ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
Revision: 1.24
Committed: Sun Mar 11 02:12:44 2007 UTC (17 years, 2 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.23: +5 -13 lines
Log Message:
- MAJOR CHANGE
- you now need to use cfutil to install arches.
- former bigfaces are broken in the server
- bigfaces are no longer supported. at all.
- use face numbers instead of pointers
  * saves lotsa space
  * saves lotsa indirections
  * saves lots(?) cpu cycles
- completely rewrote face handling
- faces can now be added at runtime
- reload will add new faces
- this does not apply to animations
- use a hastable instead of binary search (faster) for faces
- face caching is broken
- facesets are gone
- server always reports MAX_FACES to any client who asks

File Contents

# Content
1 /*
2 * CrossFire, A Multiplayer game for X-windows
3 *
4 * Copyright (C) 2005, 2006, 2007 Marc Lehmann & Crossfire+ Development Team
5 * Copyright (C) 2002 Mark Wedel & Crossfire Development Team
6 * Copyright (C) 1992 Frank Tore Johansen
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 *
22 * The authors can be reached via e-mail at <crossfire@schmorp.de>
23 */
24
25 /* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
26
27 #include <global.h>
28 #include <funcpoint.h>
29 #include <math.h>
30
31 /* Distance must be less than this for the object to be blocked.
32 * An object is 1.0 wide, so if set to 0.5, it means the object
33 * that blocks half the view (0.0 is complete block) will
34 * block view in our tables.
35 * .4 or less lets you see through walls. .5 is about right.
36 */
37
38 #define SPACE_BLOCK 0.5
39
40 typedef struct blstr
41 {
42 int x[4], y[4];
43 int index;
44 } blocks;
45
46 // 31/32 == a speed hack
47 // we would like to use 32 for speed, but the code loops endlessly
48 // then, reason not yet identified, so only make the array use 32,
49 // not the define's.
50 blocks block[MAP_CLIENT_X][MAP_CLIENT_Y == 31 ? 32 : MAP_CLIENT_Y];
51
52 static void expand_lighted_sight (object *op);
53
54 /*
55 * Used to initialise the array used by the LOS routines.
56 * What this sets if that x,y blocks the view of bx,by
57 * This then sets up a relation - for example, something
58 * at 5,4 blocks view at 5,3 which blocks view at 5,2
59 * etc. So when we check 5,4 and find it block, we have
60 * the data to know that 5,3 and 5,2 and 5,1 should also
61 * be blocked.
62 */
63
64 static void
65 set_block (int x, int y, int bx, int by)
66 {
67 int index = block[x][y].index, i;
68
69 /* Due to flipping, we may get duplicates - better safe than sorry.
70 */
71 for (i = 0; i < index; i++)
72 {
73 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
74 return;
75 }
76
77 block[x][y].x[index] = bx;
78 block[x][y].y[index] = by;
79 block[x][y].index++;
80 #ifdef LOS_DEBUG
81 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
82 #endif
83 }
84
85 /*
86 * initialises the array used by the LOS routines.
87 */
88
89 /* since we are only doing the upper left quadrant, only
90 * these spaces could possibly get blocked, since these
91 * are the only ones further out that are still possibly in the
92 * sightline.
93 */
94
95 void
96 init_block (void)
97 {
98 int x, y, dx, dy, i;
99 static int block_x[3] = { -1, -1, 0 },
100 block_y[3] = { -1, 0, -1 };
101
102 for (x = 0; x < MAP_CLIENT_X; x++)
103 for (y = 0; y < MAP_CLIENT_Y; y++)
104 block[x][y].index = 0;
105
106
107 /* The table should be symmetric, so only do the upper left
108 * quadrant - makes the processing easier.
109 */
110 for (x = 1; x <= MAP_CLIENT_X / 2; x++)
111 {
112 for (y = 1; y <= MAP_CLIENT_Y / 2; y++)
113 {
114 for (i = 0; i < 3; i++)
115 {
116 dx = x + block_x[i];
117 dy = y + block_y[i];
118
119 /* center space never blocks */
120 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
121 continue;
122
123 /* If its a straight line, its blocked */
124 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
125 {
126 /* For simplicity, we mirror the coordinates to block the other
127 * quadrants.
