ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
Revision: 1.78
Committed: Wed Dec 5 19:03:26 2018 UTC (5 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 1.77: +8 -8 lines
Log Message:
some bugfixes

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
6 *
7 * Deliantra is free software: you can redistribute it and/or modify it under
8 * the terms of the Affero GNU General Public License as published by the
9 * Free Software Foundation, either version 3 of the License, or (at your
10 * option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the Affero GNU General Public License
18 * and the GNU General Public License along with this program. If not, see
19 * <http://www.gnu.org/licenses/>.
20 *
21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */
23
24 #include <global.h>
25 #include <cmath>
26
27 #define SEE_IN_DARK_RADIUS 2
28 #define MAX_VISION 10 // maximum visible radius
29
30 // los flags
31 enum {
32 FLG_XI = 0x01, // we have an x-parent
33 FLG_YI = 0x02, // we have an y-parent
34 FLG_BLOCKED = 0x04, // this space blocks the view
35 FLG_QUEUED = 0x80 // already queued in queue, or border
36 };
37
38 // it is important for performance reasons that this structure
39 // has a size easily computable by the cpu (*8 is perfect).
40 // it is possible to move culled and visible into flags, at
41 // some speed loss.
42 struct los_info
43 {
44 uint8 flags; // FLG_xxx
45 uint8 culled; // culled from "tree"
46 uint8 visible;
47 uint8 pad0;
48
49 sint8 xo, yo; // obscure angle
50 sint8 xe, ye; // angle deviation
51 };
52
53 // temporary storage for the los algorithm,
54 // one los_info for each lightable map space
55 static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
56
57 struct point8
58 {
59 sint8 x, y;
60 };
61
62 // minimum size, but must be a power of two
63 #define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
64
65 // a queue of spaces to calculate
66 static point8 queue [QUEUE_LENGTH];
67 static int q1, q2; // queue start, end
68
69 /*
70 * Clears/initialises the los-array associated to the player
71 * controlling the object.
72 */
73 void
74 player::clear_los (sint8 value)
75 {
76 memset (los, value, sizeof (los));
77 }
78
79 // enqueue a single mapspace, but only if it hasn't
80 // been enqueued yet.
81 static void
82 enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
83 {
84 sint8 x = LOS_X0 + dx;
85 sint8 y = LOS_Y0 + dy;
86
87 los_info &l = los[x][y];
88
89 l.flags |= flags;
90
91 if (ecb_expect_false (l.flags & FLG_QUEUED))
92 return;
93
94 l.flags |= FLG_QUEUED;
95
96 queue[q1].x = dx;
97 queue[q1].y = dy;
98
99 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
100 }
101
102 // run the los algorithm
103 // this is a variant of a spiral los algorithm taken from
104 // http://www.geocities.com/temerra/los_rays.html
105 // which has been simplified and changed considerably, but
106 // still is basically the same algorithm.
107 static void
108 calculate_los (player *pl)
109 {
110 {
111 memset (los, 0, sizeof (los));
112
113 // we keep one line for ourselves, for the border flag
114 // so the client area is actually MAP_CLIENT_(X|Y) - 2
115 int half_x = min (LOS_X0 - 1, pl->ns->mapx / 2);
116 int half_y = min (LOS_Y0 - 1, pl->ns->mapy / 2);
117
118 // create borders, the corners are not touched
119 for (int dx = -half_x; dx <= half_x; ++dx)
120 los [dx + LOS_X0][LOS_Y0 - (half_y + 1)].flags =
121 los [dx + LOS_X0][LOS_Y0 + (half_y + 1)].flags = FLG_QUEUED;
122
123 for (int dy = -half_y; dy <= half_y; ++dy)
124 los [LOS_X0 - (half_x + 1)][dy + LOS_Y0].flags =
125 los [LOS_X0 + (half_x + 1)][dy + LOS_Y0].flags = FLG_QUEUED;
126
127 // now reset the los area and also add blocked flags
128 // which supposedly is faster than doing it inside the
129 // spiral path algorithm below, except when very little
130 // area is visible, in which case it is slower. which evens
131 // out los calculation times between large and small los maps.
132 // apply_lights also iterates over this area, maybe these
133 // two passes could be combined somehow.
134 unordered_mapwalk (mapwalk_buf, pl->viewpoint, -half_x, -half_y, half_x, half_y)
135 {
136 los_info &l = los [LOS_X0 + dx][LOS_Y0 + dy];
137 l.flags = m->at (nx, ny).flags () & P_BLOCKSVIEW ? FLG_BLOCKED : 0;
138 }
139 }
140
141 q1 = 0; q2 = 0; // initialise queue, not strictly required
142 enqueue (0, 0); // enqueue center
143
144 // treat the origin specially
145 los[LOS_X0][LOS_Y0].visible = 1;
146 pl->los[LOS_X0][LOS_Y0] = 0;
147
148 // loop over all enqueued points until the queue is empty
149 // the order in which this is done ensures that we
150 // never touch a mapspace whose input spaces we haven't checked
151 // yet.
152 while (q1 != q2)
153 {
154 sint8 dx = queue[q2].x;
155 sint8 dy = queue[q2].y;
156
157 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
158
159 sint8 x = LOS_X0 + dx;
160 sint8 y = LOS_Y0 + dy;
161
162 los_info &l = los[x][y];
163
164 if (ecb_expect_true (l.flags & (FLG_XI | FLG_YI)))
165 {
166 l.culled = 1;
167 l.xo = l.yo = l.xe = l.ye = 0;
168
169 // check contributing spaces, first horizontal
170 if (ecb_expect_true (l.flags & FLG_XI))
171 {
172 los_info *xi = &los[x - sign (dx)][y];
173
174 // don't cull unless obscured
175 l.culled &= !xi->visible;
176
177 /* merge input space */
178 if (ecb_expect_false (xi->xo || xi->yo))
179 {
180 // The X input can provide two main pieces of information:
181 // 1. Progressive X obscurity.
182 // 2. Recessive Y obscurity.
183
184 // Progressive X obscurity, favouring recessive input angle
185 if (xi->xe > 0 && l.xo == 0)
186 {
187 l.xe = xi->xe - xi->yo;
188 l.ye = xi->ye + xi->yo;
189 l.xo = xi->xo;
190 l.yo = xi->yo;
191 }
192
193 // Recessive Y obscurity
194 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
195 {
196 l.ye = xi->yo + xi->ye;
197 l.xe = xi->xe - xi->yo;
198 l.xo = xi->xo;
199 l.yo = xi->yo;
200 }
201 }
202 }
203
204 // check contributing spaces, last vertical, identical structure
205 if (ecb_expect_true (l.flags & FLG_YI))
206 {
207 los_info *yi = &los[x][y - sign (dy)];
208
209 // don't cull unless obscured
210 l.culled &= !yi->visible;
211
212 /* merge input space */
213 if (ecb_expect_false (yi->yo || yi->xo))
214 {
215 // The Y input can provide two main pieces of information:
216 // 1. Progressive Y obscurity.
217 // 2. Recessive X obscurity.
218
219 // Progressive Y obscurity, favouring recessive input angle
220 if (yi->ye > 0 && l.yo == 0)
221 {
222 l.ye = yi->ye - yi->xo;
223 l.xe = yi->xe + yi->xo;
224 l.yo = yi->yo;
225 l.xo = yi->xo;
226 }
227
228 // Recessive X obscurity
229 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
230 {
231 l.xe = yi->xo + yi->xe;
232 l.ye = yi->ye - yi->xo;
233 l.yo = yi->yo;
234 l.xo = yi->xo;
235 }
236 }
237 }
238
239 if (l.flags & FLG_BLOCKED)
240 {
241 l.xo = l.xe = abs (dx);
242 l.yo = l.ye = abs (dy);
243
244 // we obscure dependents, but might be visible
245 // copy the los from the square towards the player,
246 // so outward diagonal corners are lit.
247 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
248
249 l.visible = false;
250 }
251 else
252 {
253 // we are not blocked, so calculate visibility, by checking
254 // whether we are inside or outside the shadow
255 l.visible = (l.xe <= 0 || l.xe > l.xo)
256 && (l.ye <= 0 || l.ye > l.yo);
257
258 pl->los[x][y] = l.culled ? LOS_BLOCKED
259 : l.visible ? 0
260 : 3;
261 }
262
263 }
264
265 // Expands by the unit length in each component's current direction.
266 // If a component has no direction, then it is expanded in both of its
267 // positive and negative directions.
268 if (!l.culled)
269 {
270 if (dx >= 0) enqueue (dx + 1, dy, FLG_XI);
271 if (dx <= 0) enqueue (dx - 1, dy, FLG_XI);
272 if (dy >= 0) enqueue (dx, dy + 1, FLG_YI);
273 if (dy <= 0) enqueue (dx, dy - 1, FLG_YI);
274 }
275 }
276 }
277
278 /* radius, distance => lightness adjust */
279 static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
280 static sint8 vision_atten[MAX_VISION + 1][MAX_VISION * 3 / 2 + 1];
281
282 static struct los_init
283 {
284 los_init ()
285 {
286 assert (("QUEUE_LENGTH, MAP_CLIENT_X and MAP_CLIENT_Y *must* be powers of two",
287 !(QUEUE_LENGTH & (QUEUE_LENGTH - 1))));
288
289 /* for lights */
290 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
291 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
292 {
293 // max intensity
294 int intensity = min (LOS_MAX, abs (radius) + 1);
295
296 // actual intensity
297 intensity = max (0, lerp_ru (distance, 0, abs (radius) + 1, intensity, 0));
298
299 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
300 ? min (3, intensity)
301 : LOS_MAX - intensity;
302 }
303
304 /* for general vision */
305 for (int radius = 0; radius <= MAX_VISION; ++radius)
306 for (int distance = 0; distance <= MAX_VISION * 3 / 2; ++distance)
307 vision_atten [radius][distance] = distance <= radius ? clamp (lerp (radius, 0, MAX_DARKNESS, 3, 0), 0, 3) : 4;
308 }
309 } los_init;
310
311 // the following functions cannot be static, due to c++ stupidity :/
312 namespace {
313 // brighten area, ignore los
314 sint8
315 los_brighten_nolos (sint8 b, sint8 l)
316 {
317 return min (b, l);
318 }
319
320 // brighten area, but respect los
321 sint8
322 los_brighten (sint8 b, sint8 l)
323 {
324 return b == LOS_BLOCKED ? b : min (b, l);
325 }
326
327 // darken area, respect los
328 sint8
329 los_darken (sint8 b, sint8 l)
330 {
331 return max (b, l);
332 }
333 };
334
335 template<sint8 change_it (sint8, sint8)>
336 static void
337 apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
338 {
339 // min or max the circular area around basex, basey
340 dx += LOS_X0;
341 dy += LOS_Y0;
342
343 int hx = pl->ns->mapx / 2;
344 int hy = pl->ns->mapy / 2;
345
346 int ax0 = max (LOS_X0 - hx, dx - light);
347 int ay0 = max (LOS_Y0 - hy, dy - light);
348 int ax1 = min (dx + light, LOS_X0 + hx);
349 int ay1 = min (dy + light, LOS_Y0 + hy);
350
351 for (int ax = ax0; ax <= ax1; ax++)
352 for (int ay = ay0; ay <= ay1; ay++)
353 pl->los[ax][ay] =
354 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
355 }
356
357 /* add light, by finding all (non-null) nearby light sources, then
358 * mark those squares specially.
