ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
Revision: 1.30
Committed: Mon Apr 21 23:35:24 2008 UTC (16 years, 1 month ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-2_6, rel-2_7, rel-2_71, rel-2_54, rel-2_55, rel-2_56, rel-2_52, rel-2_53, rel-2_61
Changes since 1.29: +1 -2 lines
Log Message:
- fix weight/pickup bugs, visible_to
- do more automatic nrof/weight updates
- kill funcpoint.h

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
6 * Copyright (©) 1992,2007 Frank Tore Johansen
7 *
8 * Deliantra is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 *
21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */
23
24 /* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
25
26 #include <global.h>
27 #include <math.h>
28
29 /* Distance must be less than this for the object to be blocked.
30 * An object is 1.0 wide, so if set to 0.5, it means the object
31 * that blocks half the view (0.0 is complete block) will
32 * block view in our tables.
33 * .4 or less lets you see through walls. .5 is about right.
34 */
35
36 #define SPACE_BLOCK 0.5
37
38 typedef struct blstr
39 {
40 int x[4], y[4];
41 int index;
42 } blocks;
43
44 // 31/32 == a speed hack
45 // we would like to use 32 for speed, but the code loops endlessly
46 // then, reason not yet identified, so only make the array use 32,
47 // not the define's.
48 blocks block[MAP_CLIENT_X][MAP_CLIENT_Y == 31 ? 32 : MAP_CLIENT_Y];
49
50 static void expand_lighted_sight (object *op);
51
52 /*
53 * Used to initialise the array used by the LOS routines.
54 * What this sets if that x,y blocks the view of bx,by
55 * This then sets up a relation - for example, something
56 * at 5,4 blocks view at 5,3 which blocks view at 5,2
57 * etc. So when we check 5,4 and find it block, we have
58 * the data to know that 5,3 and 5,2 and 5,1 should also
59 * be blocked.
60 */
61
62 static void
63 set_block (int x, int y, int bx, int by)
64 {
65 int index = block[x][y].index, i;
66
67 /* Due to flipping, we may get duplicates - better safe than sorry.
68 */
69 for (i = 0; i < index; i++)
70 {
71 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
72 return;
73 }
74
75 block[x][y].x[index] = bx;
76 block[x][y].y[index] = by;
77 block[x][y].index++;
78 #ifdef LOS_DEBUG
79 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
80 #endif
81 }
82
83 /*
84 * initialises the array used by the LOS routines.
85 */
86
87 /* since we are only doing the upper left quadrant, only
88 * these spaces could possibly get blocked, since these
89 * are the only ones further out that are still possibly in the
90 * sightline.
91 */
92
93 void
94 init_block (void)
95 {
96 int x, y, dx, dy, i;
97 static int block_x[3] = { -1, -1, 0 },
98 block_y[3] = { -1, 0, -1 };
99
100 for (x = 0; x < MAP_CLIENT_X; x++)
101 for (y = 0; y < MAP_CLIENT_Y; y++)
102 block[x][y].index = 0;
103
104
105 /* The table should be symmetric, so only do the upper left
106 * quadrant - makes the processing easier.
107 */
108 for (x = 1; x <= MAP_CLIENT_X / 2; x++)
109 {
110 for (y = 1; y <= MAP_CLIENT_Y / 2; y++)
111 {
112 for (i = 0; i < 3; i++)
113 {
114 dx = x + block_x[i];
115 dy = y + block_y[i];
116
117 /* center space never blocks */
118 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
119 continue;
120
121 /* If its a straight line, its blocked */
122 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
123 {
124 /* For simplicity, we mirror the coordinates to block the other
125 * quadrants.
126 */
127 set_block (x, y, dx, dy);
128 if (x == MAP_CLIENT_X / 2)
129 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
130 else if (y == MAP_CLIENT_Y / 2)
131 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
132 }
133 else
134 {
135 float d1, r, s, l;
136
137 /* We use the algorihm that found out how close the point
138 * (x,y) is to the line from dx,dy to the center of the viewable
139 * area. l is the distance from x,y to the line.