128 */
129 set_block (x, y, dx, dy);
130 if (x == MAP_CLIENT_X / 2)
131 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
132 else if (y == MAP_CLIENT_Y / 2)
133 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
134 }
135 else
136 {
137 float d1, r, s, l;
138
139 /* We use the algorihm that found out how close the point
140 * (x,y) is to the line from dx,dy to the center of the viewable
141 * area. l is the distance from x,y to the line.
142 * r is more a curiosity - it lets us know what direction (left/right)
143 * the line is off
144 */
145
146 d1 = (float) (pow (MAP_CLIENT_X / 2 - dx, 2.f) + pow (MAP_CLIENT_Y / 2 - dy, 2.f));
147 r = (float) ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
148 s = (float) ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
149 l = FABS (sqrt (d1) * s);
150
151 if (l <= SPACE_BLOCK)
152 {
153 /* For simplicity, we mirror the coordinates to block the other
154 * quadrants.
155 */
156 set_block (x, y, dx, dy);
157 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
158 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
159 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
160 }
161 }
162 }
163 }
164 }
165 }
166
167 /*
168 * Used to initialise the array used by the LOS routines.
169 * x,y are indexes into the blocked[][] array.
170 * This recursively sets the blocked line of sight view.
171 * From the blocked[][] array, we know for example
172 * that if some particular space is blocked, it blocks
173 * the view of the spaces 'behind' it, and those blocked
174 * spaces behind it may block other spaces, etc.
175 * In this way, the chain of visibility is set.
176 */
177 static void
178 set_wall (object *op, int x, int y)
179 {
180 int i;
181
182 for (i = 0; i < block[x][y].index; i++)
183 {
184 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
185
186 /* ax, ay are the values as adjusted to be in the
187 * socket look structure.
188 */
189 ax = dx - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
190 ay = dy - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
191
192 if (ax < 0 || ax >= op->contr->ns->mapx || ay < 0 || ay >= op->contr->ns->mapy)
193 continue;
194 #if 0
195 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
196 #endif
197 /* we need to adjust to the fact that the socket
198 * code wants the los to start from the 0,0
199 * and not be relative to middle of los array.
200 */
201 op->contr->blocked_los[ax][ay] = 100;
202 set_wall (op, dx, dy);
203 }
204 }
205
206 /*
207 * Used to initialise the array used by the LOS routines.
208 * op is the object, x and y values based on MAP_CLIENT_X and Y.
209 * this is because they index the blocked[][] arrays.
210 */
211
212 static void
213 check_wall (object *op, int x, int y)
214 {
215 int ax, ay;
216
217 if (!block[x][y].index)
218 return;
219
220 /* ax, ay are coordinates as indexed into the look window */
221 ax = x - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
222 ay = y - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
223
224 /* If the converted coordinates are outside the viewable
225 * area for the client, return now.
226 */
227 if (ax < 0 || ay < 0 || ax >= op->contr->ns->mapx || ay >= op->contr->ns->mapy)
228 return;
229
230 #if 0
231 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
232 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
233 #endif
234
235 /* If this space is already blocked, prune the processing - presumably
236 * whatever has set this space to be blocked has done the work and already
237 * done the dependency chain.
238 */
239 if (op->contr->blocked_los[ax][ay] == 100)
240 return;
241
242
243 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
244 set_wall (op, x, y);
245 }
246
247 /*
248 * Clears/initialises the los-array associated to the player
249 * controlling the object.
250 */
251
252 void
253 clear_los (object *op)
254 {
255 /* This is safer than using the ns->mapx, mapy because
256 * we index the blocked_los as a 2 way array, so clearing
257 * the first z spaces may not not cover the spaces we are
258 * actually going to use
259 */
260 (void) memset ((void *) op->contr->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
261 }
262
263 /*
264 * expand_sight goes through the array of what the given player is
265 * able to see, and expands the visible area a bit, so the player will,
266 * to a certain degree, be able to see into corners.
267 * This is somewhat suboptimal, would be better to improve the formula.
268 */
269
270 static void
271 expand_sight (object *op)
272 {
273 int i, x, y, dx, dy;
274
275 for (x = 1; x < op->contr->ns->mapx - 1; x++) /* loop over inner squares */
276 for (y = 1; y < op->contr->ns->mapy - 1; y++)
277 {
278 if (!op->contr->blocked_los[x][y] &&
279 !(get_map_flags (op->map, NULL,
280 op->x - op->contr->ns->mapx / 2 + x,
281 op->y - op->contr->ns->mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP)))
282 {
283
284 for (i = 1; i <= 8; i += 1)
285 { /* mark all directions */
286 dx = x + freearr_x[i];
287 dy = y + freearr_y[i];
288 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */
289 op->contr->blocked_los[dx][dy] = -1;
290 }
291 }
292 }
293
294 if (op->map->darkness > 0) /* player is on a dark map */
295 expand_lighted_sight (op);
296
297 /* clear mark squares */
298 for (x = 0; x < op->contr->ns->mapx; x++)
299 for (y = 0; y < op->contr->ns->mapy; y++)
300 if (op->contr->blocked_los[x][y] < 0)
301 op->contr->blocked_los[x][y] = 0;
302 }
303
304 /* returns true if op carries one or more lights
305 * This is a trivial function now days, but it used to
306 * be a bit longer. Probably better for callers to just
307 * check the op->glow_radius instead of calling this.
308 */
309
310 int
311 has_carried_lights (const object *op)
312 {
313 /* op may glow! */
314 if (op->glow_radius > 0)
315 return 1;
316
317 return 0;
318 }
319
320 static void
321 expand_lighted_sight (object *op)
322 {
323 int x, y, darklevel, ax, ay, basex, basey, mflags, light, x1, y1;
324 maptile *m = op->map;
325 sint16 nx, ny;
326
327 darklevel = m->darkness;
328
329 /* If the player can see in the dark, lower the darklevel for him */
330 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK))
331 darklevel -= 2;
332
333 /* add light, by finding all (non-null) nearby light sources, then
334 * mark those squares specially. If the darklevel<1, there is no
335 * reason to do this, so we skip this function
336 */
337
338 if (darklevel < 1)
339 return;
340
341 /* Do a sanity check. If not valid, some code below may do odd
342 * things.
343 */
344 if (darklevel > MAX_DARKNESS)
345 {
346 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel);
347 darklevel = MAX_DARKNESS;
348 }
349
350 /* First, limit player furthest (unlighted) vision */
351 for (x = 0; x < op->contr->ns->mapx; x++)
352 for (y = 0; y < op->contr->ns->mapy; y++)
353 if (op->contr->blocked_los[x][y] != 100)
354 op->contr->blocked_los[x][y] = MAX_LIGHT_RADII;
355
356 /* the spaces[] darkness value contains the information we need.
357 * Only process the area of interest.
358 * the basex, basey values represent the position in the op->contr->blocked_los
359 * array. Its easier to just increment them here (and start with the right
360 * value) than to recalculate them down below.
361 */
362 for (x = (op->x - op->contr->ns->mapx / 2 - MAX_LIGHT_RADII), basex = -MAX_LIGHT_RADII;
363 x <= (op->x + op->contr->ns->mapx / 2 + MAX_LIGHT_RADII); x++, basex++)
364 {
365
366 for (y = (op->y - op->contr->ns->mapy / 2 - MAX_LIGHT_RADII), basey = -MAX_LIGHT_RADII;
367 y <= (op->y + op->contr->ns->mapy / 2 + MAX_LIGHT_RADII); y++, basey++)
368 {
369 m = op->map;
370 nx = x;
371 ny = y;
372
373 mflags = get_map_flags (m, &m, nx, ny, &nx, &ny);
374
375 if (mflags & P_OUT_OF_MAP)
376 continue;
377
378 /* This space is providing light, so we need to brighten up the
379 * spaces around here.
