ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
Revision: 1.4
Committed: Sun Sep 10 16:00:23 2006 UTC (17 years, 8 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.3: +448 -385 lines
Log Message:
indent

File Contents

# Content
1
2 /*
3 * static char *rcsid_los_c =
4 * "$Id: los.C,v 1.3 2006-09-03 00:18:40 root Exp $";
5 */
6
7 /*
8 CrossFire, A Multiplayer game for X-windows
9
10 Copyright (C) 2002 Mark Wedel & Crossfire Development Team
11 Copyright (C) 1992 Frank Tore Johansen
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26
27 The authors can be reached via e-mail at crossfire-devel@real-time.com
28 */
29
30 /* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
31
32 #include <global.h>
33 #include <funcpoint.h>
34 #include <math.h>
35
36
37 /* Distance must be less than this for the object to be blocked.
38 * An object is 1.0 wide, so if set to 0.5, it means the object
39 * that blocks half the view (0.0 is complete block) will
40 * block view in our tables.
41 * .4 or less lets you see through walls. .5 is about right.
42 */
43
44 #define SPACE_BLOCK 0.5
45
46 typedef struct blstr
47 {
48 int x[4], y[4];
49 int index;
50 } blocks;
51
52 blocks block[MAP_CLIENT_X][MAP_CLIENT_Y];
53
54 static void expand_lighted_sight (object *op);
55
56 /*
57 * Used to initialise the array used by the LOS routines.
58 * What this sets if that x,y blocks the view of bx,by
59 * This then sets up a relation - for example, something
60 * at 5,4 blocks view at 5,3 which blocks view at 5,2
61 * etc. So when we check 5,4 and find it block, we have
62 * the data to know that 5,3 and 5,2 and 5,1 should also
63 * be blocked.
64 */
65
66 static void
67 set_block (int x, int y, int bx, int by)
68 {
69 int index = block[x][y].index, i;
70
71 /* Due to flipping, we may get duplicates - better safe than sorry.
72 */
73 for (i = 0; i < index; i++)
74 {
75 if (block[x][y].x[i] == bx && block[x][y].y[i] == by)
76 return;
77 }
78
79 block[x][y].x[index] = bx;
80 block[x][y].y[index] = by;
81 block[x][y].index++;
82 #ifdef LOS_DEBUG
83 LOG (llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by, block[x][y].index);
84 #endif
85 }
86
87 /*
88 * initialises the array used by the LOS routines.
89 */
90
91 /* since we are only doing the upper left quadrant, only
92 * these spaces could possibly get blocked, since these
93 * are the only ones further out that are still possibly in the
94 * sightline.
95 */
96
97 void
98 init_block (void)
99 {
100 int x, y, dx, dy, i;
101 static int block_x[3] = { -1, -1, 0 }, block_y[3] =
102 {
103 -1, 0, -1};
104
105 for (x = 0; x < MAP_CLIENT_X; x++)
106 for (y = 0; y < MAP_CLIENT_Y; y++)
107 {
108 block[x][y].index = 0;
109 }
110
111
112 /* The table should be symmetric, so only do the upper left
113 * quadrant - makes the processing easier.
114 */
115 for (x = 1; x <= MAP_CLIENT_X / 2; x++)
116 {
117 for (y = 1; y <= MAP_CLIENT_Y / 2; y++)
118 {
119 for (i = 0; i < 3; i++)
120 {
121 dx = x + block_x[i];
122 dy = y + block_y[i];
123
124 /* center space never blocks */
125 if (x == MAP_CLIENT_X / 2 && y == MAP_CLIENT_Y / 2)
126 continue;
127
128 /* If its a straight line, its blocked */
129 if ((dx == x && x == MAP_CLIENT_X / 2) || (dy == y && y == MAP_CLIENT_Y / 2))
130 {
131 /* For simplicity, we mirror the coordinates to block the other
132 * quadrants.
133 */
134 set_block (x, y, dx, dy);
135 if (x == MAP_CLIENT_X / 2)
136 {
137 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
138 }
139 else if (y == MAP_CLIENT_Y / 2)
140 {
141 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
142 }
143 }
144 else
145 {
146 float d1, r, s, l;
147
148 /* We use the algorihm that found out how close the point
149 * (x,y) is to the line from dx,dy to the center of the viewable
150 * area. l is the distance from x,y to the line.
151 * r is more a curiosity - it lets us know what direction (left/right)
152 * the line is off
153 */
154
155 d1 = (float) (pow (MAP_CLIENT_X / 2 - dx, 2) + pow (MAP_CLIENT_Y / 2 - dy, 2));
156 r = (float) ((dy - y) * (dy - MAP_CLIENT_Y / 2) - (dx - x) * (MAP_CLIENT_X / 2 - dx)) / d1;
157 s = (float) ((dy - y) * (MAP_CLIENT_X / 2 - dx) - (dx - x) * (MAP_CLIENT_Y / 2 - dy)) / d1;
158 l = FABS (sqrt (d1) * s);
159
160 if (l <= SPACE_BLOCK)
161 {
162 /* For simplicity, we mirror the coordinates to block the other
163 * quadrants.
164 */
165 set_block (x, y, dx, dy);
166 set_block (MAP_CLIENT_X - x - 1, y, MAP_CLIENT_X - dx - 1, dy);
167 set_block (x, MAP_CLIENT_Y - y - 1, dx, MAP_CLIENT_Y - dy - 1);
168 set_block (MAP_CLIENT_X - x - 1, MAP_CLIENT_Y - y - 1, MAP_CLIENT_X - dx - 1, MAP_CLIENT_Y - dy - 1);
169 }
170 }
171 }
172 }
173 }
174 }
175
176 /*
177 * Used to initialise the array used by the LOS routines.
178 * x,y are indexes into the blocked[][] array.
179 * This recursively sets the blocked line of sight view.
180 * From the blocked[][] array, we know for example
181 * that if some particular space is blocked, it blocks
182 * the view of the spaces 'behind' it, and those blocked
183 * spaces behind it may block other spaces, etc.
184 * In this way, the chain of visibility is set.
185 */
186
187 static void
188 set_wall (object *op, int x, int y)
189 {
190 int i;
191
192 for (i = 0; i < block[x][y].index; i++)
193 {
194 int dx = block[x][y].x[i], dy = block[x][y].y[i], ax, ay;
195
196 /* ax, ay are the values as adjusted to be in the
197 * socket look structure.
198 */
199 ax = dx - (MAP_CLIENT_X - op->contr->socket.mapx) / 2;
200 ay = dy - (MAP_CLIENT_Y - op->contr->socket.mapy) / 2;
201
202 if (ax < 0 || ax >= op->contr->socket.mapx || ay < 0 || ay >= op->contr->socket.mapy)
203 continue;
204 #if 0
205 LOG (llevDebug, "blocked %d %d -> %d %d\n", dx, dy, ax, ay);
206 #endif
207 /* we need to adjust to the fact that the socket
208 * code wants the los to start from the 0,0
209 * and not be relative to middle of los array.
210 */
211 op->contr->blocked_los[ax][ay] = 100;
212 set_wall (op, dx, dy);
213 }
214 }
215
216 /*
217 * Used to initialise the array used by the LOS routines.
218 * op is the object, x and y values based on MAP_CLIENT_X and Y.
219 * this is because they index the blocked[][] arrays.
220 */
221
222 static void
223 check_wall (object *op, int x, int y)
224 {
225 int ax, ay;
226
227 if (!block[x][y].index)
228 return;
229
230 /* ax, ay are coordinates as indexed into the look window */
231 ax = x - (MAP_CLIENT_X - op->contr->socket.mapx) / 2;
232 ay = y - (MAP_CLIENT_Y - op->contr->socket.mapy) / 2;
233
234 /* If the converted coordinates are outside the viewable
235 * area for the client, return now.
236 */
237 if (ax < 0 || ay < 0 || ax >= op->contr->socket.mapx || ay >= op->contr->socket.mapy)
238 return;
239
240 #if 0
241 LOG (llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
242 ax, ay, x, y, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2);
243 #endif
244
245 /* If this space is already blocked, prune the processing - presumably
246 * whatever has set this space to be blocked has done the work and already
247 * done the dependency chain.