140 * r is more a curiosity - it lets us know what direction (left/right)
141 * the line is off
142 */
143
144 d1 = (float) (pow (MAP_CLIENT_X / 2 - dx, 2.f) + pow (MAP_CLIENT_Y / 2 - dy, 2.f));
145 r = (float) ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
146 s = (float) ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
147 l = FABS (sqrt (d1) * s);
148
149 if (l <= SPACE_BLOCK)
150 {
151 /* For simplicity, we mirror the coordinates to block the other
152 * quadrants.
153 */
154 set_block (x, y, dx, dy);
155 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
156 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
157 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
158 }
159 }
160 }
161 }
162 }
163 }
164
165 /*
166 * Used to initialise the array used by the LOS routines.
167 * x,y are indexes into the blocked[][] array.
168 * This recursively sets the blocked line of sight view.
169 * From the blocked[][] array, we know for example
170 * that if some particular space is blocked, it blocks
171 * the view of the spaces 'behind' it, and those blocked
172 * spaces behind it may block other spaces, etc.
173 * In this way, the chain of visibility is set.
174 */
175 static void
176 set_wall (object *op, int x, int y)
177 {
178 int i;
179
180 for (i = 0; i < block[x][y].index; i++)
181 {
182 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
183
184 /* ax, ay are the values as adjusted to be in the
185 * socket look structure.
186 */
187 ax = dx - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
188 ay = dy - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
189
190 if (ax < 0 || ax >= op->contr->ns->mapx || ay < 0 || ay >= op->contr->ns->mapy)
191 continue;
192 #if 0
193 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
194 #endif
195 /* we need to adjust to the fact that the socket
196 * code wants the los to start from the 0,0
197 * and not be relative to middle of los array.
198 */
199 op->contr->blocked_los[ax][ay] = 100;
200 set_wall (op, dx, dy);
201 }
202 }
203
204 /*
205 * Used to initialise the array used by the LOS routines.
206 * op is the object, x and y values based on MAP_CLIENT_X and Y.
207 * this is because they index the blocked[][] arrays.
208 */
209
210 static void
211 check_wall (object *op, int x, int y)
212 {
213 int ax, ay;
214
215 if (!block[x][y].index)
216 return;
217
218 /* ax, ay are coordinates as indexed into the look window */
219 ax = x - (MAP_CLIENT_X - op->contr->ns->mapx) / 2;
220 ay = y - (MAP_CLIENT_Y - op->contr->ns->mapy) / 2;
221
222 /* If the converted coordinates are outside the viewable
223 * area for the client, return now.
224 */
225 if (ax < 0 || ay < 0 || ax >= op->contr->ns->mapx || ay >= op->contr->ns->mapy)
226 return;
227
228 #if 0
229 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
230 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
231 #endif
232
233 /* If this space is already blocked, prune the processing - presumably
234 * whatever has set this space to be blocked has done the work and already
235 * done the dependency chain.
236 */
237 if (op->contr->blocked_los[ax][ay] == 100)
238 return;
239
240
241 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
242 set_wall (op, x, y);
243 }
244
245 /*
246 * Clears/initialises the los-array associated to the player
247 * controlling the object.
248 */
249
250 void
251 clear_los (player *pl)
252 {
253 /* This is safer than using the ns->mapx, mapy because
254 * we index the blocked_los as a 2 way array, so clearing
255 * the first z spaces may not not cover the spaces we are
256 * actually going to use
257 */
258 memset (pl->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
259 }
260
261 /*
262 * expand_sight goes through the array of what the given player is
263 * able to see, and expands the visible area a bit, so the player will,
264 * to a certain degree, be able to see into corners.
265 * This is somewhat suboptimal, would be better to improve the formula.
266 */
267
268 static void
269 expand_sight (object *op)
270 {
271 int i, x, y, dx, dy;
272
273 for (x = 1; x < op->contr->ns->mapx - 1; x++) /* loop over inner squares */
274 for (y = 1; y < op->contr->ns->mapy - 1; y++)
275 {
276 if (!op->contr->blocked_los[x][y] &&
277 !(get_map_flags (op->map, NULL,
278 op->x - op->contr->ns->mapx / 2 + x,
279 op->y - op->contr->ns->mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP)))
280 {
281
282 for (i = 1; i <= 8; i += 1)
283 { /* mark all directions */
284 dx = x + freearr_x[i];
285 dy = y + freearr_y[i];
286 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */
287 op->contr->blocked_los[dx][dy] = -1;
288 }
289 }
290 }
291
292 if (op->map->darkness > 0) /* player is on a dark map */
293 expand_lighted_sight (op);
294
295 /* clear mark squares */
296 for (x = 0; x < op->contr->ns->mapx; x++)
297 for (y = 0; y < op->contr->ns->mapy; y++)
298 if (op->contr->blocked_los[x][y] < 0)
299 op->contr->blocked_los[x][y] = 0;
300 }
301
302 /* returns true if op carries one or more lights
303 * This is a trivial function now days, but it used to
304 * be a bit longer. Probably better for callers to just
305 * check the op->glow_radius instead of calling this.
306 */
307
308 int
309 has_carried_lights (const object *op)
310 {
311 /* op may glow! */
312 if (op->glow_radius > 0)
313 return 1;
314
315 return 0;
316 }
317
318 static void
319 expand_lighted_sight (object *op)
320 {
321 int x, y, darklevel, ax, ay, basex, basey, mflags, light, x1, y1;
322 maptile *m = op->map;
323 sint16 nx, ny;
324
325 darklevel = m->darkness;
326
327 /* If the player can see in the dark, lower the darklevel for him */
328 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK))
329 darklevel -= 2;
330
331 /* add light, by finding all (non-null) nearby light sources, then
332 * mark those squares specially. If the darklevel<1, there is no
333 * reason to do this, so we skip this function
334 */
335
336 if (darklevel < 1)
337 return;
338
339 /* Do a sanity check. If not valid, some code below may do odd
340 * things.
341 */
342 if (darklevel > MAX_DARKNESS)
343 {
344 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel);
345 darklevel = MAX_DARKNESS;
346 }
347
348 /* First, limit player furthest (unlighted) vision */
349 for (x = 0; x < op->contr->ns->mapx; x++)
350 for (y = 0; y < op->contr->ns->mapy; y++)
351 if (op->contr->blocked_los[x][y] != 100)
352 op->contr->blocked_los[x][y] = MAX_LIGHT_RADII;
353
354 /* the spaces[] darkness value contains the information we need.
355 * Only process the area of interest.
356 * the basex, basey values represent the position in the op->contr->blocked_los
357 * array. Its easier to just increment them here (and start with the right
358 * value) than to recalculate them down below.
359 */
360 for (x = (op->x - op->contr->ns->mapx / 2 - MAX_LIGHT_RADII), basex = -MAX_LIGHT_RADII;
361 x <= (op->x + op->contr->ns->mapx / 2 + MAX_LIGHT_RADII); x++, basex++)
362 {
363
364 for (y = (op->y - op->contr->ns->mapy / 2 - MAX_LIGHT_RADII), basey = -MAX_LIGHT_RADII;
365 y <= (op->y + op->contr->ns->mapy / 2 + MAX_LIGHT_RADII); y++, basey++)
366 {
367 m = op->map;
368 nx = x;
369 ny = y;
370
371 mflags = get_map_flags (m, &m, nx, ny, &nx, &ny);
372
373 if (mflags & P_OUT_OF_MAP)
374 continue;
375
376 /* This space is providing light, so we need to brighten up the
377 * spaces around here.
378 */
379 light = GET_MAP_LIGHT (m, nx, ny);
380 if (light != 0)
381 {
382 #if 0
383 LOG (llevDebug, "expand_lighted_sight: Found light at x=%d, y=%d, basex=%d, basey=%d\n", x, y, basex, basey);
384 #endif
385 for (ax = basex - light; ax <= basex + light; ax++)
386 {
387 if (ax < 0 || ax >= op->contr->ns->mapx)
388 continue;
389
390 for (ay = basey - light; ay <= basey + light; ay++)
391 {
392 if (ay < 0 || ay >= op->contr->ns->mapy)
393 continue;
394
395 /* If the space is fully blocked, do nothing. Otherwise, we
396 * brighten the space. The further the light is away from the
397 * source (basex-x), the less effect it has. Though light used
398 * to dim in a square manner, it now dims in a circular manner
399 * using the the pythagorean theorem. glow_radius still
400 * represents the radius
401 */
402 if (op->contr->blocked_los[ax][ay] != 100)
403 {
404 x1 = abs (basex - ax) * abs (basex - ax);
405 y1 = abs (basey - ay) * abs (basey - ay);
406
407 if (light > 0) op->contr->blocked_los[ax][ay] -= max (light - isqrt (x1 + y1), 0);
408 if (light < 0) op->contr->blocked_los[ax][ay] -= min (light + isqrt (x1 + y1), 0);
409 }
410 }
411 }
412 }
413 }
414 }
415
416 /* Outdoor should never really be completely pitch black dark like
417 * a dungeon, so let the player at least see a little around themselves
418 */
419 if (op->map->outdoor && darklevel > (MAX_DARKNESS - 3))
420 {
421 if (op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] > (MAX_DARKNESS - 3))
422 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = MAX_DARKNESS - 3;
423
424 for (x = -1; x <= 1; x++)
425 for (y = -1; y <= 1; y++)
426 {
427 if (op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] > (MAX_DARKNESS - 2))
428 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] = MAX_DARKNESS - 2;
429 }
430 }
431
432 /* grant some vision to the player, based on the darklevel */
433 for (x = darklevel - MAX_DARKNESS; x < MAX_DARKNESS + 1 - darklevel; x++)
434 for (y = darklevel - MAX_DARKNESS; y < MAX_DARKNESS + 1 - darklevel; y++)
435 if (!(op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] == 100))
436 op->contr->blocked_los[x + op->contr->ns->mapx / 2][y + op->contr->ns->mapy / 2] -=
437 MAX (0, 6 - darklevel - MAX (abs (x), abs (y)));
438 }
439
440 /* blinded_sight() - sets all veiwable squares to blocked except
441 * for the one the central one that the player occupies. A little
442 * odd that you can see yourself (and what your standing on), but
443 * really need for any reasonable game play.
444 */
445 static void
446 blinded_sight (object *op)
447 {
448 int x, y;
449
450 for (x = 0; x < op->contr->ns->mapx; x++)
451 for (y = 0; y < op->contr->ns->mapy; y++)
452 op->contr->blocked_los[x][y] = 100;
453
454 op->contr->blocked_los[op->contr->ns->mapx / 2][op->contr->ns->mapy / 2] = 0;
455 }
456
457 /*
458 * update_los() recalculates the array which specifies what is
459 * visible for the given player-object.
460 */
461 void
462 update_los (object *op)
463 {
464 int dx = op->contr->ns->mapx / 2, dy = op->contr->ns->mapy / 2, x, y;
465
466 if (QUERY_FLAG (op, FLAG_REMOVED))
467 return;
468
469 clear_los (op->contr);
470
471 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ )
472 return;
473
474 /* For larger maps, this is more efficient than the old way which
475 * used the chaining of the block array. Since many space views could
476 * be blocked by different spaces in front, this mean that a lot of spaces
477 * could be examined multile times, as each path would be looked at.
478 */
479 for (x = (MAP_CLIENT_X - op->contr->ns->mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->ns->mapx) / 2 + 1; x++)
480 for (y = (MAP_CLIENT_Y - op->contr->ns->mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->ns->mapy) / 2 + 1; y++)
481 check_wall (op, x, y);
482
483 /* do the los of the player. 3 (potential) cases */
484 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
485 blinded_sight (op);
486 else
487 expand_sight (op);
488
489 //TODO: no range-checking whatsoever :(
490 if (QUERY_FLAG (op, FLAG_XRAYS))
491 for (int x = -2; x <= 2; x++)
492 for (int y = -2; y <= 2; y++)
493 op->contr->blocked_los[dx + x][dy + y] = 0;
494 }
495
496 /* update all_map_los is like update_all_los below,
497 * but updates everyone on the map, no matter where they
498 * are. This generally should not be used, as a per
499 * specific map change doesn't make much sense when tiling
500 * is considered (lowering darkness would certainly be a
501 * strange effect if done on a tile map, as it makes
502 * the distinction between maps much more obvious to the
503 * players, which is should not be.
