ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
Revision: 1.60
Committed: Sun Jan 11 06:08:40 2009 UTC (15 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-2_76, rel-2_77, rel-2_78
Changes since 1.59: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
6 * Copyright (©) 1992,2007 Frank Tore Johansen
7 *
8 * Deliantra is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 *
21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */
23
24 #include <global.h>
25 #include <cmath>
26
27 #define SEE_IN_DARK_RADIUS 2
28 #define MAX_VISION 10 // maximum visible radius
29
30 // los flags
31 enum {
32 FLG_XI = 0x01, // we have an x-parent
33 FLG_YI = 0x02, // we have an y-parent
34 FLG_BLOCKED = 0x04, // this space blocks the view
35 FLG_QUEUED = 0x80 // already queued in queue, or border
36 };
37
38 struct los_info
39 {
40 uint8 flags; // FLG_xxx
41 uint8 culled; // culled from "tree"
42 uint8 visible;
43 uint8 pad0;
44
45 sint8 xo, yo; // obscure angle
46 sint8 xe, ye; // angle deviation
47 };
48
49 // temporary storage for the los algorithm,
50 // one los_info for each lightable map space
51 static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
52
53 struct point
54 {
55 sint8 x, y;
56 };
57
58 // minimum size, but must be a power of two
59 #define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
60
61 // a queue of spaces to calculate
62 static point queue [QUEUE_LENGTH];
63 static int q1, q2; // queue start, end
64
65 /*
66 * Clears/initialises the los-array associated to the player
67 * controlling the object.
68 */
69 void
70 player::clear_los (sint8 value)
71 {
72 memset (los, value, sizeof (los));
73 }
74
75 // enqueue a single mapspace, but only if it hasn't
76 // been enqueued yet.
77 static void
78 enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
79 {
80 sint8 x = LOS_X0 + dx;
81 sint8 y = LOS_Y0 + dy;
82
83 los_info &l = los[x][y];
84
85 l.flags |= flags;
86
87 if (l.flags & FLG_QUEUED)
88 return;
89
90 l.flags |= FLG_QUEUED;
91
92 queue[q1].x = dx;
93 queue[q1].y = dy;
94
95 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
96 }
97
98 // run the los algorithm
99 // this is a variant of a spiral los algorithm taken from
100 // http://www.geocities.com/temerra/los_rays.html
101 // which has been simplified and changed considerably, but
102 // still is basically the same algorithm.
103 static void
104 calculate_los (player *pl)
105 {
106 {
107 memset (los, 0, sizeof (los));
108
109 // we keep one line for ourselves, for the border flag
110 // so the client area is actually MAP_CLIENT_(X|Y) - 2
111 int half_x = min (LOS_X0 - 1, pl->ns->mapx / 2);
112 int half_y = min (LOS_Y0 - 1, pl->ns->mapy / 2);
113
114 // create borders, the corners are not touched
115 for (int dx = -half_x; dx <= half_x; ++dx)
116 los [dx + LOS_X0][LOS_Y0 - (half_y + 1)].flags =
117 los [dx + LOS_X0][LOS_Y0 + (half_y + 1)].flags = FLG_QUEUED;
118
119 for (int dy = -half_y; dy <= half_y; ++dy)
120 los [LOS_X0 - (half_x + 1)][dy + LOS_Y0].flags =
121 los [LOS_X0 + (half_x + 1)][dy + LOS_Y0].flags = FLG_QUEUED;
122
123 // now reset the los area and also add blocked flags
124 // which supposedly is faster than doing it inside the
125 // spiral path algorithm below, except when very little
126 // area is visible, in which case it is slower. which evens
127 // out los calculation times between large and small los maps.
128 // apply_lights also iterates over this area, maybe these
129 // two passes could be combined somehow.
130 unordered_mapwalk (pl->observe, -half_x, -half_y, half_x, half_y)
131 {
132 los_info &l = los [LOS_X0 + dx][LOS_Y0 + dy];
133 l.flags = m->at (nx, ny).flags () & P_BLOCKSVIEW ? FLG_BLOCKED : 0;
134 }
135 }
136
137 q1 = 0; q2 = 0; // initialise queue, not strictly required
138 enqueue (0, 0); // enqueue center
139
140 // treat the origin specially
141 los[LOS_X0][LOS_Y0].visible = 1;
142 pl->los[LOS_X0][LOS_Y0] = 0;
143
144 // loop over all enqueued points until the queue is empty
145 // the order in which this is done ensures that we
146 // never touch a mapspace whose input spaces we haven't checked
147 // yet.
148 while (q1 != q2)
149 {
150 sint8 dx = queue[q2].x;
151 sint8 dy = queue[q2].y;
152
153 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
154
155 sint8 x = LOS_X0 + dx;
156 sint8 y = LOS_Y0 + dy;
157
158 los_info &l = los[x][y];
159
160 if (expect_true (l.flags & (FLG_XI | FLG_YI)))
161 {
162 l.culled = 1;
163 l.xo = l.yo = l.xe = l.ye = 0;
164
165 // check contributing spaces, first horizontal
166 if (expect_true (l.flags & FLG_XI))
167 {
168 los_info *xi = &los[x - sign (dx)][y];
169
170 // don't cull unless obscured
171 l.culled &= !xi->visible;
172
173 /* merge input space */
174 if (expect_false (xi->xo || xi->yo))
175 {
176 // The X input can provide two main pieces of information:
177 // 1. Progressive X obscurity.
178 // 2. Recessive Y obscurity.
179
180 // Progressive X obscurity, favouring recessive input angle
181 if (xi->xe > 0 && l.xo == 0)
182 {
183 l.xe = xi->xe - xi->yo;
184 l.ye = xi->ye + xi->yo;
185 l.xo = xi->xo;
186 l.yo = xi->yo;
187 }
188
189 // Recessive Y obscurity
190 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
191 {
192 l.ye = xi->yo + xi->ye;
193 l.xe = xi->xe - xi->yo;
194 l.xo = xi->xo;
195 l.yo = xi->yo;
196 }
197 }
198 }
199
200 // check contributing spaces, last vertical, identical structure
201 if (expect_true (l.flags & FLG_YI))
202 {
203 los_info *yi = &los[x][y - sign (dy)];
204
205 // don't cull unless obscured
206 l.culled &= !yi->visible;
207
208 /* merge input space */
209 if (expect_false (yi->yo || yi->xo))
210 {
211 // The Y input can provide two main pieces of information:
212 // 1. Progressive Y obscurity.
213 // 2. Recessive X obscurity.
214
215 // Progressive Y obscurity, favouring recessive input angle
216 if (yi->ye > 0 && l.yo == 0)
217 {
218 l.ye = yi->ye - yi->xo;
219 l.xe = yi->xe + yi->xo;
220 l.yo = yi->yo;
221 l.xo = yi->xo;
222 }
223
224 // Recessive X obscurity
225 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
226 {
227 l.xe = yi->xo + yi->xe;
228 l.ye = yi->ye - yi->xo;
229 l.yo = yi->yo;
230 l.xo = yi->xo;
231 }
232 }
233 }
234
235 if (l.flags & FLG_BLOCKED)
236 {
237 l.xo = l.xe = abs (dx);
238 l.yo = l.ye = abs (dy);
239
240 // we obscure dependents, but might be visible
241 // copy the los from the square towards the player,
242 // so outward diagonal corners are lit.
243 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
244
245 l.visible = false;
246 }
247 else
248 {
249 // we are not blocked, so calculate visibility, by checking
250 // whether we are inside or outside the shadow
251 l.visible = (l.xe <= 0 || l.xe > l.xo)
252 && (l.ye <= 0 || l.ye > l.yo);
253
254 pl->los[x][y] = l.culled ? LOS_BLOCKED
255 : l.visible ? 0
256 : 3;
257 }
258
259 }
260
261 // Expands by the unit length in each component's current direction.
262 // If a component has no direction, then it is expanded in both of its
263 // positive and negative directions.
264 if (!l.culled)
265 {
266 if (dx >= 0) enqueue (dx + 1, dy, FLG_XI);
267 if (dx <= 0) enqueue (dx - 1, dy, FLG_XI);
268 if (dy >= 0) enqueue (dx, dy + 1, FLG_YI);
269 if (dy <= 0) enqueue (dx, dy - 1, FLG_YI);
270 }
271 }
272 }
273
274 /* radius, distance => lightness adjust */
275 static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
276 static sint8 vision_atten[MAX_VISION + 1][MAX_VISION * 3 / 2 + 1];
277
278 static struct los_init
279 {
280 los_init ()
281 {
282 assert (("QUEUE_LENGTH, MAP_CLIENT_X and MAP_CLIENT_Y *must* be powers of two",
283 !(QUEUE_LENGTH & (QUEUE_LENGTH - 1))));
284
285 /* for lights */
286 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
287 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
288 {
289 // max intensity
290 int intensity = min (LOS_MAX, abs (radius) + 1);
291
292 // actual intensity
293 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
294
295 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
296 ? min (3, intensity)
297 : LOS_MAX - intensity;
298 }
299
300 /* for general vision */
301 for (int radius = 0; radius <= MAX_VISION; ++radius)
302 for (int distance = 0; distance <= MAX_VISION * 3 / 2; ++distance)
303 vision_atten [radius][distance] = distance <= radius ? clamp (lerp (radius, 0, MAX_DARKNESS, 3, 0), 0, 3) : 4;
304 }
305 } los_init;
306
307 sint8
308 los_brighten (sint8 b, sint8 l)
309 {
310 return b == LOS_BLOCKED ? b : min (b, l);
311 }
312
313 sint8
314 los_darken (sint8 b, sint8 l)
315 {
316 return max (b, l);
317 }
318
319 template<sint8 change_it (sint8, sint8)>
320 static void
321 apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
322 {
323 // min or max the circular area around basex, basey
324 dx += LOS_X0;
325 dy += LOS_Y0;
326
327 int hx = pl->ns->mapx / 2;
328 int hy = pl->ns->mapy / 2;
329
330 int ax0 = max (LOS_X0 - hx, dx - light);
331 int ay0 = max (LOS_Y0 - hy, dy - light);
332 int ax1 = min (dx + light, LOS_X0 + hx);
333 int ay1 = min (dy + light, LOS_Y0 + hy);
334
335 for (int ax = ax0; ax <= ax1; ax++)
336 for (int ay = ay0; ay <= ay1; ay++)
337 pl->los[ax][ay] =
338 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
339 }
340
341 /* add light, by finding all (non-null) nearby light sources, then
342 * mark those squares specially.
343 */
344 static void
345 apply_lights (player *pl)
346 {
347 object *op = pl->observe;
348 int darklevel = op->map->darklevel ();
349
350 int half_x = pl->ns->mapx / 2;
351 int half_y = pl->ns->mapy / 2;
352
353 int pass2 = 0; // negative lights have an extra pass
354
355 maprect *rects = pl->observe->map->split_to_tiles (
356 pl->observe->x - half_x - MAX_LIGHT_RADIUS,
357 pl->observe->y - half_y - MAX_LIGHT_RADIUS,
358 pl->observe->x + half_x + MAX_LIGHT_RADIUS + 1,
359 pl->observe->y + half_y + MAX_LIGHT_RADIUS + 1
360 );
361
362 /* If the player can see in the dark, increase light/vision radius */
363 int bonus = op->flag [FLAG_SEE_IN_DARK] ? SEE_IN_DARK_RADIUS : 0;
364
365 if (!darklevel)
366 pass2 = 1;
367 else
368 {
369 /* first, make everything totally dark */
370 for (int dx = -half_x; dx <= half_x; dx++)
371 for (int dy = -half_x; dy <= half_y; dy++)
372 max_it (pl->los[dx + LOS_X0][dy + LOS_Y0], LOS_MAX);
373
374 /*
375 * Only process the area of interest.
376 * the basex, basey values represent the position in the op->contr->los
377 * array. Its easier to just increment them here (and start with the right
378 * value) than to recalculate them down below.
