abs (basex - ax) * abs (basex - ax);
411 y1 = abs (basey - ay) * abs (basey - ay);
412
413 if (light > 0) op->contr->blocked_los[ax][ay] -= max (light - isqrt (x1 + y1), 0);
414 if (light < 0) op->contr->blocked_los[ax][ay] -= min (light + isqrt (x1 + y1), 0);
415 }
416 }
417 }
418 }
419 }
420 }
421
422 /* Outdoor should never really be completely pitch black dark like
423 * a dungeon, so let the player at least see a little around themselves
424 */
425 if (op->map->outdoor && darklevel > (MAX_DARKNESS - 3))
426 {
427 if (op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] > (MAX_DARKNESS - 3))
428 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = MAX_DARKNESS - 3;
429
430 for (x = -1; x <= 1; x++)
431 for (y = -1; y <= 1; y++)
432 { 423 {
433 if (op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] > (MAX_DARKNESS - 2)) 424 mapspace &ms = m->at (nx, ny);
434 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] = MAX_DARKNESS - 2; 425 ms.update ();
426 sint8 light = ms.light;
427
428 if (expect_false (light < 0))
429 apply_light<los_darken> (pl, dx - pl->observe->x, dy - pl->observe->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
435 } 430 }
436 }
437
438 /* grant some vision to the player, based on the darklevel */
439 for (x = darklevel - MAX_DARKNESS; x < MAX_DARKNESS + 1 - darklevel; x++)
440 for (y = darklevel - MAX_DARKNESS; y < MAX_DARKNESS + 1 - darklevel; y++)
441 if (!(op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] == 100))
442 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] -=
443 MAX (0, 6 - darklevel - MAX (abs (x), abs (y)));
444} 431}
445 432
446/* blinded_sight() - sets all veiwable squares to blocked except 433/* blinded_sight() - sets all viewable squares to blocked except
447 * for the one the central one that the player occupies. A little 434 * for the one the central one that the player occupies. A little
448 * odd that you can see yourself (and what your standing on), but 435 * odd that you can see yourself (and what your standing on), but
449 * really need for any reasonable game play. 436 * really need for any reasonable game play.
450 */ 437 */
451static void 438static void
452blinded_sight (object *op) 439blinded_sight (player *pl)
453{ 440{
454 int x, y; 441 pl->los[LOS_X0][LOS_Y0] = 1;
455
456 for (x = 0; x < op->contr->ns->mapx; x++)
457 for (y = 0; y < op->contr->ns->mapy; y++)
458 op->contr->blocked_los[x][y] = 100;
459
460 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = 0;
461} 442}
462 443
463/* 444/*
464 * update_los() recalculates the array which specifies what is 445 * update_los() recalculates the array which specifies what is
465 * visible for the given player-object. 446 * visible for the given player-object.
466 */ 447 */
467
468void 448void
469update_los (object *op) 449player::update_los ()
470{ 450{
471 int dx = op->contr->ns->mapx / 2, dy = op->contr->ns->mapy / 2, x, y; 451 if (ob->flag [FLAG_REMOVED])//D really needed?
472
473 if (QUERY_FLAG (op, FLAG_REMOVED))
474 return; 452 return;
475 453
454 if (ob->flag [FLAG_WIZLOOK])
476 clear_los (op); 455 clear_los (0);
477 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ ) 456 else if (observe->flag [FLAG_BLIND]) /* player is blind */
478 return; 457 {
479 458 clear_los ();
480 /* For larger maps, this is more efficient than the old way which
481 * used the chaining of the block array. Since many space views could
482 * be blocked by different spaces in front, this mean that a lot of spaces
483 * could be examined multile times, as each path would be looked at.
484 */
485 for (x = (MAP_CLIENT_X - op->contr->ns->mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->ns->mapx) / 2 + 1; x++)
486 for (y = (MAP_CLIENT_Y - op->contr->ns->mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->ns->mapy) / 2 + 1; y++)
487 check_wall (op, x, y);
488
489 /* do the los of the player. 3 (potential) cases */
490 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
491 blinded_sight (op); 459 blinded_sight (this);
460 }
492 else 461 else
493 expand_sight (op); 462 {
463 clear_los ();
464 calculate_los (this);
465 apply_lights (this);
466 }
494 467
495 //TODO: no range-checking whatsoever :( 468 if (observe->flag [FLAG_XRAYS])
496 if (QUERY_FLAG (op, FLAG_XRAYS))
497 for (int x = -2; x <= 2; x++) 469 for (int dx = -2; dx <= 2; dx++)
498 for (int y = -2; y <= 2; y++) 470 for (int dy = -2; dy <= 2; dy++)
499 op->contr->blocked_los[dx + x][dy + y] = 0; 471 min_it (los[dx + LOS_X0][dy + LOS_Y0], 1);
500} 472}
501 473
502/* update all_map_los is like update_all_los below, 474/* update all_map_los is like update_all_los below,
503 * but updates everyone on the map, no matter where they 475 * but updates everyone on the map, no matter where they
504 * are. This generally should not be used, as a per 476 * are. This generally should not be used, as a per
511 * change_map_light function 483 * change_map_light function
512 */ 484 */
513void 485void
514update_all_map_los (maptile *map) 486update_all_map_los (maptile *map)
515{ 487{
516 for_all_players (pl) 488 for_all_players_on_map (pl, map)
517 if (pl->ob && pl->ob->map == map)
518 pl->do_los = 1; 489 pl->do_los = 1;
519} 490}
520 491
521/* 492/*
522 * This function makes sure that update_los() will be called for all 493 * This function makes sure that update_los() will be called for all
523 * players on the given map within the next frame. 494 * players on the given map within the next frame.
