ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
Revision: 1.3
Committed: Sun Sep 3 00:18:40 2006 UTC (17 years, 8 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.2: +2 -2 lines
Log Message:
THIS CODE WILL NOT COMPILE
use the STABLE tag instead.

- major changes in object lifetime and memory management
- replaced manual refcounting by shstr class
- removed quest system
- many optimisations
- major changes

File Contents

# Content
1 /*
2 * static char *rcsid_los_c =
3 * "$Id: los.C,v 1.2 2006-08-29 08:01:35 root Exp $";
4 */
5
6 /*
7 CrossFire, A Multiplayer game for X-windows
8
9 Copyright (C) 2002 Mark Wedel & Crossfire Development Team
10 Copyright (C) 1992 Frank Tore Johansen
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25
26 The authors can be reached via e-mail at crossfire-devel@real-time.com
27 */
28
29 /* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
30
31 #include <global.h>
32 #include <funcpoint.h>
33 #include <math.h>
34
35
36 /* Distance must be less than this for the object to be blocked.
37 * An object is 1.0 wide, so if set to 0.5, it means the object
38 * that blocks half the view (0.0 is complete block) will
39 * block view in our tables.
40 * .4 or less lets you see through walls. .5 is about right.
41 */
42
43 #define SPACE_BLOCK 0.5
44
45 typedef struct blstr {
46 int x[4],y[4];
47 int index;
48 } blocks;
49
50 blocks block[MAP_CLIENT_X][MAP_CLIENT_Y];
51
52 static void expand_lighted_sight(object *op);
53
54 /*
55 * Used to initialise the array used by the LOS routines.
56 * What this sets if that x,y blocks the view of bx,by
57 * This then sets up a relation - for example, something
58 * at 5,4 blocks view at 5,3 which blocks view at 5,2
59 * etc. So when we check 5,4 and find it block, we have
60 * the data to know that 5,3 and 5,2 and 5,1 should also
61 * be blocked.
62 */
63
64 static void set_block(int x, int y, int bx, int by) {
65 int index=block[x][y].index,i;
66
67 /* Due to flipping, we may get duplicates - better safe than sorry.
68 */
69 for (i=0; i<index; i++) {
70 if (block[x][y].x[i] == bx && block[x][y].y[i] == by) return;
71 }
72
73 block[x][y].x[index]=bx;
74 block[x][y].y[index]=by;
75 block[x][y].index++;
76 #ifdef LOS_DEBUG
77 LOG(llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by,
78 block[x][y].index);
79 #endif
80 }
81
82 /*
83 * initialises the array used by the LOS routines.
84 */
85
86 /* since we are only doing the upper left quadrant, only
87 * these spaces could possibly get blocked, since these
88 * are the only ones further out that are still possibly in the
89 * sightline.
90 */
91
92 void init_block(void) {
93 int x,y, dx, dy, i;
94 static int block_x[3] = {-1, -1, 0}, block_y[3] = {-1, 0, -1};
95
96 for(x=0;x<MAP_CLIENT_X;x++)
97 for(y=0;y<MAP_CLIENT_Y;y++) {
98 block[x][y].index=0;
99 }
100
101
102 /* The table should be symmetric, so only do the upper left
103 * quadrant - makes the processing easier.
104 */
105 for (x=1; x<=MAP_CLIENT_X/2; x++) {
106 for (y=1; y<=MAP_CLIENT_Y/2; y++) {
107 for (i=0; i< 3; i++) {
108 dx = x + block_x[i];
109 dy = y + block_y[i];
110
111 /* center space never blocks */
112 if (x == MAP_CLIENT_X/2 && y == MAP_CLIENT_Y/2) continue;
113
114 /* If its a straight line, its blocked */
115 if ((dx == x && x == MAP_CLIENT_X/2) ||
116 (dy==y && y == MAP_CLIENT_Y/2)) {
117 /* For simplicity, we mirror the coordinates to block the other
118 * quadrants.
119 */
120 set_block(x, y, dx, dy);
121 if (x == MAP_CLIENT_X/2) {
122 set_block(x, MAP_CLIENT_Y - y -1, dx, MAP_CLIENT_Y - dy-1);
123 } else if (y == MAP_CLIENT_Y/2) {
124 set_block(MAP_CLIENT_X - x -1, y, MAP_CLIENT_X - dx - 1, dy);
125 }
126 } else {
127 float d1, r, s,l;
128
129 /* We use the algorihm that found out how close the point
130 * (x,y) is to the line from dx,dy to the center of the viewable
131 * area. l is the distance from x,y to the line.
132 * r is more a curiosity - it lets us know what direction (left/right)
133 * the line is off
134 */
135
136 d1 = (float) (pow(MAP_CLIENT_X/2 - dx, 2) + pow(MAP_CLIENT_Y/2 - dy,2));
137 r = (float)((dy-y)*(dy - MAP_CLIENT_Y/2) - (dx-x)*(MAP_CLIENT_X/2-dx))/d1;
138 s = (float)((dy-y)*(MAP_CLIENT_X/2 - dx ) - (dx-x)*(MAP_CLIENT_Y/2-dy))/d1;
139 l = FABS(sqrt(d1) * s);
140
141 if (l <= SPACE_BLOCK) {
142 /* For simplicity, we mirror the coordinates to block the other
143 * quadrants.
144 */
145 set_block(x,y,dx,dy);
146 set_block(MAP_CLIENT_X - x -1, y, MAP_CLIENT_X - dx - 1, dy);
147 set_block(x, MAP_CLIENT_Y - y -1, dx, MAP_CLIENT_Y - dy - 1);
148 set_block(MAP_CLIENT_X -x-1, MAP_CLIENT_Y -y-1, MAP_CLIENT_X - dx-1, MAP_CLIENT_Y - dy-1);
149 }
150 }
151 }
152 }
153 }
154 }
155
156 /*
157 * Used to initialise the array used by the LOS routines.
158 * x,y are indexes into the blocked[][] array.
159 * This recursively sets the blocked line of sight view.
160 * From the blocked[][] array, we know for example
161 * that if some particular space is blocked, it blocks
162 * the view of the spaces 'behind' it, and those blocked
163 * spaces behind it may block other spaces, etc.
164 * In this way, the chain of visibility is set.
165 */
166
167 static void set_wall(object *op,int x,int y) {
168 int i;
169
170 for(i=0;i<block[x][y].index;i++) {
171 int dx=block[x][y].x[i],dy=block[x][y].y[i],ax,ay;
172
173 /* ax, ay are the values as adjusted to be in the
174 * socket look structure.
175 */
176 ax = dx - (MAP_CLIENT_X - op->contr->socket.mapx)/2;
177 ay = dy - (MAP_CLIENT_Y - op->contr->socket.mapy)/2;
178
179 if (ax < 0 || ax>=op->contr->socket.mapx ||
180 ay < 0 || ay>=op->contr->socket.mapy) continue;
181 #if 0
182 LOG(llevDebug, "blocked %d %d -> %d %d\n",
183 dx, dy, ax, ay);
184 #endif
185 /* we need to adjust to the fact that the socket
186 * code wants the los to start from the 0,0
187 * and not be relative to middle of los array.
188 */
189 op->contr->blocked_los[ax][ay]=100;
190 set_wall(op,dx,dy);
191 }
192 }
193
194 /*
195 * Used to initialise the array used by the LOS routines.
196 * op is the object, x and y values based on MAP_CLIENT_X and Y.
197 * this is because they index the blocked[][] arrays.
198 */
199
200 static void check_wall(object *op,int x,int y) {
201 int ax, ay;
202
203 if(!block[x][y].index)
204 return;
205
206 /* ax, ay are coordinates as indexed into the look window */
207 ax = x - (MAP_CLIENT_X - op->contr->socket.mapx)/2;
208 ay = y - (MAP_CLIENT_Y - op->contr->socket.mapy)/2;
209
210 /* If the converted coordinates are outside the viewable
211 * area for the client, return now.
212 */
213 if (ax < 0 || ay < 0 || ax >= op->contr->socket.mapx || ay >= op->contr->socket.mapy)
214 return;
215
216 #if 0
217 LOG(llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
218 ax, ay, x, y, op->x + x - MAP_CLIENT_X/2, op->y + y - MAP_CLIENT_Y/2);
219 #endif
220
221 /* If this space is already blocked, prune the processing - presumably
222 * whatever has set this space to be blocked has done the work and already
223 * done the dependency chain.
224 */
225 if (op->contr->blocked_los[ax][ay] == 100) return;
226
227
228 if(get_map_flags(op->map, NULL,
229 op->x + x - MAP_CLIENT_X/2, op->y + y - MAP_CLIENT_Y/2,
230 NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
231 set_wall(op,x,y);
232 }
233
234 /*
235 * Clears/initialises the los-array associated to the player
236 * controlling the object.
237 */
238
239 void clear_los(object *op) {
240 /* This is safer than using the socket->mapx, mapy because
241 * we index the blocked_los as a 2 way array, so clearing
242 * the first z spaces may not not cover the spaces we are
243 * actually going to use
244 */
245 (void)memset((void *) op->contr->blocked_los,0,
246 MAP_CLIENT_X * MAP_CLIENT_Y);
247 }
248
249 /*
250 * expand_sight goes through the array of what the given player is
251 * able to see, and expands the visible area a bit, so the player will,
252 * to a certain degree, be able to see into corners.
253 * This is somewhat suboptimal, would be better to improve the formula.
254 */
255
256 static void expand_sight(object *op)
257 {
258 int i,x,y, dx, dy;
259
260 for(x=1;x<op->contr->socket.mapx-1;x++) /* loop over inner squares */
261 for(y=1;y<op->contr->socket.mapy-1;y++) {
262 if (!op->contr->blocked_los[x][y] &&
263 !(get_map_flags(op->map,NULL,
264 op->x-op->contr->socket.mapx/2+x,
265 op->y-op->contr->socket.mapy/2+y,
266 NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))) {
267
268 for(i=1;i<=8;i+=1) { /* mark all directions */
269 dx = x + freearr_x[i];
270 dy = y + freearr_y[i];
271 if(op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */
272 op->contr->blocked_los[dx][dy]= -1;
273 }
274 }
275 }
276
277 if(MAP_DARKNESS(op->map)>0) /* player is on a dark map */
278 expand_lighted_sight(op);
279
280
281 /* clear mark squares */
282 for (x = 0; x < op->contr->socket.mapx; x++)
283 for (y = 0; y < op->contr->socket.mapy; y++)
284 if (op->contr->blocked_los[x][y] < 0)
285 op->contr->blocked_los[x][y] = 0;
286 }
287
288
289
290
291 /* returns true if op carries one or more lights
292 * This is a trivial function now days, but it used to
293 * be a bit longer. Probably better for callers to just
294 * check the op->glow_radius instead of calling this.
295 */
296
297 int has_carried_lights(const object *op) {
298 /* op may glow! */
299 if(op->glow_radius>0) return 1;
300
301 return 0;
302 }
303
304 static void expand_lighted_sight(object *op)
305 {
306 int x,y,darklevel,ax,ay, basex, basey, mflags, light, x1, y1;
307 mapstruct *m=op->map;
308 sint16 nx, ny;
309
310 darklevel = MAP_DARKNESS(m);
311
312 /* If the player can see in the dark, lower the darklevel for him */
313 if(QUERY_FLAG(op,FLAG_SEE_IN_DARK)) darklevel -= 2;
314
315 /* add light, by finding all (non-null) nearby light sources, then
316 * mark those squares specially. If the darklevel<1, there is no
317 * reason to do this, so we skip this function
318 */
319
320 if(darklevel<1) return;
321
322 /* Do a sanity check. If not valid, some code below may do odd
323 * things.
324 */
325 if (darklevel > MAX_DARKNESS) {
326 LOG(llevError,"Map darkness for %s on %s is too high (%d)\n",
327 &op->name, op->map->path, darklevel);
328 darklevel = MAX_DARKNESS;
329 }
330
331 /* First, limit player furthest (unlighted) vision */
332 for (x = 0; x < op->contr->socket.mapx; x++)
333 for (y = 0; y < op->contr->socket.mapy; y++)
334 if(op->contr->blocked_los[x][y]!=100)
335 op->contr->blocked_los[x][y]= MAX_LIGHT_RADII;
336
337 /* the spaces[] darkness value contains the information we need.
338 * Only process the area of interest.
339 * the basex, basey values represent the position in the op->contr->blocked_los
340 * array. Its easier to just increment them here (and start with the right
341 * value) than to recalculate them down below.
342 */
343 for (x=(op->x - op->contr->socket.mapx/2 - MAX_LIGHT_RADII), basex=-MAX_LIGHT_RADII;
344 x <= (op->x + op->contr->socket.mapx/2 + MAX_LIGHT_RADII); x++, basex++) {
345
346 for (y=(op->y - op->contr->socket.mapy/2 - MAX_LIGHT_RADII), basey=-MAX_LIGHT_RADII;
347 y <= (op->y + op->contr->socket.mapy/2 + MAX_LIGHT_RADII); y++, basey++) {
348 m = op->map;
349 nx = x;
350 ny = y;
351
352 mflags = get_map_flags(m, &m, nx, ny, &nx, &ny);
353
354 if (mflags & P_OUT_OF_MAP) continue;
355
356 /* This space is providing light, so we need to brighten up the
357 * spaces around here.
358 */
359 light = GET_MAP_LIGHT(m, nx, ny);
360 if (light != 0) {
361 #if 0
362 LOG(llevDebug, "expand_lighted_sight: Found light at x=%d, y=%d, basex=%d, basey=%d\n",
363 x, y, basex, basey);
364 #endif
365 for (ax=basex - light; ax<=basex+light; ax++) {
366 if (ax<0 || ax>=op->contr->socket.mapx) continue;
367 for (ay=basey - light; ay<=basey+light; ay++) {
368 if (ay<0 || ay>=op->contr->socket.mapy) continue;
369
370 /* If the space is fully blocked, do nothing. Otherwise, we
371 * brighten the space. The further the light is away from the
372 * source (basex-x), the less effect it has. Though light used
373 * to dim in a square manner, it now dims in a circular manner
374 * using the the pythagorean theorem. glow_radius still
375 * represents the radius
376 */
377 if(op->contr->blocked_los[ax][ay]!=100) {
378 x1 = abs(basex-ax)*abs(basex-ax);
379 y1 = abs(basey-ay)*abs(basey-ay);
380 if (light > 0) op->contr->blocked_los[ax][ay]-= MAX((light - isqrt(x1 + y1)), 0);
381 if (light < 0) op->contr->blocked_los[ax][ay]-= MIN((light + isqrt(x1 + y1)), 0);
382 }
383 } /* for ay */
384 } /* for ax */
385 } /* if this space is providing light */
386 } /* for y */
387 } /* for x */
388
389 /* Outdoor should never really be completely pitch black dark like
390 * a dungeon, so let the player at least see a little around themselves
391 */
392 if (op->map->outdoor && darklevel > (MAX_DARKNESS - 3)) {
393 if (op->contr->blocked_los[op->contr->socket.mapx/2][op->contr->socket.mapy/2] > (MAX_DARKNESS-3))
394 op->contr->blocked_los[op->contr->socket.mapx/2][op->contr->socket.mapy/2] = MAX_DARKNESS - 3;
395
396 for (x=-1; x<=1; x++)
397 for (y=-1; y<=1; y++) {
398 if (op->contr->blocked_los[x + op->contr->socket.mapx/2][y + op->contr->socket.mapy/2] > (MAX_DARKNESS-2))
399 op->contr->blocked_los[x + op->contr->socket.mapx/2][y + op->contr->socket.mapy/2] = MAX_DARKNESS - 2;
400 }
401 }
402 /* grant some vision to the player, based on the darklevel */
403 for(x=darklevel-MAX_DARKNESS; x<MAX_DARKNESS + 1 -darklevel; x++)
404 for(y=darklevel-MAX_DARKNESS; y<MAX_DARKNESS + 1 -darklevel; y++)
405 if(!(op->contr->blocked_los[x+op->contr->socket.mapx/2][y+op->contr->socket.mapy/2]==100))
406 op->contr->blocked_los[x+op->contr->socket.mapx/2][y+op->contr->socket.mapy/2]-=
407 MAX(0,6 -darklevel - MAX(abs(x),abs(y)));
408 }
409
410 /* blinded_sight() - sets all veiwable squares to blocked except
411 * for the one the central one that the player occupies. A little
412 * odd that you can see yourself (and what your standing on), but
413 * really need for any reasonable game play.
414 */
415
416 static void blinded_sight(object *op) {
417 int x,y;
418
419 for (x = 0; x < op->contr->socket.mapx; x++)
420 for (y = 0; y < op->contr->socket.mapy; y++)
421 op->contr->blocked_los[x][y] = 100;
422
423 op->contr->blocked_los[ op->contr->socket.mapx/2][ op->contr->socket.mapy/2] = 0;
424 }
425
426 /*
427 * update_los() recalculates the array which specifies what is
428 * visible for the given player-object.
429 */
430
431 void update_los(object *op) {
432 int dx = op->contr->socket.mapx/2, dy = op->contr->socket.mapy/2, x, y;
433
434 if(QUERY_FLAG(op,FLAG_REMOVED))
435 return;
436
437 clear_los(op);
438 if(QUERY_FLAG(op,FLAG_WIZ) /* ||XRAYS(op) */)
439 return;
440
441 /* For larger maps, this is more efficient than the old way which
442 * used the chaining of the block array. Since many space views could
443 * be blocked by different spaces in front, this mean that a lot of spaces
444 * could be examined multile times, as each path would be looked at.
445 */
446 for (x=(MAP_CLIENT_X - op->contr->socket.mapx)/2 - 1; x<(MAP_CLIENT_X + op->contr->socket.mapx)/2 + 1; x++)
447 for (y=(MAP_CLIENT_Y - op->contr->socket.mapy)/2 - 1; y<(MAP_CLIENT_Y + op->contr->socket.mapy)/2 + 1; y++)
448 check_wall(op, x, y);
449
450
451 /* do the los of the player. 3 (potential) cases */
452 if(QUERY_FLAG(op,FLAG_BLIND)) /* player is blind */
453 blinded_sight(op);
454 else
455 expand_sight(op);
456
457 if (QUERY_FLAG(op,FLAG_XRAYS)) {
458 int x, y;
459 for (x = -2; x <= 2; x++)
460 for (y = -2; y <= 2; y++)
461 op->contr->blocked_los[dx + x][dy + y] = 0;
462 }
463 }
464
465 /* update all_map_los is like update_all_los below,
466 * but updates everyone on the map, no matter where they
467 * are. This generally should not be used, as a per
468 * specific map change doesn't make much sense when tiling
469 * is considered (lowering darkness would certainly be a
470 * strange effect if done on a tile map, as it makes
471 * the distinction between maps much more obvious to the
472 * players, which is should not be.
473 * Currently, this function is called from the
474 * change_map_light function
475 */
476 void update_all_map_los(mapstruct *map) {
477 player *pl;
478
479 for(pl=first_player;pl!=NULL;pl=pl->next) {
480 if(pl->ob->map==map)
481 pl->do_los=1;
482 }
483 }
484
485
486 /*
487 * This function makes sure that update_los() will be called for all
488 * players on the given map within the next frame.
489 * It is triggered by removal or inserting of objects which blocks
490 * the sight in the map.
491 * Modified by MSW 2001-07-12 to take a coordinate of the changed
492 * position, and to also take map tiling into account. This change
493 * means that just being on the same map is not sufficient - the
494 * space that changes must be withing your viewable area.
495 *
496 * map is the map that changed, x and y are the coordinates.
497 */
498
499 void update_all_los(const mapstruct *map, int x, int y) {
500 player *pl;
501
502 for(pl=first_player;pl!=NULL;pl=pl->next) {
503 /* Player should not have a null map, but do this
504 * check as a safety
505 */
506 if (!pl->ob->map) continue;
507
508 /* Same map is simple case - see if pl is close enough.
509 * Note in all cases, we did the check for same map first,
510 * and then see if the player is close enough and update
511 * los if that is the case. If the player is on the
512 * corresponding map, but not close enough, then the
513 * player can't be on another map that may be closer,
514 * so by setting it up this way, we trim processing
515 * some.
516 */
517 if(pl->ob->map==map) {
518 if ((abs(pl->ob->x - x) <= pl->socket.mapx/2) &&
519 (abs(pl->ob->y - y) <= pl->socket.mapy/2))
520 pl->do_los=1;
521 }
522 /* Now we check to see if player is on adjacent
523 * maps to the one that changed and also within
524 * view. The tile_maps[] could be null, but in that
525 * case it should never match the pl->ob->map, so
526 * we want ever try to dereference any of the data in it.
