ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.35
Committed: Fri Jan 19 22:47:57 2007 UTC (17 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.34: +5 -3 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 #ifndef UTIL_H__
2     #define UTIL_H__
3    
4 root 1.2 #if __GNUC__ >= 3
5     # define is_constant(c) __builtin_constant_p (c)
6     #else
7     # define is_constant(c) 0
8     #endif
9    
10 root 1.11 #include <cstddef>
11 root 1.28 #include <cmath>
12 root 1.25 #include <new>
13     #include <vector>
14 root 1.11
15     #include <glib.h>
16    
17 root 1.25 #include <shstr.h>
18     #include <traits.h>
19    
20 root 1.14 // use a gcc extension for auto declarations until ISO C++ sanctifies them
21     #define AUTODECL(var,expr) typeof(expr) var = (expr)
22    
23 root 1.26 // very ugly macro that basicaly declares and initialises a variable
24     // that is in scope for the next statement only
25     // works only for stuff that can be assigned 0 and converts to false
26     // (note: works great for pointers)
27     // most ugly macro I ever wrote
28     #define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
29    
30 root 1.27 // in range including end
31     #define IN_RANGE_INC(val,beg,end) \
32     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
33    
34     // in range excluding end
35     #define IN_RANGE_EXC(val,beg,end) \
36     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
37    
38 root 1.31 void fork_abort (const char *msg);
39    
40 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
41     // as a is often a constant while b is the variable. it is still a bug, though.
42     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
43     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
44     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
45 root 1.32
46     template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
47    
48 root 1.28 // this is much faster than crossfires original algorithm
49     // on modern cpus
50     inline int
51     isqrt (int n)
52     {
53     return (int)sqrtf ((float)n);
54     }
55    
56     // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
57     #if 0
58     // and has a max. error of 6 in the range -100..+100.
59     #else
60     // and has a max. error of 9 in the range -100..+100.
61     #endif
62     inline int
63     idistance (int dx, int dy)
64     {
65     unsigned int dx_ = abs (dx);
66     unsigned int dy_ = abs (dy);
67    
68     #if 0
69     return dx_ > dy_
70     ? (dx_ * 61685 + dy_ * 26870) >> 16
71     : (dy_ * 61685 + dx_ * 26870) >> 16;
72     #else
73 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
74 root 1.28 #endif
75     }
76    
77 root 1.29 /*
78     * absdir(int): Returns a number between 1 and 8, which represent
79     * the "absolute" direction of a number (it actually takes care of
80     * "overflow" in previous calculations of a direction).
81     */
82     inline int
83     absdir (int d)
84     {
85     return ((d - 1) & 7) + 1;
86     }
87 root 1.28
88 root 1.1 // makes dynamically allocated objects zero-initialised
89     struct zero_initialised
90     {
91 root 1.11 void *operator new (size_t s, void *p)
92     {
93     memset (p, 0, s);
94     return p;
95     }
96    
97     void *operator new (size_t s)
98     {
99     return g_slice_alloc0 (s);
100     }
101    
102     void *operator new[] (size_t s)
103     {
104     return g_slice_alloc0 (s);
105     }
106    
107     void operator delete (void *p, size_t s)
108     {
109     g_slice_free1 (s, p);
110     }
111    
112     void operator delete[] (void *p, size_t s)
113     {
114     g_slice_free1 (s, p);
115     }
116     };
117    
118 root 1.20 void *salloc_ (int n) throw (std::bad_alloc);
119     void *salloc_ (int n, void *src) throw (std::bad_alloc);
120    
121 root 1.12 // strictly the same as g_slice_alloc, but never returns 0
122 root 1.20 template<typename T>
123     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
124    
125 root 1.17 // also copies src into the new area, like "memdup"
126 root 1.18 // if src is 0, clears the memory
127     template<typename T>
128 root 1.20 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
129 root 1.18
130 root 1.21 // clears the memory
131     template<typename T>
132     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
133    
134 root 1.12 // for symmetry
135 root 1.18 template<typename T>
136 root 1.20 inline void sfree (T *ptr, int n = 1) throw ()
137 root 1.12 {
138 root 1.20 g_slice_free1 (n * sizeof (T), (void *)ptr);
139 root 1.12 }
140 root 1.11
141     // a STL-compatible allocator that uses g_slice
142     // boy, this is verbose
143     template<typename Tp>
144     struct slice_allocator
145     {
146     typedef size_t size_type;
147     typedef ptrdiff_t difference_type;
148     typedef Tp *pointer;
149     typedef const Tp *const_pointer;
150     typedef Tp &reference;
151     typedef const Tp &const_reference;
152     typedef Tp value_type;
153    
154     template <class U>
155     struct rebind
156     {
157     typedef slice_allocator<U> other;
158     };
159    
160     slice_allocator () throw () { }
161     slice_allocator (const slice_allocator &o) throw () { }
162     template<typename Tp2>
163     slice_allocator (const slice_allocator<Tp2> &) throw () { }
164    
165     ~slice_allocator () { }
166    
167     pointer address (reference x) const { return &x; }
168     const_pointer address (const_reference x) const { return &x; }
169    
170     pointer allocate (size_type n, const_pointer = 0)
171     {
172 root 1.18 return salloc<Tp> (n);