531 * map is the map that changed, x and y are the coordinates. 502 * map is the map that changed, x and y are the coordinates.
532 */ 503 */
533void 504void
534update_all_los (const maptile *map, int x, int y) 505update_all_los (const maptile *map, int x, int y)
535{ 506{
507 map->at (x, y).invalidate ();
508
536 for_all_players (pl) 509 for_all_players (pl)
537 { 510 {
538 /* Player should not have a null map, but do this 511 /* Player should not have a null map, but do this
539 * check as a safety 512 * check as a safety
540 */ 513 */
592 pl->do_los = 1; 565 pl->do_los = 1;
593 } 566 }
594 } 567 }
595} 568}
596 569
570static const int season_darkness[5][HOURS_PER_DAY] = {
571 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
572 { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
573 { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
574 { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
575 { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
576 { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
577};
578
597/* 579/*
598 * Debug-routine which dumps the array which specifies the visible 580 * Tell players the time and compute the darkness level for all maps in the game.
599 * area of a player. Triggered by the z key in DM mode. 581 * MUST be called exactly once per hour.
600 */ 582 */
601void 583void
602print_los (object *op) 584maptile::adjust_daylight ()
603{ 585{
604 int x, y; 586 timeofday_t tod;
605 char buf[50], buf2[10];
606 587
607 strcpy (buf, " "); 588 get_tod (&tod);
608 589
609 for (x = 0; x < op->contr->ns->mapx; x++) 590 // log the time to log-1 every hour, and to chat every day
610 { 591 {
611 sprintf (buf2, "%2d", x); 592 char todbuf[512];
612 strcat (buf, buf2); 593
594 format_tod (todbuf, sizeof (todbuf), &tod);
595
596 for_all_players (pl)
597 pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
613 } 598 }
614 599
615 new_draw_info (NDI_UNIQUE, 0, op, buf); 600 /* If the light level isn't changing, no reason to do all
601 * the work below.
602 */
603 sint8 new_darkness = season_darkness[tod.season][tod.hour];
616 604
617 for (y = 0; y < op->contr->ns->mapy; y++) 605 if (new_darkness == maptile::outdoor_darkness)
618 { 606 return;
619 sprintf (buf, "%2d:", y);
620 607
621 for (x = 0; x < op->contr->ns->mapx; x++) 608 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
622 { 609 new_darkness > maptile::outdoor_darkness
623 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]); 610 ? "It becomes darker."
624 strcat (buf, buf2); 611 : "It becomes brighter.");
625 }
626 612
627 new_draw_info (NDI_UNIQUE, 0, op, buf); 613 maptile::outdoor_darkness = new_darkness;
628 } 614
615 // we simply update the los for all players, which is unnecessarily
616 // costly, but should do for the moment.
617 for_all_players (pl)
618 pl->do_los = 1;
629} 619}
630 620
631/* 621/*
632 * make_sure_seen: The object is supposed to be visible through walls, thus 622 * make_sure_seen: The object is supposed to be visible through walls, thus
633 * check if any players are nearby, and edit their LOS array. 623 * check if any players are nearby, and edit their LOS array.
634 */ 624 */
635
636void 625void
637make_sure_seen (const object *op) 626make_sure_seen (const object *op)
638{ 627{
639 for_all_players (pl) 628 for_all_players (pl)
640 if (pl->ob->map == op->map && 629 if (pl->ob->map == op->map &&
641 pl->ob->y - pl->ns->mapy / 2 <= op->y && 630 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
642 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x) 631 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
643 pl->blocked_los[pl->ns->mapx / 2 + op->x - pl->ob->x][pl->ns->mapy / 2 + op->y - pl->ob->y] = 0; 632 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_Y0] = 0;
644} 633}
645 634
646/* 635/*
647 * make_sure_not_seen: The object which is supposed to be visible through 636 * make_sure_not_seen: The object which is supposed to be visible through
648 * walls has just been removed from the map, so update the los of any 637 * walls has just been removed from the map, so update the los of any
649 * players within its range 638 * players within its range
650 */ 639 */
651
652void 640void
653make_sure_not_seen (const object *op) 641make_sure_not_seen (const object *op)
654{ 642{
655 for_all_players (pl) 643 for_all_players (pl)
656 if (pl->ob->map == op->map && 644 if (pl->ob->map == op->map &&
657 pl->ob->y - pl->ns->mapy / 2 <= op->y && 645 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
658 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x) 646 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
659 pl->do_los = 1; 647 pl->do_los = 1;
660} 648}
649

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines