ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
Revision: 1.23
Committed: Fri Feb 16 22:21:45 2007 UTC (17 years, 3 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-2_0
Changes since 1.22: +5 -1 lines
Log Message:
- set map before parsing an object, add_button_link requires this
  completely bogus idiotic design bug.
- document speed hack by elmex :)

File Contents

# Content
1 /*
2 * CrossFire, A Multiplayer game for X-windows
3 *
4 * Copyright (C) 2005, 2006, 2007 Marc Lehmann & Crossfire+ Development Team
5 * Copyright (C) 2002 Mark Wedel & Crossfire Development Team
6 * Copyright (C) 1992 Frank Tore Johansen
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 *
22 * The authors can be reached via e-mail at <crossfire@schmorp.de>
23 */
24
25 /* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
26
27 #include <global.h>
28 #include <funcpoint.h>
29 #include <math.h>
30
31 /* Distance must be less than this for the object to be blocked.
32 * An object is 1.0 wide, so if set to 0.5, it means the object
33 * that blocks half the view (0.0 is complete block) will
34 * block view in our tables.
35 * .4 or less lets you see through walls. .5 is about right.
36 */
37
38 #define SPACE_BLOCK 0.5
39
40 typedef struct blstr
41 {
42 int x[4], y[4];
43 int index;
44 } blocks;
45
46 // 31/32 == a speed hack
47 // we would like to use 32 for speed, but the code loops endlessly
48 // then, reason not yet identified, so only make the array use 32,
49 // not the define's.
50 blocks block[MAP_CLIENT_X][MAP_CLIENT_Y == 31 ? 32 : MAP_CLIENT_Y];
51
52 static void expand_lighted_sight (object *op);
53
54 /*
55 * Used to initialise the array used by the LOS routines.
56 * What this sets if that x,y blocks the view of bx,by
57 * This then sets up a relation - for example, something
58 * at 5,4 blocks view at 5,3 which blocks view at 5,2
59 * etc. So when we check 5,4 and find it block, we have
60 * the data to know that 5,3 and 5,2 and 5,1 should also
61 * be blocked.
62 */
63
64 static void
65 set_block (int x, int y, int bx, int by)
66 {
67 int index = block[x][y].index, i;
68
69 /* Due to flipping, we may get duplicates - better safe than sorry.
70 */
71 for (i = 0; i < index; i++)
72 {
73 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
74 return;
75 }
76
77 block[x][y].x[index] = bx;
78 block[x][y].y[index] = by;
79 block[x][y].index++;
80 #ifdef LOS_DEBUG
81 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
82 #endif
83 }
84
85 /*
86 * initialises the array used by the LOS routines.
87 */
88
89 /* since we are only doing the upper left quadrant, only
90 * these spaces could possibly get blocked, since these
91 * are the only ones further out that are still possibly in the
92 * sightline.
93 */
94
95 void
96 init_block (void)
97 {
98 int x, y, dx, dy, i;
99 static int block_x[3] = { -1, -1, 0 }, block_y[3] =
100 {
101 -1, 0, -1};
102
103 for (x = 0; x < MAP_CLIENT_X; x++)
104 for (y = 0; y < MAP_CLIENT_Y; y++)
105 {
106 block[x][y].index = 0;
107 }
108
109
110 /* The table should be symmetric, so only do the upper left
111 * quadrant - makes the processing easier.
112 */
113 for (x = 1; x <= MAP_CLIENT_X / 2; x++)
114 {
115 for (y = 1; y <= MAP_CLIENT_Y / 2; y++)
116 {
117 for (i = 0; i < 3; i++)
118 {
119 dx = x + block_x[i];
120 dy = y + block_y[i];
121
122 /* center space never blocks */
123 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
124 continue;
125
126 /* If its a straight line, its blocked */
127 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
128 {
129 /* For simplicity, we mirror the coordinates to block the other
130 * quadrants.
131 */
132 set_block (x, y, dx, dy);
133 if (x == MAP_CLIENT_X / 2)
134 {
135 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
136 }
137 else if (y == MAP_CLIENT_Y / 2)
138 {
139 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
140 }
141 }
142 else
143 {
144 float d1, r, s, l;
145
146 /* We use the algorihm that found out how close the point
147 * (x,y) is to the line from dx,dy to the center of the viewable
148 * area. l is the distance from x,y to the line.
149 * r is more a curiosity - it lets us know what direction (left/right)
150 * the line is off
151 */
152
153 d1 = (float) (pow (MAP_CLIENT_X / 2 - dx, 2.f) + pow (MAP_CLIENT_Y / 2 - dy, 2.f));
154 r = (float) ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
155 s = (float) ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
156 l = FABS (sqrt (d1) * s);
157
158 if (l <= SPACE_BLOCK)
159 {
160 /* For simplicity, we mirror the coordinates to block the other
161 * quadrants.
162 */
163 set_block (x, y, dx, dy);
164 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
165 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
166 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
167 }
168 }
169 }
170 }
171 }
172 }
173
174 /*
175 * Used to initialise the array used by the LOS routines.
176 * x,y are indexes into the blocked[][] array.
177 * This recursively sets the blocked line of sight view.
178 * From the blocked[][] array, we know for example
179 * that if some particular space is blocked, it blocks
180 * the view of the spaces 'behind' it, and those blocked
181 * spaces behind it may block other spaces, etc.
182 * In this way, the chain of visibility is set.
183 */
184
185 static void
186 set_wall (object *op, int x, int y)
187 {
188 int i;
189
190 for (i = 0; i < block[x][y].index; i++)
191 {
192 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
193
194 /* ax, ay are the values as adjusted to be in the
195 * socket look structure.
196 */
197 ax = dx - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
198 ay = dy - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
199
200 if (ax < 0 || ax >= op->contr->ns->mapx || ay < 0 || ay >= op->contr->ns->mapy)
201 continue;
202 #if 0
203 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
204 #endif
205 /* we need to adjust to the fact that the socket
206 * code wants the los to start from the 0,0
207 * and not be relative to middle of los array.
208 */
209 op->contr->blocked_los[ax][ay] = 100;
210 set_wall (op, dx, dy);
211 }
212 }
213
214 /*
215 * Used to initialise the array used by the LOS routines.
216 * op is the object, x and y values based on MAP_CLIENT_X and Y.
217 * this is because they index the blocked[][] arrays.
218 */
219
220 static void
221 check_wall (object *op, int x, int y)
222 {
223 int ax, ay;
224
225 if (!block[x][y].index)
226 return;
227
228 /* ax, ay are coordinates as indexed into the look window */
229 ax = x - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
230 ay = y - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
231
232 /* If the converted coordinates are outside the viewable
233 * area for the client, return now.
234 */
235 if (ax < 0 || ay < 0 || ax >= op->contr->ns->mapx || ay >= op->contr->ns->mapy)
236 return;
237
238 #if 0
239 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
240 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
241 #endif
242
243 /* If this space is already blocked, prune the processing - presumably
244 * whatever has set this space to be blocked has done the work and already
245 * done the dependency chain.
246 */
247 if (op->contr->blocked_los[ax][ay] == 100)
248 return;
249
250
251 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
252 set_wall (op, x, y);
253 }
254
255 /*
256 * Clears/initialises the los-array associated to the player
257 * controlling the object.
258 */
259
260 void
261 clear_los (object *op)
262 {
263 /* This is safer than using the ns->mapx, mapy because
264 * we index the blocked_los as a 2 way array, so clearing
265 * the first z spaces may not not cover the spaces we are
266 * actually going to use
267 */
268 (void) memset ((void *) op->contr->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
269 }
270
271 /*
272 * expand_sight goes through the array of what the given player is
273 * able to see, and expands the visible area a bit, so the player will,
274 * to a certain degree, be able to see into corners.
275 * This is somewhat suboptimal, would be better to improve the formula.
276 */
277
278 static void
279 expand_sight (object *op)
280 {
281 int i, x, y, dx, dy;
282
283 for (x = 1; x < op->contr->ns->mapx - 1; x++) /* loop over inner squares */
284 for (y = 1; y < op->contr->ns->mapy - 1; y++)
285 {
286 if (!op->contr->blocked_los[x][y] &&
287 !(get_map_flags (op->map, NULL,
288 op->x - op->contr->ns->mapx / 2 + x,
289 op->y - op->contr->ns->mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP)))
290 {
291
292 for (i = 1; i <= 8; i += 1)
293 { /* mark all directions */
294 dx = x + freearr_x[i];
295 dy = y + freearr_y[i];
296 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */
297 op->contr->blocked_los[dx][dy] = -1;
298 }
299 }
300 }
301
302 if (op->map->darkness > 0) /* player is on a dark map */
303 expand_lighted_sight (op);
304
305 /* clear mark squares */
306 for (x = 0; x < op->contr->ns->mapx; x++)
307 for (y = 0; y < op->contr->ns->mapy; y++)
308 if (op->contr->blocked_los[x][y] < 0)
309 op->contr->blocked_los[x][y] = 0;
310 }
311
312 /* returns true if op carries one or more lights
313 * This is a trivial function now days, but it used to
314 * be a bit longer. Probably better for callers to just
315 * check the op->glow_radius instead of calling this.
316 */
317
318 int
319 has_carried_lights (const object *op)
320 {
321 /* op may glow! */
322 if (op->glow_radius > 0)
323 return 1;
324
325 return 0;
326 }
327
328 static void
329 expand_lighted_sight (object *op)
330 {
331 int x, y, darklevel, ax, ay, basex, basey, mflags, light, x1, y1;
332 maptile *m = op->map;
333 sint16 nx, ny;
334
335 darklevel = m->darkness;
336
337 /* If the player can see in the dark, lower the darklevel for him */
338 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK))
339 darklevel -= 2;
340
341 /* add light, by finding all (non-null) nearby light sources, then
342 * mark those squares specially. If the darklevel<1, there is no
343 * reason to do this, so we skip this function
344 */
345
346 if (darklevel < 1)
347 return;
348
349 /* Do a sanity check. If not valid, some code below may do odd
350 * things.
351 */
352 if (darklevel > MAX_DARKNESS)
353 {
354 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel);
355 darklevel = MAX_DARKNESS;
356 }
357
358 /* First, limit player furthest (unlighted) vision */
359 for (x = 0; x < op->contr->ns->mapx; x++)
360 for (y = 0; y < op->contr->ns->mapy; y++)
361 if (op->contr->blocked_los[x][y] != 100)
362 op->contr->blocked_los[x][y] = MAX_LIGHT_RADII;
363
364 /* the spaces[] darkness value contains the information we need.
365 * Only process the area of interest.
366 * the basex, basey values represent the position in the op->contr->blocked_los
367 * array. Its easier to just increment them here (and start with the right
368 * value) than to recalculate them down below.
369 */
370 for (x = (op->x - op->contr->ns->mapx / 2 - MAX_LIGHT_RADII), basex = -MAX_LIGHT_RADII;
371 x <= (op->x + op->contr->ns->mapx / 2 + MAX_LIGHT_RADII); x++, basex++)
372 {
373
374 for (y = (op->y - op->contr->ns->mapy / 2 - MAX_LIGHT_RADII), basey = -MAX_LIGHT_RADII;
375 y <= (op->y + op->contr->ns->mapy / 2 + MAX_LIGHT_RADII); y++, basey++)
376 {
377 m = op->map;
378 nx = x;
379 ny = y;
380
381 mflags = get_map_flags (m, &m, nx, ny, &nx, &ny);
382
383 if (mflags & P_OUT_OF_MAP)
384 continue;
385
386 /* This space is providing light, so we need to brighten up the
387 * spaces around here.