173 root 1.11 }
174    
175     void deallocate (pointer p, size_type n)
176     {
177 root 1.19 sfree<Tp> (p, n);
178 root 1.11 }
179    
180     size_type max_size ()const throw ()
181     {
182     return size_t (-1) / sizeof (Tp);
183     }
184    
185     void construct (pointer p, const Tp &val)
186     {
187     ::new (p) Tp (val);
188     }
189    
190     void destroy (pointer p)
191     {
192     p->~Tp ();
193     }
194 root 1.1 };
195    
196 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
197     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
198     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
199     struct tausworthe_random_generator
200     {
201 root 1.34 // generator
202 root 1.32 uint32_t state [4];
203    
204 root 1.34 void operator =(const tausworthe_random_generator &src)
205     {
206     state [0] = src.state [0];
207     state [1] = src.state [1];
208     state [2] = src.state [2];
209     state [3] = src.state [3];
210     }
211    
212     void seed (uint32_t seed);
213 root 1.32 uint32_t next ();
214    
215 root 1.34 // uniform distribution
216 root 1.32 uint32_t operator ()(uint32_t r_max)
217     {
218 root 1.34 return is_constant (r_max)
219     ? this->next () % r_max
220     : get_range (r_max);
221 root 1.32 }
222    
223     // return a number within (min .. max)
224     int operator () (int r_min, int r_max)
225     {
226 root 1.34 return is_constant (r_min) && is_constant (r_max)
227     ? r_min + (*this) (max (r_max - r_min + 1, 1))
228     : get_range (r_min, r_max);
229 root 1.32 }
230    
231     double operator ()()
232     {
233 root 1.34 return this->next () / (double)0xFFFFFFFFU;
234 root 1.32 }
235 root 1.34
236     protected:
237     uint32_t get_range (uint32_t r_max);
238     int get_range (int r_min, int r_max);
239 root 1.32 };
240    
241     typedef tausworthe_random_generator rand_gen;
242    
243     extern rand_gen rndm;
244    
245 root 1.7 template<class T>
246     struct refptr
247     {
248     T *p;
249    
250     refptr () : p(0) { }
251     refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); }
252     refptr (T *p) : p(p) { if (p) p->refcnt_inc (); }
253     ~refptr () { if (p) p->refcnt_dec (); }
254    
255     const refptr<T> &operator =(T *o)
256     {
257     if (p) p->refcnt_dec ();
258     p = o;
259     if (p) p->refcnt_inc ();
260    
261     return *this;
262     }
263    
264     const refptr<T> &operator =(const refptr<T> o)
265     {
266     *this = o.p;
267     return *this;
268     }
269    
270     T &operator * () const { return *p; }
271     T *operator ->() const { return p; }
272    
273     operator T *() const { return p; }
274     };
275    
276 root 1.24 typedef refptr<maptile> maptile_ptr;
277 root 1.22 typedef refptr<object> object_ptr;
278     typedef refptr<archetype> arch_ptr;
279 root 1.24 typedef refptr<client> client_ptr;
280     typedef refptr<player> player_ptr;
281 root 1.22
282 root 1.4 struct str_hash
283     {
284     std::size_t operator ()(const char *s) const
285     {
286     unsigned long hash = 0;
287    
288     /* use the one-at-a-time hash function, which supposedly is
289     * better than the djb2-like one used by perl5.005, but
290     * certainly is better then the bug used here before.
291     * see http://burtleburtle.net/bob/hash/doobs.html
292     */
293     while (*s)
294     {
295     hash += *s++;
296     hash += hash << 10;
297     hash ^= hash >> 6;
298     }
299    
300     hash += hash << 3;
301     hash ^= hash >> 11;
302     hash += hash << 15;
303    
304     return hash;
305     }
306     };
307    
308     struct str_equal
309     {
310     bool operator ()(const char *a, const char *b) const
311     {
312     return !strcmp (a, b);
313     }
314     };
315    
316 root 1.26 template<class T>
317     struct unordered_vector : std::vector<T, slice_allocator<T> >
318 root 1.6 {
319 root 1.11 typedef typename unordered_vector::iterator iterator;
320 root 1.6
321     void erase (unsigned int pos)
322     {
323     if (pos < this->size () - 1)
324     (*this)[pos] = (*this)[this->size () - 1];
325    
326     this->pop_back ();
327     }
328    
329     void erase (iterator i)
330     {
331     erase ((unsigned int )(i - this->begin ()));
332     }
333     };
334    
335 root 1.26 template<class T, int T::* index>
336     struct object_vector : std::vector<T *, slice_allocator<T *> >
337     {
338     void insert (T *obj)
339     {
340     assert (!(obj->*index));
341     push_back (obj);
342     obj->*index = this->size ();
343     }
344    
345     void insert (T &obj)
346     {
347     insert (&obj);
348     }
349    
350     void erase (T *obj)
351     {
352     assert (obj->*index);
353     int pos = obj->*index;
354     obj->*index = 0;
355    
356     if (pos < this->size ())
357     {
358     (*this)[pos - 1] = (*this)[this->size () - 1];
359     (*this)[pos - 1]->*index = pos;
360     }
361    
362     this->pop_back ();
363     }
364    
365     void erase (T &obj)
366     {
367     errase (&obj);
368     }
369     };
370    
371 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
372     void assign (char *dst, const char *src, int maxlen);
373    
374     // type-safe version of assign
375 root 1.9 template<int N>
376     inline void assign (char (&dst)[N], const char *src)
377     {
378 root 1.10 assign ((char *)&dst, src, N);
379 root 1.9 }
380    
381 root 1.17 typedef double tstamp;
382    
383     // return current time as timestampe
384     tstamp now ();
385    
386 root 1.25 int similar_direction (int a, int b);
387    
388 root 1.1 #endif
389