380 */
381 light = GET_MAP_LIGHT (m, nx, ny);
382 if (light != 0)
383 {
384 #if 0
385 LOG (llevDebug, "expand_lighted_sight: Found light at x=%d, y=%d, basex=%d, basey=%d\n", x, y, basex, basey);
386 #endif
387 for (ax = basex - light; ax <= basex + light; ax++)
388 {
389 if (ax < 0 || ax >= op->contr->ns->mapx)
390 continue;
391
392 for (ay = basey - light; ay <= basey + light; ay++)
393 {
394 if (ay < 0 || ay >= op->contr->ns->mapy)
395 continue;
396
397 /* If the space is fully blocked, do nothing. Otherwise, we
398 * brighten the space. The further the light is away from the
399 * source (basex-x), the less effect it has. Though light used
400 * to dim in a square manner, it now dims in a circular manner
401 * using the the pythagorean theorem. glow_radius still
402 * represents the radius
403 */
404 if (op->contr->blocked_los[ax][ay] != 100)
405 {
406 x1 = abs (basex - ax) * abs (basex - ax);
407 y1 = abs (basey - ay) * abs (basey - ay);
408
409 if (light > 0) op->contr->blocked_los[ax][ay] -= max (light - isqrt (x1 + y1), 0);
410 if (light < 0) op->contr->blocked_los[ax][ay] -= min (light + isqrt (x1 + y1), 0);
411 }
412 }
413 }
414 }
415 }
416 }
417
418 /* Outdoor should never really be completely pitch black dark like
419 * a dungeon, so let the player at least see a little around themselves
420 */
421 if (op->map->outdoor && darklevel > (MAX_DARKNESS - 3))
422 {
423 if (op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] > (MAX_DARKNESS - 3))
424 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = MAX_DARKNESS - 3;
425
426 for (x = -1; x <= 1; x++)
427 for (y = -1; y <= 1; y++)
428 {
429 if (op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] > (MAX_DARKNESS - 2))
430 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] = MAX_DARKNESS - 2;
431 }
432 }
433
434 /* grant some vision to the player, based on the darklevel */
435 for (x = darklevel - MAX_DARKNESS; x < MAX_DARKNESS + 1 - darklevel; x++)
436 for (y = darklevel - MAX_DARKNESS; y < MAX_DARKNESS + 1 - darklevel; y++)
437 if (!(op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] == 100))
438 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] -=
439 MAX (0, 6 - darklevel - MAX (abs (x), abs (y)));
440 }
441
442 /* blinded_sight() - sets all veiwable squares to blocked except
443 * for the one the central one that the player occupies. A little
444 * odd that you can see yourself (and what your standing on), but
445 * really need for any reasonable game play.
446 */
447 static void
448 blinded_sight (object *op)
449 {
450 int x, y;
451
452 for (x = 0; x < op->contr->ns->mapx; x++)
453 for (y = 0; y < op->contr->ns->mapy; y++)
454 op->contr->blocked_los[x][y] = 100;
455
456 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = 0;
457 }
458
459 /*
460 * update_los() recalculates the array which specifies what is
461 * visible for the given player-object.
462 */
463
464 void
465 update_los (object *op)
466 {
467 int dx = op->contr->ns->mapx / 2, dy = op->contr->ns->mapy / 2, x, y;
468
469 if (QUERY_FLAG (op, FLAG_REMOVED))
470 return;
471
472 clear_los (op);
473 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ )
474 return;
475
476 /* For larger maps, this is more efficient than the old way which
477 * used the chaining of the block array. Since many space views could
478 * be blocked by different spaces in front, this mean that a lot of spaces
479 * could be examined multile times, as each path would be looked at.
480 */
481 for (x = (MAP_CLIENT_X - op->contr->ns->mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->ns->mapx) / 2 + 1; x++)
482 for (y = (MAP_CLIENT_Y - op->contr->ns->mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->ns->mapy) / 2 + 1; y++)
483 check_wall (op, x, y);
484
485 /* do the los of the player. 3 (potential) cases */
486 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
487 blinded_sight (op);
488 else
489 expand_sight (op);
490
491 //TODO: no range-checking whatsoever :(
492 if (QUERY_FLAG (op, FLAG_XRAYS))
493 for (int x = -2; x <= 2; x++)
494 for (int y = -2; y <= 2; y++)
495 op->contr->blocked_los[dx + x][dy + y] = 0;
496 }
497
498 /* update all_map_los is like update_all_los below,
499 * but updates everyone on the map, no matter where they
500 * are. This generally should not be used, as a per
501 * specific map change doesn't make much sense when tiling
502 * is considered (lowering darkness would certainly be a
503 * strange effect if done on a tile map, as it makes
504 * the distinction between maps much more obvious to the
505 * players, which is should not be.
