ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
Revision: 1.48
Committed: Tue Dec 23 06:58:23 2008 UTC (15 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.47: +66 -84 lines
Log Message:
wizlook

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
6 * Copyright (©) 1992,2007 Frank Tore Johansen
7 *
8 * Deliantra is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 *
21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */
23
24 /* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
25
26 #include <global.h>
27 #include <cmath>
28
29 static void expand_lighted_sight (object *op);
30
31 enum {
32 LOS_XI = 0x01,
33 LOS_YI = 0x02,
34 };
35
36 struct los_info
37 {
38 sint8 xo, yo; // obscure angle
39 sint8 xe, ye; // angle deviation
40 uint8 culled; // culled from "tree"
41 uint8 queued; // already queued
42 uint8 visible;
43 uint8 flags; // LOS_XI/YI
44 };
45
46 // temporary storage for the los algorithm,
47 // one los_info for each lightable map space
48 static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
49
50 struct point
51 {
52 sint8 x, y;
53 };
54
55 // minimum size, but must be a power of two
56 #define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
57
58 // a queue of spaces to calculate
59 static point queue [QUEUE_LENGTH];
60 static int q1, q2; // queue start, end
61
62 /*
63 * Clears/initialises the los-array associated to the player
64 * controlling the object.
65 */
66 void
67 player::clear_los (sint8 value)
68 {
69 memset (los, value, sizeof (los));
70 }
71
72 // enqueue a single mapspace, but only if it hasn't
73 // been enqueued yet.
74 static void
75 enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
76 {
77 sint8 x = LOS_X0 + dx;
78 sint8 y = LOS_Y0 + dy;
79
80 if (x < 0 || x >= MAP_CLIENT_X) return;
81 if (y < 0 || y >= MAP_CLIENT_Y) return;
82
83 los_info &l = los[x][y];
84
85 l.flags |= flags;
86
87 if (l.queued)
88 return;
89
90 l.queued = 1;
91
92 queue[q1].x = dx;
93 queue[q1].y = dy;
94
95 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
96 }
97
98 // run the los algorithm
99 // this is a variant of a spiral los algorithm taken from
100 // http://www.geocities.com/temerra/los_rays.html
101 // which has been simplified and changed considerably, but
102 // still is basically the same algorithm.
103 static void
104 calculate_los (player *pl)
105 {
106 int max_radius = max (pl->ns->mapx, pl->ns->mapy) / 2;
107
108 memset (los, 0, sizeof (los));
109
110 q1 = 0; q2 = 0; // initialise queue, not strictly required
111 enqueue (0, 0); // enqueue center
112
113 // treat the origin specially
114 los[LOS_X0][LOS_Y0].visible = 1;
115 pl->los[LOS_X0][LOS_Y0] = 0;
116
117 // loop over all enqueued points until the queue is empty
118 // the order in which this is done ensures that we
119 // never touch a mapspace whose input spaces we haven't checked
120 // yet.
121 while (q1 != q2)
122 {
123 sint8 dx = queue[q2].x;
124 sint8 dy = queue[q2].y;
125
126 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
127
128 sint8 x = LOS_X0 + dx;
129 sint8 y = LOS_Y0 + dy;
130
131 //int distance = idistance (dx, dy); if (distance > max_radius) continue;//D
132 int distance = 0;//D
133
134 los_info &l = los[x][y];
135
136 if (expect_true (l.flags & (LOS_XI | LOS_YI)))
137 {
138 l.culled = 1;
139
140 // check contributing spaces, first horizontal
141 if (expect_true (l.flags & LOS_XI))
142 {
143 los_info *xi = &los[x - sign (dx)][y];
144
145 // don't cull unless obscured
146 l.culled &= !xi->visible;
147
148 /* merge input space */
149 if (expect_false (xi->xo || xi->yo))
150 {
151 // The X input can provide two main pieces of information:
152 // 1. Progressive X obscurity.
153 // 2. Recessive Y obscurity.
154
155 // Progressive X obscurity, favouring recessive input angle
156 if (xi->xe > 0 && l.xo == 0)
157 {
158 l.xe = xi->xe - xi->yo;
159 l.ye = xi->ye + xi->yo;
160 l.xo = xi->xo;
161 l.yo = xi->yo;
162 }
163
164 // Recessive Y obscurity
165 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
166 {
167 l.ye = xi->yo + xi->ye;
168 l.xe = xi->xe - xi->yo;
169 l.xo = xi->xo;
170 l.yo = xi->yo;
171 }
172 }
173 }
174
175 // check contributing spaces, last vertical, identical structure
176 if (expect_true (l.flags & LOS_YI))
177 {
178 los_info *yi = &los[x][y - sign (dy)];
179
180 // don't cull unless obscured
181 l.culled &= !yi->visible;
182
183 /* merge input space */
184 if (expect_false (yi->yo || yi->xo))
185 {
186 // The Y input can provide two main pieces of information:
187 // 1. Progressive Y obscurity.