379 */
380 for (maprect *r = rects; r->m; ++r)
381 rect_mapwalk (r, 0, 0)
382 {
383 mapspace &ms = m->at (nx, ny);
384 ms.update ();
385 sint8 light = ms.light;
386
387 if (expect_false (light))
388 if (light < 0)
389 pass2 = 1;
390 else
391 {
392 light = clamp (light + bonus, 0, MAX_LIGHT_RADIUS);
393 apply_light<los_brighten> (pl, dx - pl->observe->x, dy - pl->observe->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
394 }
395 }
396
397 /* grant some vision to the player, based on outside, outdoor, and darklevel */
398 {
399 int light;
400
401 if (!op->map->outdoor) // not outdoor, darkness becomes light radius
402 light = MAX_DARKNESS - op->map->darkness;
403 else if (op->map->darkness > 0) // outdoor and darkness > 0 => use darkness as max radius
404 light = lerp_rd (maptile::outdoor_darkness + 0, 0, MAX_DARKNESS, MAX_DARKNESS - op->map->darkness, 0);
405 else // outdoor and darkness <= 0 => start wide and decrease quickly
406 light = lerp (maptile::outdoor_darkness + op->map->darkness, 0, MAX_DARKNESS, MAX_VISION, 2);
407
408 light = clamp (light + bonus, 0, MAX_VISION);
409
410 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
411 }
412 }
413
414 // possibly do 2nd pass for rare negative glow radii
415 // for effect, those are always considered to be stronger than anything else
416 // but they can't darken a place completely
417 if (pass2)
418 for (maprect *r = rects; r->m; ++r)
419 rect_mapwalk (r, 0, 0)
420 {
421 mapspace &ms = m->at (nx, ny);
422 ms.update ();
423 sint8 light = ms.light;
424
425 if (expect_false (light < 0))
426 {
427 light = clamp (light - bonus, 0, MAX_DARKNESS);
428 apply_light<los_darken> (pl, dx - pl->observe->x, dy - pl->observe->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
429 }
430 }
431 }
432
433 /* blinded_sight() - sets all viewable squares to blocked except
434 * for the one the central one that the player occupies. A little
435 * odd that you can see yourself (and what your standing on), but
436 * really need for any reasonable game play.
437 */
438 static void
439 blinded_sight (player *pl)
440 {
441 pl->los[LOS_X0][LOS_Y0] = 1;
442 }
443
444 /*
445 * update_los() recalculates the array which specifies what is
446 * visible for the given player-object.
447 */
448 void
449 player::update_los ()
450 {
451 if (ob->flag [FLAG_REMOVED])//D really needed?
452 return;
453
454 if (ob->flag [FLAG_WIZLOOK])
455 clear_los (0);
456 else if (observe->flag [FLAG_BLIND]) /* player is blind */
457 {
458 clear_los ();
459 blinded_sight (this);
460 }
461 else
462 {
463 clear_los ();
464 calculate_los (this);
465 apply_lights (this);
466 }
467
468 if (observe->flag [FLAG_XRAYS])
469 for (int dx = -2; dx <= 2; dx++)
470 for (int dy = -2; dy <= 2; dy++)
471 min_it (los[dx + LOS_X0][dy + LOS_Y0], 1);
472 }
473
474 /* update all_map_los is like update_all_los below,
475 * but updates everyone on the map, no matter where they
476 * are. This generally should not be used, as a per
477 * specific map change doesn't make much sense when tiling
478 * is considered (lowering darkness would certainly be a
479 * strange effect if done on a tile map, as it makes
480 * the distinction between maps much more obvious to the
481 * players, which is should not be.
482 * Currently, this function is called from the
483 * change_map_light function
484 */
485 void
486 update_all_map_los (maptile *map)
487 {
488 for_all_players_on_map (pl, map)
489 pl->do_los = 1;
490 }
491
492 /*
493 * This function makes sure that update_los() will be called for all
494 * players on the given map within the next frame.
495 * It is triggered by removal or inserting of objects which blocks
496 * the sight in the map.
497 * Modified by MSW 2001-07-12 to take a coordinate of the changed
498 * position, and to also take map tiling into account. This change
499 * means that just being on the same map is not sufficient - the
500 * space that changes must be withing your viewable area.