388 */
389 light = GET_MAP_LIGHT (m, nx, ny);
390 if (light != 0)
391 {
392 #if 0
393 LOG (llevDebug, "expand_lighted_sight: Found light at x=%d, y=%d, basex=%d, basey=%d\n", x, y, basex, basey);
394 #endif
395 for (ax = basex - light; ax <= basex + light; ax++)
396 {
397 if (ax < 0 || ax >= op->contr->ns->mapx)
398 continue;
399
400 for (ay = basey - light; ay <= basey + light; ay++)
401 {
402 if (ay < 0 || ay >= op->contr->ns->mapy)
403 continue;
404
405 /* If the space is fully blocked, do nothing. Otherwise, we
406 * brighten the space. The further the light is away from the
407 * source (basex-x), the less effect it has. Though light used
408 * to dim in a square manner, it now dims in a circular manner
409 * using the the pythagorean theorem. glow_radius still
410 * represents the radius
411 */
412 if (op->contr->blocked_los[ax][ay] != 100)
413 {
414 x1 = abs (basex - ax) * abs (basex - ax);
415 y1 = abs (basey - ay) * abs (basey - ay);
416
417 if (light > 0) op->contr->blocked_los[ax][ay] -= max (light - isqrt (x1 + y1), 0);
418 if (light < 0) op->contr->blocked_los[ax][ay] -= min (light + isqrt (x1 + y1), 0);
419 }
420 }
421 }
422 }
423 }
424 }
425
426 /* Outdoor should never really be completely pitch black dark like
427 * a dungeon, so let the player at least see a little around themselves
428 */
429 if (op->map->outdoor && darklevel > (MAX_DARKNESS - 3))
430 {
431 if (op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] > (MAX_DARKNESS - 3))
432 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = MAX_DARKNESS - 3;
433
434 for (x = -1; x <= 1; x++)
435 for (y = -1; y <= 1; y++)
436 {
437 if (op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] > (MAX_DARKNESS - 2))
438 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] = MAX_DARKNESS - 2;
439 }
440 }
441
442 /* grant some vision to the player, based on the darklevel */
443 for (x = darklevel - MAX_DARKNESS; x < MAX_DARKNESS + 1 - darklevel; x++)
444 for (y = darklevel - MAX_DARKNESS; y < MAX_DARKNESS + 1 - darklevel; y++)
445 if (!(op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] == 100))
446 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] -=
447 MAX (0, 6 - darklevel - MAX (abs (x), abs (y)));
448 }
449
450 /* blinded_sight() - sets all veiwable squares to blocked except
451 * for the one the central one that the player occupies. A little
452 * odd that you can see yourself (and what your standing on), but
453 * really need for any reasonable game play.
454 */
455 static void
456 blinded_sight (object *op)
457 {
458 int x, y;
459
460 for (x = 0; x < op->contr->ns->mapx; x++)
461 for (y = 0; y < op->contr->ns->mapy; y++)
462 op->contr->blocked_los[x][y] = 100;
463
464 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = 0;
465 }
466
467 /*
468 * update_los() recalculates the array which specifies what is
469 * visible for the given player-object.
470 */
471
472 void
473 update_los (object *op)
474 {
475 int dx = op->contr->ns->mapx / 2, dy = op->contr->ns->mapy / 2, x, y;
476
477 if (QUERY_FLAG (op, FLAG_REMOVED))
478 return;
479
480 clear_los (op);
481 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ )
482 return;
483
484 /* For larger maps, this is more efficient than the old way which
485 * used the chaining of the block array. Since many space views could
486 * be blocked by different spaces in front, this mean that a lot of spaces
487 * could be examined multile times, as each path would be looked at.
488 */
489 for (x = (MAP_CLIENT_X - op->contr->ns->mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->ns->mapx) / 2 + 1; x++)
490 for (y = (MAP_CLIENT_Y - op->contr->ns->mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->ns->mapy) / 2 + 1; y++)
491 check_wall (op, x, y);
492
493 /* do the los of the player. 3 (potential) cases */
494 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
495 blinded_sight (op);
496 else
497 expand_sight (op);
498
499 //TODO: no range-checking whatsoever :(
500 if (QUERY_FLAG (op, FLAG_XRAYS))
501 for (int x = -2; x <= 2; x++)
502 for (int y = -2; y <= 2; y++)
503 op->contr->blocked_los[dx + x][dy + y] = 0;
504 }
505
506 /* update all_map_los is like update_all_los below,
507 * but updates everyone on the map, no matter where they
508 * are. This generally should not be used, as a per
509 * specific map change doesn't make much sense when tiling
510 * is considered (lowering darkness would certainly be a
511 * strange effect if done on a tile map, as it makes
512 * the distinction between maps much more obvious to the
513 * players, which is should not be.