188 // 2. Recessive X obscurity.
189
190 // Progressive Y obscurity, favouring recessive input angle
191 if (yi->ye > 0 && l.yo == 0)
192 {
193 l.ye = yi->ye - yi->xo;
194 l.xe = yi->xe + yi->xo;
195 l.yo = yi->yo;
196 l.xo = yi->xo;
197 }
198
199 // Recessive X obscurity
200 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
201 {
202 l.xe = yi->xo + yi->xe;
203 l.ye = yi->ye - yi->xo;
204 l.yo = yi->yo;
205 l.xo = yi->xo;
206 }
207 }
208 }
209
210 // check whether this space blocks the view
211 maptile *m = pl->observe->map;
212 sint16 nx = pl->observe->x + dx;
213 sint16 ny = pl->observe->y + dy;
214
215 if (expect_true (!xy_normalise (m, nx, ny))
216 || expect_false (m->at (nx, ny).flags () & P_BLOCKSVIEW))
217 {
218 l.xo = l.xe = abs (dx);
219 l.yo = l.ye = abs (dy);
220
221 // we obscure dependents, but might be visible
222 // copy the los from the square towards the player,
223 // so outward diagonal corners are lit.
224 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
225 l.visible = false;
226 }
227 else
228 {
229 // we are not blocked, so calculate visibility, by checking
230 // whether we are inside or outside the shadow
231 l.visible = (l.xe <= 0 || l.xe > l.xo)
232 && (l.ye <= 0 || l.ye > l.yo);
233
234 pl->los[x][y] = l.culled ? LOS_BLOCKED
235 : l.visible ? max (0, 2 - max_radius + distance)
236 : 3;
237 }
238
239 }
240
241 // Expands by the unit length in each component's current direction.
242 // If a component has no direction, then it is expanded in both of its
243 // positive and negative directions.
244 if (!l.culled)
245 {
246 if (dx >= 0) enqueue (dx + 1, dy, LOS_XI);
247 if (dx <= 0) enqueue (dx - 1, dy, LOS_XI);
248 if (dy >= 0) enqueue (dx, dy + 1, LOS_YI);
249 if (dy <= 0) enqueue (dx, dy - 1, LOS_YI);
250 }
251 }
252 }
253
254 /* returns true if op carries one or more lights
255 * This is a trivial function now days, but it used to
256 * be a bit longer. Probably better for callers to just
257 * check the op->glow_radius instead of calling this.
258 */
259 int
260 has_carried_lights (const object *op)
261 {
262 /* op may glow! */
263 if (op->glow_radius > 0)
264 return 1;
265
266 return 0;
267 }
268
269 /* radius, distance => lightness adjust */
270 static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
271 static sint8 vision_atten[MAX_DARKNESS + 1][MAX_DARKNESS * 3 / 2 + 1];
272
273 static struct los_init
274 {
275 los_init ()
276 {
277 /* for lights */
278 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
279 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
280 {
281 // max intensity
282 int intensity = min (LOS_MAX, abs (radius) + 1);
283
284 // actual intensity
285 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
286
287 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
288 ? min (3, intensity)
289 : LOS_MAX - intensity;
290 }
291
292 /* for general vision */
293 for (int radius = 0; radius <= MAX_DARKNESS; ++radius)
294 for (int distance = 0; distance <= MAX_DARKNESS * 3 / 2; ++distance)
295 {
296 vision_atten [radius][distance] = distance <= radius ? 3 : 4;
297 }
298 }
299 } los_init;
300
301 sint8
302 los_brighten (sint8 b, sint8 l)
303 {
304 return b == LOS_BLOCKED ? b : min (b, l);
305 }
306
307 sint8
308 los_darken (sint8 b, sint8 l)
309 {
310 return max (b, l);
311 }
312
313 template<sint8 change_it (sint8, sint8)>
314 static void
315 apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
316 {
317 // min or max the circular area around basex, basey
318 dx += LOS_X0;
319 dy += LOS_Y0;
320
321 int hx = pl->ns->mapx / 2;
322 int hy = pl->ns->mapy / 2;
323
324 int ax0 = max (LOS_X0 - hx, dx - light);
325 int ay0 = max (LOS_Y0 - hy, dy - light);
326 int ax1 = min (dx + light, LOS_X0 + hx);
327 int ay1 = min (dy + light, LOS_Y0 + hy);
328
329 for (int ax = ax0; ax <= ax1; ax++)
330 for (int ay = ay0; ay <= ay1; ay++)
331 pl->los[ax][ay] =
332 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
333 }
334
335 /* add light, by finding all (non-null) nearby light sources, then
336 * mark those squares specially.