501 *
502 * map is the map that changed, x and y are the coordinates.
503 */
504 void
505 update_all_los (const maptile *map, int x, int y)
506 {
507 // no need to do anything if we don't have darkness
508 if (map->darklevel () <= 0)
509 return;
510
511 map->at (x, y).invalidate ();
512
513 for_all_players (pl)
514 {
515 /* Player should not have a null map, but do this
516 * check as a safety
517 */
518 if (!pl->ob || !pl->ob->map || !pl->ns)
519 continue;
520
521 /* Same map is simple case - see if pl is close enough.
522 * Note in all cases, we did the check for same map first,
523 * and then see if the player is close enough and update
524 * los if that is the case. If the player is on the
525 * corresponding map, but not close enough, then the
526 * player can't be on another map that may be closer,
527 * so by setting it up this way, we trim processing
528 * some.
529 */
530 if (pl->ob->map == map)
531 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
532 pl->do_los = 1;
533
534 /* Now we check to see if player is on adjacent
535 * maps to the one that changed and also within
536 * view. The tile_maps[] could be null, but in that
537 * case it should never match the pl->ob->map, so
538 * we want ever try to dereference any of the data in it.
539 *
540 * The logic for 0 and 3 is to see how far the player is
541 * from the edge of the map (height/width) - pl->ob->(x,y)
542 * and to add current position on this map - that gives a
543 * distance.
544 * For 1 and 2, we check to see how far the given
545 * coordinate (x,y) is from the corresponding edge,
546 * and then add the players location, which gives
547 * a distance.
548 */
549 else if (pl->ob->map == map->tile_map[0])
550 {
551 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
552 pl->do_los = 1;
553 }
554 else if (pl->ob->map == map->tile_map[2])
555 {
556 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
557 pl->do_los = 1;
558 }
559 else if (pl->ob->map == map->tile_map[1])
560 {
561 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
562 pl->do_los = 1;
563 }
564 else if (pl->ob->map == map->tile_map[3])
565 {
566 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
567 pl->do_los = 1;
568 }
569 }
570 }
571
572 static const int season_darkness[5][HOURS_PER_DAY] = {
573 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
574 { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
575 { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
576 { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
577 { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
578 { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
579 };
580
581 /*
582 * Tell players the time and compute the darkness level for all maps in the game.
583 * MUST be called exactly once per hour.
584 */
585 void
586 maptile::adjust_daylight ()
587 {
588 timeofday_t tod;
589
590 get_tod (&tod);
591
592 // log the time to log-1 every hour, and to chat every day
593 {
594 char todbuf[512];
595
596 format_tod (todbuf, sizeof (todbuf), &tod);
597
598 for_all_players (pl)
599 pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
600 }
601
602 /* If the light level isn't changing, no reason to do all
603 * the work below.
604 */
605 sint8 new_darkness = season_darkness[tod.season][tod.hour];
606
607 if (new_darkness == maptile::outdoor_darkness)
608 return;
609
610 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
611 new_darkness > maptile::outdoor_darkness
612 ? "It becomes darker."
613 : "It becomes brighter.");
614
615 maptile::outdoor_darkness = new_darkness;
616
617 // we simply update the los for all players, which is unnecessarily
618 // costly, but should do for the moment.
619 for_all_players (pl)
620 pl->do_los = 1;
621 }
622
623 /*
624 * make_sure_seen: The object is supposed to be visible through walls, thus
625 * check if any players are nearby, and edit their LOS array.
626 */
627 void
628 make_sure_seen (const object *op)
629 {
630 for_all_players (pl)
631 if (pl->ob->map == op->map &&
632 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
633 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
634 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_Y0] = 0;
635 }
636
637 /*
638 * make_sure_not_seen: The object which is supposed to be visible through
639 * walls has just been removed from the map, so update the los of any
640 * players within its range
641 */
642 void
643 make_sure_not_seen (const object *op)
644 {
645 for_all_players (pl)
646 if (pl->ob->map == op->map &&
647 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
648 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
649 pl->do_los = 1;
650 }
651