527 */
528
529 /* The logic for 0 and 3 is to see how far the player is
530 * from the edge of the map (height/width) - pl->ob->(x,y)
531 * and to add current position on this map - that gives a
532 * distance.
533 * For 1 and 2, we check to see how far the given
534 * coordinate (x,y) is from the corresponding edge,
535 * and then add the players location, which gives
536 * a distance.
537 */
538 else if (pl->ob->map == map->tile_map[0]) {
539 if ((abs(pl->ob->x - x) <= pl->socket.mapx/2) &&
540 (abs(y + MAP_HEIGHT(map->tile_map[0]) - pl->ob->y) <= pl->socket.mapy/2))
541 pl->do_los=1;
542 }
543 else if (pl->ob->map == map->tile_map[2]) {
544 if ((abs(pl->ob->x - x) <= pl->socket.mapx/2) &&
545 (abs(pl->ob->y + MAP_HEIGHT(map) - y) <= pl->socket.mapy/2))
546 pl->do_los=1;
547 }
548 else if (pl->ob->map == map->tile_map[1]) {
549 if ((abs(pl->ob->x + MAP_WIDTH(map) - x) <= pl->socket.mapx/2) &&
550 (abs(pl->ob->y - y) <= pl->socket.mapy/2))
551 pl->do_los=1;
552 }
553 else if (pl->ob->map == map->tile_map[3]) {
554 if ((abs(x + MAP_WIDTH(map->tile_map[3]) - pl->ob->x) <= pl->socket.mapx/2) &&
555 (abs(pl->ob->y - y) <= pl->socket.mapy/2))
556 pl->do_los=1;
557 }
558 }
559 }
560
561 /*
562 * Debug-routine which dumps the array which specifies the visible
563 * area of a player. Triggered by the z key in DM mode.
564 */
565
566 void print_los(object *op) {
567 int x,y;
568 char buf[50], buf2[10];
569
570 strcpy(buf," ");
571 for(x=0;x<op->contr->socket.mapx;x++) {
572 sprintf(buf2,"%2d",x);
573 strcat(buf,buf2);
574 }
575 new_draw_info(NDI_UNIQUE, 0, op, buf);
576 for(y=0;y<op->contr->socket.mapy;y++) {
577 sprintf(buf,"%2d:",y);
578 for(x=0;x<op->contr->socket.mapx;x++) {
579 sprintf(buf2," %1d",op->contr->blocked_los[x][y]);
580 strcat(buf,buf2);
581 }
582 new_draw_info(NDI_UNIQUE, 0, op, buf);
583 }
584 }
585
586 /*
587 * make_sure_seen: The object is supposed to be visible through walls, thus
588 * check if any players are nearby, and edit their LOS array.
589 */
590
591 void make_sure_seen(const object *op) {
592 player *pl;
593
594 for (pl = first_player; pl; pl = pl->next)
595 if (pl->ob->map == op->map &&
596 pl->ob->y - pl->socket.mapy/2 <= op->y &&
597 pl->ob->y + pl->socket.mapy/2 >= op->y &&
598 pl->ob->x - pl->socket.mapx/2 <= op->x &&
599 pl->ob->x + pl->socket.mapx/2 >= op->x)
600 pl->blocked_los[pl->socket.mapx/2 + op->x - pl->ob->x]
601 [pl->socket.mapy/2 + op->y - pl->ob->y] = 0;
602 }
603
604 /*
605 * make_sure_not_seen: The object which is supposed to be visible through
606 * walls has just been removed from the map, so update the los of any
607 * players within its range
608 */
609
610 void make_sure_not_seen(const object *op) {
611 player *pl;
612 for (pl = first_player; pl; pl = pl->next)
613 if (pl->ob->map == op->map &&
614 pl->ob->y - pl->socket.mapy/2 <= op->y &&
615 pl->ob->y + pl->socket.mapy/2 >= op->y &&
616 pl->ob->x - pl->socket.mapx/2 <= op->x &&
617 pl->ob->x + pl->socket.mapx/2 >= op->x)
618 pl->do_los = 1;
619 }