514 * Currently, this function is called from the
515 * change_map_light function
516 */
517 void
518 update_all_map_los (maptile *map)
519 {
520 for_all_players (pl)
521 if (pl->ob && pl->ob->map == map)
522 pl->do_los = 1;
523 }
524
525 /*
526 * This function makes sure that update_los() will be called for all
527 * players on the given map within the next frame.
528 * It is triggered by removal or inserting of objects which blocks
529 * the sight in the map.
530 * Modified by MSW 2001-07-12 to take a coordinate of the changed
531 * position, and to also take map tiling into account. This change
532 * means that just being on the same map is not sufficient - the
533 * space that changes must be withing your viewable area.
534 *
535 * map is the map that changed, x and y are the coordinates.
536 */
537 void
538 update_all_los (const maptile *map, int x, int y)
539 {
540 for_all_players (pl)
541 {
542 /* Player should not have a null map, but do this
543 * check as a safety
544 */
545 if (!pl->ob || !pl->ob->map || !pl->ns)
546 continue;
547
548 /* Same map is simple case - see if pl is close enough.
549 * Note in all cases, we did the check for same map first,
550 * and then see if the player is close enough and update
551 * los if that is the case. If the player is on the
552 * corresponding map, but not close enough, then the
553 * player can't be on another map that may be closer,
554 * so by setting it up this way, we trim processing
555 * some.
556 */
557 if (pl->ob->map == map)
558 {
559 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
560 pl->do_los = 1;
561 }
562
563 /* Now we check to see if player is on adjacent
564 * maps to the one that changed and also within
565 * view. The tile_maps[] could be null, but in that
566 * case it should never match the pl->ob->map, so
567 * we want ever try to dereference any of the data in it.
568 *
569 * The logic for 0 and 3 is to see how far the player is
570 * from the edge of the map (height/width) - pl->ob->(x,y)
571 * and to add current position on this map - that gives a
572 * distance.
573 * For 1 and 2, we check to see how far the given
574 * coordinate (x,y) is from the corresponding edge,
575 * and then add the players location, which gives
576 * a distance.
577 */
578 else if (pl->ob->map == map->tile_map[0])
579 {
580 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
581 pl->do_los = 1;
582 }
583 else if (pl->ob->map == map->tile_map[2])
584 {
585 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
586 pl->do_los = 1;
587 }
588 else if (pl->ob->map == map->tile_map[1])
589 {
590 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
591 pl->do_los = 1;
592 }
593 else if (pl->ob->map == map->tile_map[3])
594 {
595 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
596 pl->do_los = 1;
597 }
598 }
599 }
600
601 /*
602 * Debug-routine which dumps the array which specifies the visible
603 * area of a player. Triggered by the z key in DM mode.
604 */
605 void
606 print_los (object *op)
607 {
608 int x, y;
609 char buf[50], buf2[10];
610
611 strcpy (buf, " ");
612
613 for (x = 0; x < op->contr->ns->mapx; x++)
614 {
615 sprintf (buf2, "%2d", x);
616 strcat (buf, buf2);
617 }
618
619 new_draw_info (NDI_UNIQUE, 0, op, buf);
620
621 for (y = 0; y < op->contr->ns->mapy; y++)
622 {
623 sprintf (buf, "%2d:", y);
624
625 for (x = 0; x < op->contr->ns->mapx; x++)
626 {
627 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]);
628 strcat (buf, buf2);
629 }
630
631 new_draw_info (NDI_UNIQUE, 0, op, buf);
632 }
633 }
634
635 /*
636 * make_sure_seen: The object is supposed to be visible through walls, thus
637 * check if any players are nearby, and edit their LOS array.
638 */
639
640 void
641 make_sure_seen (const object *op)
642 {
643 for_all_players (pl)
644 if (pl->ob->map == op->map &&
645 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
646 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
647 pl->blocked_los[pl->ns->mapx / 2 + op->x - pl->ob->x][pl->ns->mapy / 2 + op->y - pl->ob->y] = 0;
648 }
649
650 /*
651 * make_sure_not_seen: The object which is supposed to be visible through
652 * walls has just been removed from the map, so update the los of any
653 * players within its range
654 */
655
656 void
657 make_sure_not_seen (const object *op)
658 {
659 for_all_players (pl)
660 if (pl->ob->map == op->map &&
661 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
662 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
663 pl->do_los = 1;
664 }