359 */
360 static void
361 apply_lights (player *pl)
362 {
363 object *op = pl->viewpoint;
364 int darklevel = op->map->darklevel ();
365
366 int half_x = pl->ns->mapx / 2;
367 int half_y = pl->ns->mapy / 2;
368
369 int pass2 = 0; // negative lights have an extra pass
370
371 maprect *rects = pl->viewpoint->map->split_to_tiles (
372 mapwalk_buf,
373 pl->viewpoint->x - half_x - MAX_LIGHT_RADIUS,
374 pl->viewpoint->y - half_y - MAX_LIGHT_RADIUS,
375 pl->viewpoint->x + half_x + MAX_LIGHT_RADIUS + 1,
376 pl->viewpoint->y + half_y + MAX_LIGHT_RADIUS + 1
377 );
378
379 /* If the player can see in the dark, increase light/vision radius */
380 int bonus = op->flag [FLAG_SEE_IN_DARK] ? SEE_IN_DARK_RADIUS : 0;
381
382 if (!darklevel)
383 pass2 = 1;
384 else
385 {
386 /* first, make everything totally dark */
387 for (int dx = -half_x; dx <= half_x; dx++)
388 for (int dy = -half_x; dy <= half_y; dy++)
389 max_it (pl->los[dx + LOS_X0][dy + LOS_Y0], LOS_MAX);
390
391 /*
392 * Only process the area of interest.
393 * the basex, basey values represent the position in the op->contr->los
394 * array. Its easier to just increment them here (and start with the right
395 * value) than to recalculate them down below.
396 */
397 for (maprect *r = rects; r->m; ++r)
398 rect_mapwalk (r, 0, 0)
399 {
400 mapspace &ms = m->at (nx, ny);
401 ms.update ();
402 sint8 light = ms.light;
403
404 if (ecb_expect_false (light))
405 if (light < 0)
406 pass2 = 1;
407 else
408 {
409 light = clamp (light + bonus, 0, MAX_LIGHT_RADIUS);
410 apply_light<los_brighten> (pl, dx - pl->viewpoint->x, dy - pl->viewpoint->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
411 }
412 }
413
414 /* grant some vision to the player, based on outside, outdoor, and darklevel */
415 {
416 int light;
417
418 if (!op->map->outdoor) // not outdoor, darkness becomes light radius
419 light = MAX_DARKNESS - op->map->darkness;
420 else if (op->map->darkness > 0) // outdoor and darkness > 0 => use darkness as max radius
421 light = lerp_rd (maptile::outdoor_darkness + 0, 0, MAX_DARKNESS, MAX_DARKNESS - op->map->darkness, 0);
422 else // outdoor and darkness <= 0 => start wide and decrease quickly
423 light = lerp (maptile::outdoor_darkness + op->map->darkness, 0, MAX_DARKNESS, MAX_VISION, 2);
424
425 light = clamp (light + bonus, 0, MAX_VISION);
426
427 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
428 }
429 }
430
431 // when we fly high, we have some minimum viewable area around us, like x-ray
432 if (op->move_type & MOVE_FLY_HIGH)
433 apply_light<los_brighten_nolos> (pl, 0, 0, 9, vision_atten [9]);
434
435 // possibly do 2nd pass for rare negative glow radii
436 // for effect, those are always considered to be stronger than anything else
437 // but they can't darken a place completely
438 if (pass2)
439 for (maprect *r = rects; r->m; ++r)
440 rect_mapwalk (r, 0, 0)
441 {
442 mapspace &ms = m->at (nx, ny);
443 ms.update ();
444 sint8 light = ms.light;
445
446 if (ecb_expect_false (light < 0))
447 {
448 light = clamp (light - bonus, 0, MAX_DARKNESS);
449 apply_light<los_darken> (pl, dx - pl->viewpoint->x, dy - pl->viewpoint->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
450 }
451 }
452 }
453
454 /* blinded_sight() - sets all viewable squares to blocked except
455 * for the one the central one that the player occupies. A little
456 * odd that you can see yourself (and what your standing on), but
457 * really need for any reasonable game play.
458 */
459 static void
460 blinded_sight (player *pl)
461 {
462 pl->los[LOS_X0][LOS_Y0] = 1;
463 }
464
465 /*
466 * update_los() recalculates the array which specifies what is
467 * visible for the given player-object.
468 */
469 void
470 player::update_los ()
471 {
472 if (ob->flag [FLAG_REMOVED])//D really needed?