337 */
338 static void
339 apply_lights (player *pl)
340 {
341 object *op = pl->observe;
342 int darklevel = op->map->darklevel ();
343
344 /* If the player can see in the dark, lower the darklevel for him */
345 if (op->flag [FLAG_SEE_IN_DARK])
346 darklevel = max (0, darklevel - 2);
347
348 int half_x = pl->ns->mapx / 2;
349 int half_y = pl->ns->mapy / 2;
350
351 int min_x = op->x - half_x - MAX_LIGHT_RADIUS;
352 int min_y = op->y - half_y - MAX_LIGHT_RADIUS;
353 int max_x = op->x + half_x + MAX_LIGHT_RADIUS;
354 int max_y = op->y + half_y + MAX_LIGHT_RADIUS;
355
356 int pass2 = 0; // negative lights have an extra pass
357
358 if (!darklevel)
359 pass2 = 1;
360 else
361 {
362 /* first, make everything totally dark */
363 for (int dx = -half_x; dx <= half_x; dx++)
364 for (int dy = -half_x; dy <= half_y; dy++)
365 if (pl->los[dx + LOS_X0][dy + LOS_Y0] != LOS_BLOCKED)
366 pl->los[dx + LOS_X0][dy + LOS_Y0] = LOS_MAX;
367
368 /*
369 * Only process the area of interest.
370 * the basex, basey values represent the position in the op->contr->los
371 * array. Its easier to just increment them here (and start with the right
372 * value) than to recalculate them down below.
373 */
374 for (int x = min_x; x <= max_x; x++)
375 for (int y = min_y; y <= max_y; y++)
376 {
377 maptile *m = pl->observe->map;
378 sint16 nx = x;
379 sint16 ny = y;
380
381 if (!xy_normalise (m, nx, ny))
382 continue;
383
384 mapspace &ms = m->at (nx, ny);
385 ms.update ();
386 sint8 light = ms.light;
387
388 if (expect_false (light))
389 if (light < 0)
390 pass2 = 1;
391 else
392 apply_light<los_brighten> (pl, x - op->x, y - op->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
393 }
394
395 /* grant some vision to the player, based on the darklevel */
396 {
397 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_DARKNESS);
398
399 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
400 }
401 }
402
403 // possibly do 2nd pass for rare negative glow radii
404 // for effect, those are always considered to be stronger than anything else
405 // but they can't darken a place completely
406 if (pass2)
407 for (int x = min_x; x <= max_x; x++)
408 for (int y = min_y; y <= max_y; y++)
409 {
410 maptile *m = pl->observe->map;
411 sint16 nx = x;
412 sint16 ny = y;
413
414 if (!xy_normalise (m, nx, ny))
415 continue;
416
417 mapspace &ms = m->at (nx, ny);
418 ms.update ();
419 sint8 light = ms.light;
420
421 if (expect_false (light < 0))
422 apply_light<los_darken> (pl, x - op->x, y - op->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
423 }
424 }
425
426 /* blinded_sight() - sets all viewable squares to blocked except
427 * for the one the central one that the player occupies. A little
428 * odd that you can see yourself (and what your standing on), but
429 * really need for any reasonable game play.
430 */
431 static void
432 blinded_sight (player *pl)
433 {
434 pl->los[LOS_X0][LOS_Y0] = 1;
435 }
436
437 /*
438 * update_los() recalculates the array which specifies what is
439 * visible for the given player-object.
440 */
441 void
442 player::update_los ()
443 {
444 if (ob->flag [FLAG_REMOVED])//D really needed?
445 return;
446
447 clear_los ();
448
449 if (ob->flag [FLAG_WIZLOOK])
450 memset (los, 0, sizeof (los));
451 else if (observe->flag [FLAG_BLIND]) /* player is blind */
452 blinded_sight (this);
453 else
454 {
455 calculate_los (this);
456 apply_lights (this);
457 }
458
459 if (observe->flag [FLAG_XRAYS])
460 for (int dx = -2; dx <= 2; dx++)
461 for (int dy = -2; dy <= 2; dy++)
462 min_it (los[dx + LOS_X0][dy + LOS_X0], 1);
463 }
464
465 /* update all_map_los is like update_all_los below,
466 * but updates everyone on the map, no matter where they
467 * are. This generally should not be used, as a per
468 * specific map change doesn't make much sense when tiling
469 * is considered (lowering darkness would certainly be a
470 * strange effect if done on a tile map, as it makes
471 * the distinction between maps much more obvious to the
472 * players, which is should not be.