248 */
249 if (op->contr->blocked_los[ax][ay] == 100)
250 return;
251
252
253 if (get_map_flags (op->map, NULL, op->x + x - MAP_CLIENT_X / 2, op->y + y - MAP_CLIENT_Y / 2, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
254 set_wall (op, x, y);
255 }
256
257 /*
258 * Clears/initialises the los-array associated to the player
259 * controlling the object.
260 */
261
262 void
263 clear_los (object *op)
264 {
265 /* This is safer than using the socket->mapx, mapy because
266 * we index the blocked_los as a 2 way array, so clearing
267 * the first z spaces may not not cover the spaces we are
268 * actually going to use
269 */
270 (void) memset ((void *) op->contr->blocked_los, 0, MAP_CLIENT_X * MAP_CLIENT_Y);
271 }
272
273 /*
274 * expand_sight goes through the array of what the given player is
275 * able to see, and expands the visible area a bit, so the player will,
276 * to a certain degree, be able to see into corners.
277 * This is somewhat suboptimal, would be better to improve the formula.
278 */
279
280 static void
281 expand_sight (object *op)
282 {
283 int i, x, y, dx, dy;
284
285 for (x = 1; x < op->contr->socket.mapx - 1; x++) /* loop over inner squares */
286 for (y = 1; y < op->contr->socket.mapy - 1; y++)
287 {
288 if (!op->contr->blocked_los[x][y] &&
289 !(get_map_flags (op->map, NULL,
290 op->x - op->contr->socket.mapx / 2 + x,
291 op->y - op->contr->socket.mapy / 2 + y, NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP)))
292 {
293
294 for (i = 1; i <= 8; i += 1)
295 { /* mark all directions */
296 dx = x + freearr_x[i];
297 dy = y + freearr_y[i];
298 if (op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */
299 op->contr->blocked_los[dx][dy] = -1;
300 }
301 }
302 }
303
304 if (MAP_DARKNESS (op->map) > 0) /* player is on a dark map */
305 expand_lighted_sight (op);
306
307
308 /* clear mark squares */
309 for (x = 0; x < op->contr->socket.mapx; x++)
310 for (y = 0; y < op->contr->socket.mapy; y++)
311 if (op->contr->blocked_los[x][y] < 0)
312 op->contr->blocked_los[x][y] = 0;
313 }
314
315
316
317
318 /* returns true if op carries one or more lights
319 * This is a trivial function now days, but it used to
320 * be a bit longer. Probably better for callers to just
321 * check the op->glow_radius instead of calling this.
322 */
323
324 int
325 has_carried_lights (const object *op)
326 {
327 /* op may glow! */
328 if (op->glow_radius > 0)
329 return 1;
330
331 return 0;
332 }
333
334 static void
335 expand_lighted_sight (object *op)
336 {
337 int x, y, darklevel, ax, ay, basex, basey, mflags, light, x1, y1;
338 mapstruct *m = op->map;
339 sint16 nx, ny;
340
341 darklevel = MAP_DARKNESS (m);
342
343 /* If the player can see in the dark, lower the darklevel for him */
344 if (QUERY_FLAG (op, FLAG_SEE_IN_DARK))
345 darklevel -= 2;
346
347 /* add light, by finding all (non-null) nearby light sources, then
348 * mark those squares specially. If the darklevel<1, there is no
349 * reason to do this, so we skip this function
350 */
351
352 if (darklevel < 1)
353 return;
354
355 /* Do a sanity check. If not valid, some code below may do odd
356 * things.
357 */
358 if (darklevel > MAX_DARKNESS)
359 {
360 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, op->map->path, darklevel);
361 darklevel = MAX_DARKNESS;
362 }
363
364 /* First, limit player furthest (unlighted) vision */
365 for (x = 0; x < op->contr->socket.mapx; x++)
366 for (y = 0; y < op->contr->socket.mapy; y++)
367 if (op->contr->blocked_los[x][y] != 100)
368 op->contr->blocked_los[x][y] = MAX_LIGHT_RADII;
369
370 /* the spaces[] darkness value contains the information we need.
371 * Only process the area of interest.
372 * the basex, basey values represent the position in the op->contr->blocked_los
373 * array. Its easier to just increment them here (and start with the right
374 * value) than to recalculate them down below.