506 * Currently, this function is called from the
507 * change_map_light function
508 */
509 void
510 update_all_map_los (maptile *map)
511 {
512 for_all_players (pl)
513 if (pl->ob && pl->ob->map == map)
514 pl->do_los = 1;
515 }
516
517 /*
518 * This function makes sure that update_los() will be called for all
519 * players on the given map within the next frame.
520 * It is triggered by removal or inserting of objects which blocks
521 * the sight in the map.
522 * Modified by MSW 2001-07-12 to take a coordinate of the changed
523 * position, and to also take map tiling into account. This change
524 * means that just being on the same map is not sufficient - the
525 * space that changes must be withing your viewable area.
526 *
527 * map is the map that changed, x and y are the coordinates.
528 */
529 void
530 update_all_los (const maptile *map, int x, int y)
531 {
532 for_all_players (pl)
533 {
534 /* Player should not have a null map, but do this
535 * check as a safety
536 */
537 if (!pl->ob || !pl->ob->map || !pl->ns)
538 continue;
539
540 /* Same map is simple case - see if pl is close enough.
541 * Note in all cases, we did the check for same map first,
542 * and then see if the player is close enough and update
543 * los if that is the case. If the player is on the
544 * corresponding map, but not close enough, then the
545 * player can't be on another map that may be closer,
546 * so by setting it up this way, we trim processing
547 * some.
548 */
549 if (pl->ob->map == map)
550 {
551 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
552 pl->do_los = 1;
553 }
554
555 /* Now we check to see if player is on adjacent
556 * maps to the one that changed and also within
557 * view. The tile_maps[] could be null, but in that
558 * case it should never match the pl->ob->map, so
559 * we want ever try to dereference any of the data in it.
560 *
561 * The logic for 0 and 3 is to see how far the player is
562 * from the edge of the map (height/width) - pl->ob->(x,y)
563 * and to add current position on this map - that gives a
564 * distance.
565 * For 1 and 2, we check to see how far the given
566 * coordinate (x,y) is from the corresponding edge,
567 * and then add the players location, which gives
568 * a distance.
569 */
570 else if (pl->ob->map == map->tile_map[0])
571 {
572 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
573 pl->do_los = 1;
574 }
575 else if (pl->ob->map == map->tile_map[2])
576 {
577 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
578 pl->do_los = 1;
579 }
580 else if (pl->ob->map == map->tile_map[1])
581 {
582 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
583 pl->do_los = 1;
584 }
585 else if (pl->ob->map == map->tile_map[3])
586 {
587 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
588 pl->do_los = 1;
589 }
590 }
591 }
592
593 /*
594 * Debug-routine which dumps the array which specifies the visible
595 * area of a player. Triggered by the z key in DM mode.
596 */
597 void
598 print_los (object *op)
599 {
600 int x, y;
601 char buf[50], buf2[10];
602
603 strcpy (buf, " ");
604
605 for (x = 0; x < op->contr->ns->mapx; x++)
606 {
607 sprintf (buf2, "%2d", x);
608 strcat (buf, buf2);
609 }
610
611 new_draw_info (NDI_UNIQUE, 0, op, buf);
612
613 for (y = 0; y < op->contr->ns->mapy; y++)
614 {
615 sprintf (buf, "%2d:", y);
616
617 for (x = 0; x < op->contr->ns->mapx; x++)
618 {
619 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]);
620 strcat (buf, buf2);
621 }
622
623 new_draw_info (NDI_UNIQUE, 0, op, buf);
624 }
625 }
626
627 /*
628 * make_sure_seen: The object is supposed to be visible through walls, thus
629 * check if any players are nearby, and edit their LOS array.
630 */
631
632 void
633 make_sure_seen (const object *op)
634 {
635 for_all_players (pl)
636 if (pl->ob->map == op->map &&
637 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
638 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
639 pl->blocked_los[pl->ns->mapx / 2 + op->x - pl->ob->x][pl->ns->mapy / 2 + op->y - pl->ob->y] = 0;
640 }
641
642 /*
643 * make_sure_not_seen: The object which is supposed to be visible through
644 * walls has just been removed from the map, so update the los of any
645 * players within its range
646 */
647
648 void
649 make_sure_not_seen (const object *op)
650 {
651 for_all_players (pl)
652 if (pl->ob->map == op->map &&
653 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
654 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
655 pl->do_los = 1;
656 }