504 * Currently, this function is called from the
505 * change_map_light function
506 */
507 void
508 update_all_map_los (maptile *map)
509 {
510 for_all_players (pl)
511 if (pl->ob && pl->ob->map == map)
512 pl->do_los = 1;
513 }
514
515 /*
516 * This function makes sure that update_los() will be called for all
517 * players on the given map within the next frame.
518 * It is triggered by removal or inserting of objects which blocks
519 * the sight in the map.
520 * Modified by MSW 2001-07-12 to take a coordinate of the changed
521 * position, and to also take map tiling into account. This change
522 * means that just being on the same map is not sufficient - the
523 * space that changes must be withing your viewable area.
524 *
525 * map is the map that changed, x and y are the coordinates.
526 */
527 void
528 update_all_los (const maptile *map, int x, int y)
529 {
530 for_all_players (pl)
531 {
532 /* Player should not have a null map, but do this
533 * check as a safety
534 */
535 if (!pl->ob || !pl->ob->map || !pl->ns)
536 continue;
537
538 /* Same map is simple case - see if pl is close enough.
539 * Note in all cases, we did the check for same map first,
540 * and then see if the player is close enough and update
541 * los if that is the case. If the player is on the
542 * corresponding map, but not close enough, then the
543 * player can't be on another map that may be closer,
544 * so by setting it up this way, we trim processing
545 * some.
546 */
547 if (pl->ob->map == map)
548 {
549 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
550 pl->do_los = 1;
551 }
552
553 /* Now we check to see if player is on adjacent
554 * maps to the one that changed and also within
555 * view. The tile_maps[] could be null, but in that
556 * case it should never match the pl->ob->map, so
557 * we want ever try to dereference any of the data in it.
558 *
559 * The logic for 0 and 3 is to see how far the player is
560 * from the edge of the map (height/width) - pl->ob->(x,y)
561 * and to add current position on this map - that gives a
562 * distance.
563 * For 1 and 2, we check to see how far the given
564 * coordinate (x,y) is from the corresponding edge,
565 * and then add the players location, which gives
566 * a distance.
567 */
568 else if (pl->ob->map == map->tile_map[0])
569 {
570 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
571 pl->do_los = 1;
572 }
573 else if (pl->ob->map == map->tile_map[2])
574 {
575 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
576 pl->do_los = 1;
577 }
578 else if (pl->ob->map == map->tile_map[1])
579 {
580 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
581 pl->do_los = 1;
582 }
583 else if (pl->ob->map == map->tile_map[3])
584 {
585 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
586 pl->do_los = 1;
587 }
588 }
589 }
590
591 /*
592 * Debug-routine which dumps the array which specifies the visible
593 * area of a player. Triggered by the z key in DM mode.
594 */
595 void
596 print_los (object *op)
597 {
598 int x, y;
599 char buf[50], buf2[10];
600
601 strcpy (buf, " ");
602
603 for (x = 0; x < op->contr->ns->mapx; x++)
604 {
605 sprintf (buf2, "%2d", x);
606 strcat (buf, buf2);
607 }
608
609 new_draw_info (NDI_UNIQUE, 0, op, buf);
610
611 for (y = 0; y < op->contr->ns->mapy; y++)
612 {
613 sprintf (buf, "%2d:", y);
614
615 for (x = 0; x < op->contr->ns->mapx; x++)
616 {
617 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]);
618 strcat (buf, buf2);
619 }
620
621 new_draw_info (NDI_UNIQUE, 0, op, buf);
622 }
623 }
624
625 /*
626 * make_sure_seen: The object is supposed to be visible through walls, thus
627 * check if any players are nearby, and edit their LOS array.
628 */
629
630 void
631 make_sure_seen (const object *op)
632 {
633 for_all_players (pl)
634 if (pl->ob->map == op->map &&
635 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
636 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
637 pl->blocked_los[pl->ns->mapx / 2 + op->x - pl->ob->x][pl->ns->mapy / 2 + op->y - pl->ob->y] = 0;
638 }
639
640 /*
641 * make_sure_not_seen: The object which is supposed to be visible through
642 * walls has just been removed from the map, so update the los of any
643 * players within its range
644 */
645
646 void
647 make_sure_not_seen (const object *op)
648 {
649 for_all_players (pl)
650 if (pl->ob->map == op->map &&
651 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
652 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
653 pl->do_los = 1;
654 }