375 */
376 for (x = (op->x - op->contr->socket.mapx / 2 - MAX_LIGHT_RADII), basex = -MAX_LIGHT_RADII;
377 x <= (op->x + op->contr->socket.mapx / 2 + MAX_LIGHT_RADII); x++, basex++)
378 {
379
380 for (y = (op->y - op->contr->socket.mapy / 2 - MAX_LIGHT_RADII), basey = -MAX_LIGHT_RADII;
381 y <= (op->y + op->contr->socket.mapy / 2 + MAX_LIGHT_RADII); y++, basey++)
382 {
383 m = op->map;
384 nx = x;
385 ny = y;
386
387 mflags = get_map_flags (m, &m, nx, ny, &nx, &ny);
388
389 if (mflags & P_OUT_OF_MAP)
390 continue;
391
392 /* This space is providing light, so we need to brighten up the
393 * spaces around here.
394 */
395 light = GET_MAP_LIGHT (m, nx, ny);
396 if (light != 0)
397 {
398 #if 0
399 LOG (llevDebug, "expand_lighted_sight: Found light at x=%d, y=%d, basex=%d, basey=%d\n", x, y, basex, basey);
400 #endif
401 for (ax = basex - light; ax <= basex + light; ax++)
402 {
403 if (ax < 0 || ax >= op->contr->socket.mapx)
404 continue;
405 for (ay = basey - light; ay <= basey + light; ay++)
406 {
407 if (ay < 0 || ay >= op->contr->socket.mapy)
408 continue;
409
410 /* If the space is fully blocked, do nothing. Otherwise, we
411 * brighten the space. The further the light is away from the
412 * source (basex-x), the less effect it has. Though light used
413 * to dim in a square manner, it now dims in a circular manner
414 * using the the pythagorean theorem. glow_radius still
415 * represents the radius
416 */
417 if (op->contr->blocked_los[ax][ay] != 100)
418 {
419 x1 = abs (basex - ax) * abs (basex - ax);
420 y1 = abs (basey - ay) * abs (basey - ay);
421 if (light > 0)
422 op->contr->blocked_los[ax][ay] -= MAX ((light - isqrt (x1 + y1)), 0);
423 if (light < 0)
424 op->contr->blocked_los[ax][ay] -= MIN ((light + isqrt (x1 + y1)), 0);
425 }
426 } /* for ay */
427 } /* for ax */
428 } /* if this space is providing light */
429 } /* for y */
430 } /* for x */
431
432 /* Outdoor should never really be completely pitch black dark like
433 * a dungeon, so let the player at least see a little around themselves
434 */
435 if (op->map->outdoor && darklevel > (MAX_DARKNESS - 3))
436 {
437 if (op->contr->blocked_los[op->contr->socket.mapx / 2][op->contr->socket.mapy / 2] > (MAX_DARKNESS - 3))
438 op->contr->blocked_los[op->contr->socket.mapx / 2][op->contr->socket.mapy / 2] = MAX_DARKNESS - 3;
439
440 for (x = -1; x <= 1; x++)
441 for (y = -1; y <= 1; y++)
442 {
443 if (op->contr->blocked_los[x + op->contr->socket.mapx / 2][y + op->contr->socket.mapy / 2] > (MAX_DARKNESS - 2))
444 op->contr->blocked_los[x + op->contr->socket.mapx / 2][y + op->contr->socket.mapy / 2] = MAX_DARKNESS - 2;
445 }
446 }
447 /* grant some vision to the player, based on the darklevel */
448 for (x = darklevel - MAX_DARKNESS; x < MAX_DARKNESS + 1 - darklevel; x++)
449 for (y = darklevel - MAX_DARKNESS; y < MAX_DARKNESS + 1 - darklevel; y++)
450 if (!(op->contr->blocked_los[x + op->contr->socket.mapx / 2][y + op->contr->socket.mapy / 2] == 100))
451 op->contr->blocked_los[x + op->contr->socket.mapx / 2][y + op->contr->socket.mapy / 2] -=
452 MAX (0, 6 - darklevel - MAX (abs (x), abs (y)));
453 }
454
455 /* blinded_sight() - sets all veiwable squares to blocked except
456 * for the one the central one that the player occupies. A little
457 * odd that you can see yourself (and what your standing on), but
458 * really need for any reasonable game play.
459 */
460
461 static void
462 blinded_sight (object *op)
463 {
464 int x, y;
465
466 for (x = 0; x < op->contr->socket.mapx; x++)
467 for (y = 0; y < op->contr->socket.mapy; y++)
468 op->contr->blocked_los[x][y] = 100;
469
470 op->contr->blocked_los[op->contr->socket.mapx / 2][op->contr->socket.mapy / 2] = 0;
471 }
472
473 /*
474 * update_los() recalculates the array which specifies what is
475 * visible for the given player-object.
476 */
477
478 void
479 update_los (object *op)
480 {
481 int dx = op->contr->socket.mapx / 2, dy = op->contr->socket.mapy / 2, x, y;
482
483 if (QUERY_FLAG (op, FLAG_REMOVED))
484 return;
485
486 clear_los (op);
487 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ )
488 return;
489
490 /* For larger maps, this is more efficient than the old way which
491 * used the chaining of the block array. Since many space views could
492 * be blocked by different spaces in front, this mean that a lot of spaces
493 * could be examined multile times, as each path would be looked at.
494 */
495 for (x = (MAP_CLIENT_X - op->contr->socket.mapx) / 2 - 1; x < (MAP_CLIENT_X + op->contr->socket.mapx) / 2 + 1; x++)
496 for (y = (MAP_CLIENT_Y - op->contr->socket.mapy) / 2 - 1; y < (MAP_CLIENT_Y + op->contr->socket.mapy) / 2 + 1; y++)
497 check_wall (op, x, y);
498
499
500 /* do the los of the player. 3 (potential) cases */
501 if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
502 blinded_sight (op);
503 else
504 expand_sight (op);
505
506 if (QUERY_FLAG (op, FLAG_XRAYS))
507 {
508 int x, y;
509
510 for (x = -2; x <= 2; x++)
511 for (y = -2; y <= 2; y++)
512 op->contr->blocked_los[dx + x][dy + y] = 0;
513 }
514 }
515
516 /* update all_map_los is like update_all_los below,
517 * but updates everyone on the map, no matter where they
518 * are. This generally should not be used, as a per
519 * specific map change doesn't make much sense when tiling
520 * is considered (lowering darkness would certainly be a
521 * strange effect if done on a tile map, as it makes
522 * the distinction between maps much more obvious to the
523 * players, which is should not be.
524 * Currently, this function is called from the
525 * change_map_light function
526 */
527 void
528 update_all_map_los (mapstruct *map)
529 {
530 player *pl;
531
532 for (pl = first_player; pl != NULL; pl = pl->next)
533 {
534 if (pl->ob->map == map)
535 pl->do_los = 1;
536 }
537 }
538
539
540 /*
541 * This function makes sure that update_los() will be called for all
542 * players on the given map within the next frame.
543 * It is triggered by removal or inserting of objects which blocks
544 * the sight in the map.
545 * Modified by MSW 2001-07-12 to take a coordinate of the changed
546 * position, and to also take map tiling into account. This change
547 * means that just being on the same map is not sufficient - the
548 * space that changes must be withing your viewable area.
549 *
550 * map is the map that changed, x and y are the coordinates.
551 */
552
553 void
554 update_all_los (const mapstruct *map, int x, int y)
555 {
556 player *pl;
557
558 for (pl = first_player; pl != NULL; pl = pl->next)
559 {
560 /* Player should not have a null map, but do this
561 * check as a safety
562 */
563 if (!pl->ob->map)
564 continue;
565
566 /* Same map is simple case - see if pl is close enough.
567 * Note in all cases, we did the check for same map first,
568 * and then see if the player is close enough and update
569 * los if that is the case. If the player is on the
570 * corresponding map, but not close enough, then the
571 * player can't be on another map that may be closer,
572 * so by setting it up this way, we trim processing
573 * some.
574 */
575 if (pl->ob->map == map)
576 {
577 if ((abs (pl->ob->x - x) <= pl->socket.mapx / 2) && (abs (pl->ob->y - y) <= pl->socket.mapy / 2))
578 pl->do_los = 1;
579 }
580 /* Now we check to see if player is on adjacent
581 * maps to the one that changed and also within
582 * view. The tile_maps[] could be null, but in that
583 * case it should never match the pl->ob->map, so
584 * we want ever try to dereference any of the data in it.