473 * Currently, this function is called from the
474 * change_map_light function
475 */
476 void
477 update_all_map_los (maptile *map)
478 {
479 for_all_players_on_map (pl, map)
480 pl->do_los = 1;
481 }
482
483 /*
484 * This function makes sure that update_los() will be called for all
485 * players on the given map within the next frame.
486 * It is triggered by removal or inserting of objects which blocks
487 * the sight in the map.
488 * Modified by MSW 2001-07-12 to take a coordinate of the changed
489 * position, and to also take map tiling into account. This change
490 * means that just being on the same map is not sufficient - the
491 * space that changes must be withing your viewable area.
492 *
493 * map is the map that changed, x and y are the coordinates.
494 */
495 void
496 update_all_los (const maptile *map, int x, int y)
497 {
498 map->at (x, y).invalidate ();
499
500 for_all_players (pl)
501 {
502 /* Player should not have a null map, but do this
503 * check as a safety
504 */
505 if (!pl->ob || !pl->ob->map || !pl->ns)
506 continue;
507
508 /* Same map is simple case - see if pl is close enough.
509 * Note in all cases, we did the check for same map first,
510 * and then see if the player is close enough and update
511 * los if that is the case. If the player is on the
512 * corresponding map, but not close enough, then the
513 * player can't be on another map that may be closer,
514 * so by setting it up this way, we trim processing
515 * some.
516 */
517 if (pl->ob->map == map)
518 {
519 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
520 pl->do_los = 1;
521 }
522
523 /* Now we check to see if player is on adjacent
524 * maps to the one that changed and also within
525 * view. The tile_maps[] could be null, but in that
526 * case it should never match the pl->ob->map, so
527 * we want ever try to dereference any of the data in it.
528 *
529 * The logic for 0 and 3 is to see how far the player is
530 * from the edge of the map (height/width) - pl->ob->(x,y)
531 * and to add current position on this map - that gives a
532 * distance.
533 * For 1 and 2, we check to see how far the given
534 * coordinate (x,y) is from the corresponding edge,
535 * and then add the players location, which gives
536 * a distance.
537 */
538 else if (pl->ob->map == map->tile_map[0])
539 {
540 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
541 pl->do_los = 1;
542 }
543 else if (pl->ob->map == map->tile_map[2])
544 {
545 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
546 pl->do_los = 1;
547 }
548 else if (pl->ob->map == map->tile_map[1])
549 {
550 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
551 pl->do_los = 1;
552 }
553 else if (pl->ob->map == map->tile_map[3])
554 {
555 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
556 pl->do_los = 1;
557 }
558 }
559 }
560
561 static const int season_darkness[5][HOURS_PER_DAY] = {
562 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
563 { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
564 { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
565 { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
566 { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
567 { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
568 };
569
570 /*
571 * Tell players the time and compute the darkness level for all maps in the game.
572 * MUST be called exactly once per hour.
573 */
574 void
575 maptile::adjust_daylight ()
576 {
577 timeofday_t tod;
578
579 get_tod (&tod);
580
581 // log the time to log-1 every hour, and to chat every day
582 {
583 char todbuf[512];
584
585 format_tod (todbuf, sizeof (todbuf), &tod);
586
587 for_all_players (pl)
588 pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
589 }
590
591 /* If the light level isn't changing, no reason to do all
592 * the work below.
593 */
594 sint8 new_darkness = season_darkness[tod.season][tod.hour];
595
596 if (new_darkness == maptile::outdoor_darkness)
597 return;
598
599 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
600 new_darkness > maptile::outdoor_darkness
601 ? "It becomes darker."
602 : "It becomes brighter.");
603
604 maptile::outdoor_darkness = new_darkness;
605
606 // we simply update the los for all players, which is unnecessarily
607 // costly, but should do for the moment.
608 for_all_players (pl)
609 pl->do_los = 1;
610 }
611
612 /*
613 * make_sure_seen: The object is supposed to be visible through walls, thus
614 * check if any players are nearby, and edit their LOS array.
615 */
616 void
617 make_sure_seen (const object *op)
618 {
619 for_all_players (pl)
620 if (pl->ob->map == op->map &&
621 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
622 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
623 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_X0] = 0;
624 }
625
626 /*
627 * make_sure_not_seen: The object which is supposed to be visible through
628 * walls has just been removed from the map, so update the los of any
629 * players within its range
630 */
631 void
632 make_sure_not_seen (const object *op)
633 {
634 for_all_players (pl)
635 if (pl->ob->map == op->map &&
636 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
637 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
638 pl->do_los = 1;
639 }