473 return;
474
475 if (ob->flag [FLAG_WIZLOOK])
476 clear_los (0);
477 else if (viewpoint->flag [FLAG_BLIND]) /* player is blind */
478 {
479 clear_los ();
480 blinded_sight (this);
481 }
482 else
483 {
484 clear_los ();
485 calculate_los (this);
486 apply_lights (this);
487 }
488
489 if (viewpoint->flag [FLAG_XRAYS])
490 for (int dx = -2; dx <= 2; dx++)
491 for (int dy = -2; dy <= 2; dy++)
492 min_it (los[dx + LOS_X0][dy + LOS_Y0], 1);
493 }
494
495 /* update all_map_los is like update_all_los below,
496 * but updates everyone on the map, no matter where they
497 * are. This generally should not be used, as a per
498 * specific map change doesn't make much sense when tiling
499 * is considered (lowering darkness would certainly be a
500 * strange effect if done on a tile map, as it makes
501 * the distinction between maps much more obvious to the
502 * players, which is should not be.
503 * Currently, this function is called from the
504 * change_map_light function
505 */
506 void
507 update_all_map_los (maptile *map)
508 {
509 for_all_players_on_map (pl, map)
510 pl->do_los = 1;
511 }
512
513 /*
514 * This function makes sure that update_los() will be called for all
515 * players on the given map within the next frame.
516 * It is triggered by removal or inserting of objects which blocks
517 * the sight in the map.
518 * Modified by MSW 2001-07-12 to take a coordinate of the changed
519 * position, and to also take map tiling into account. This change
520 * means that just being on the same map is not sufficient - the
521 * space that changes must be withing your viewable area.
522 *
523 * map is the map that changed, x and y are the coordinates.
524 */
525 void
526 update_all_los (const maptile *map, int x, int y)
527 {
528 map->at (x, y).invalidate ();
529
530 for_all_players (pl)
531 {
532 /* Player should not have a null map, but do this
533 * check as a safety
534 */
535 if (!pl->ob || !pl->ob->map || !pl->ns)
536 continue;
537
538 rv_vector rv;
539
540 get_rangevector_from_mapcoord (pl->ob->map, x, y, pl->ob, &rv);
541
542 if ((abs (rv.distance_x) <= pl->ns->mapx / 2) && (abs (rv.distance_y) <= pl->ns->mapy / 2))
543 pl->do_los = 1;
544 }
545 }
546
547 static const int season_darkness[5][HOURS_PER_DAY] = {
548 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
549 { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
550 { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
551 { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
552 { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
553 { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
554 };
555
556 /*
557 * Tell players the time and compute the darkness level for all maps in the game.
558 * MUST be called exactly once per hour.
559 */
560 void
561 maptile::adjust_daylight ()
562 {
563 timeofday_t tod;
564
565 get_tod (&tod);
566
567 // log the time to log-1 every hour, and to chat every day
568 {
569 char todbuf[512];
570
571 format_tod (todbuf, sizeof (todbuf), &tod);
572
573 for_all_players (pl)
574 pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
575 }
576
577 /* If the light level isn't changing, no reason to do all
578 * the work below.
579 */
580 sint8 new_darkness = season_darkness[tod.season][tod.hour];
581
582 if (new_darkness == maptile::outdoor_darkness)
583 return;
584
585 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
586 new_darkness > maptile::outdoor_darkness
587 ? "It becomes darker."
588 : "It becomes brighter.");
589
590 maptile::outdoor_darkness = new_darkness;
591
592 // we simply update the los for all players, which is unnecessarily
593 // costly, but should do for the moment.
594 for_all_players (pl)
595 pl->do_los = 1;
596 }
597
598 /*
599 * make_sure_seen: The object is supposed to be visible through walls, thus
600 * check if any players are nearby, and edit their LOS array.
601 */
602 void
603 make_sure_seen (const object *op)
604 {
605 for_all_players (pl)
606 if (pl->ob->map == op->map &&
607 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
608 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
609 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_Y0] = 0;
610 }
611
612 /*
613 * make_sure_not_seen: The object which is supposed to be visible through
614 * walls has just been removed from the map, so update the los of any
615 * players within its range
616 */
617 void
618 make_sure_not_seen (const object *op)
619 {
620 for_all_players (pl)
621 if (pl->ob->map == op->map &&
622 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
623 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
624 pl->do_los = 1;
625 }
626