585 */
586
587 /* The logic for 0 and 3 is to see how far the player is
588 * from the edge of the map (height/width) - pl->ob->(x,y)
589 * and to add current position on this map - that gives a
590 * distance.
591 * For 1 and 2, we check to see how far the given
592 * coordinate (x,y) is from the corresponding edge,
593 * and then add the players location, which gives
594 * a distance.
595 */
596 else if (pl->ob->map == map->tile_map[0])
597 {
598 if ((abs (pl->ob->x - x) <= pl->socket.mapx / 2) && (abs (y + MAP_HEIGHT (map->tile_map[0]) - pl->ob->y) <= pl->socket.mapy / 2))
599 pl->do_los = 1;
600 }
601 else if (pl->ob->map == map->tile_map[2])
602 {
603 if ((abs (pl->ob->x - x) <= pl->socket.mapx / 2) && (abs (pl->ob->y + MAP_HEIGHT (map) - y) <= pl->socket.mapy / 2))
604 pl->do_los = 1;
605 }
606 else if (pl->ob->map == map->tile_map[1])
607 {
608 if ((abs (pl->ob->x + MAP_WIDTH (map) - x) <= pl->socket.mapx / 2) && (abs (pl->ob->y - y) <= pl->socket.mapy / 2))
609 pl->do_los = 1;
610 }
611 else if (pl->ob->map == map->tile_map[3])
612 {
613 if ((abs (x + MAP_WIDTH (map->tile_map[3]) - pl->ob->x) <= pl->socket.mapx / 2) && (abs (pl->ob->y - y) <= pl->socket.mapy / 2))
614 pl->do_los = 1;
615 }
616 }
617 }
618
619 /*
620 * Debug-routine which dumps the array which specifies the visible
621 * area of a player. Triggered by the z key in DM mode.
622 */
623
624 void
625 print_los (object *op)
626 {
627 int x, y;
628 char buf[50], buf2[10];
629
630 strcpy (buf, " ");
631 for (x = 0; x < op->contr->socket.mapx; x++)
632 {
633 sprintf (buf2, "%2d", x);
634 strcat (buf, buf2);
635 }
636 new_draw_info (NDI_UNIQUE, 0, op, buf);
637 for (y = 0; y < op->contr->socket.mapy; y++)
638 {
639 sprintf (buf, "%2d:", y);
640 for (x = 0; x < op->contr->socket.mapx; x++)
641 {
642 sprintf (buf2, " %1d", op->contr->blocked_los[x][y]);
643 strcat (buf, buf2);
644 }
645 new_draw_info (NDI_UNIQUE, 0, op, buf);
646 }
647 }
648
649 /*
650 * make_sure_seen: The object is supposed to be visible through walls, thus
651 * check if any players are nearby, and edit their LOS array.
652 */
653
654 void
655 make_sure_seen (const object *op)
656 {
657 player *pl;
658
659 for (pl = first_player; pl; pl = pl->next)
660 if (pl->ob->map == op->map &&
661 pl->ob->y - pl->socket.mapy / 2 <= op->y &&
662 pl->ob->y + pl->socket.mapy / 2 >= op->y && pl->ob->x - pl->socket.mapx / 2 <= op->x && pl->ob->x + pl->socket.mapx / 2 >= op->x)
663 pl->blocked_los[pl->socket.mapx / 2 + op->x - pl->ob->x][pl->socket.mapy / 2 + op->y - pl->ob->y] = 0;
664 }
665
666 /*
667 * make_sure_not_seen: The object which is supposed to be visible through
668 * walls has just been removed from the map, so update the los of any
669 * players within its range
670 */
671
672 void
673 make_sure_not_seen (const object *op)
674 {
675 player *pl;
676
677 for (pl = first_player; pl; pl = pl->next)
678 if (pl->ob->map == op->map &&
679 pl->ob->y - pl->socket.mapy / 2 <= op->y &&
680 pl->ob->y + pl->socket.mapy / 2 >= op->y && pl->ob->x - pl->socket.mapx / 2 <= op->x && pl->ob->x + pl->socket.mapx / 2 >= op->x)
681 pl->do_los = 1;
682 }