ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.36
Committed: Thu Jan 25 03:54:45 2007 UTC (17 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.35: +6 -0 lines
Log Message:
added checkrusage extension

File Contents

# User Rev Content
1 root 1.1 #ifndef UTIL_H__
2     #define UTIL_H__
3    
4 root 1.36 //#define PREFER_MALLOC
5    
6 root 1.2 #if __GNUC__ >= 3
7     # define is_constant(c) __builtin_constant_p (c)
8     #else
9     # define is_constant(c) 0
10     #endif
11    
12 root 1.11 #include <cstddef>
13 root 1.28 #include <cmath>
14 root 1.25 #include <new>
15     #include <vector>
16 root 1.11
17     #include <glib.h>
18    
19 root 1.25 #include <shstr.h>
20     #include <traits.h>
21    
22 root 1.14 // use a gcc extension for auto declarations until ISO C++ sanctifies them
23     #define AUTODECL(var,expr) typeof(expr) var = (expr)
24    
25 root 1.26 // very ugly macro that basicaly declares and initialises a variable
26     // that is in scope for the next statement only
27     // works only for stuff that can be assigned 0 and converts to false
28     // (note: works great for pointers)
29     // most ugly macro I ever wrote
30     #define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31    
32 root 1.27 // in range including end
33     #define IN_RANGE_INC(val,beg,end) \
34     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35    
36     // in range excluding end
37     #define IN_RANGE_EXC(val,beg,end) \
38     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39    
40 root 1.31 void fork_abort (const char *msg);
41    
42 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
43     // as a is often a constant while b is the variable. it is still a bug, though.
44     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
45     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
46     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47 root 1.32
48     template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
49    
50 root 1.28 // this is much faster than crossfires original algorithm
51     // on modern cpus
52     inline int
53     isqrt (int n)
54     {
55     return (int)sqrtf ((float)n);
56     }
57    
58     // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
59     #if 0
60     // and has a max. error of 6 in the range -100..+100.
61     #else
62     // and has a max. error of 9 in the range -100..+100.
63     #endif
64     inline int
65     idistance (int dx, int dy)
66     {
67     unsigned int dx_ = abs (dx);
68     unsigned int dy_ = abs (dy);
69    
70     #if 0
71     return dx_ > dy_
72     ? (dx_ * 61685 + dy_ * 26870) >> 16
73     : (dy_ * 61685 + dx_ * 26870) >> 16;
74     #else
75 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
76 root 1.28 #endif
77     }
78    
79 root 1.29 /*
80     * absdir(int): Returns a number between 1 and 8, which represent
81     * the "absolute" direction of a number (it actually takes care of
82     * "overflow" in previous calculations of a direction).
83     */
84     inline int
85     absdir (int d)
86     {
87     return ((d - 1) & 7) + 1;
88     }
89 root 1.28
90 root 1.1 // makes dynamically allocated objects zero-initialised
91     struct zero_initialised
92     {
93 root 1.11 void *operator new (size_t s, void *p)
94     {
95     memset (p, 0, s);
96     return p;
97     }
98    
99     void *operator new (size_t s)
100     {
101     return g_slice_alloc0 (s);
102     }
103    
104     void *operator new[] (size_t s)
105     {
106     return g_slice_alloc0 (s);
107     }
108    
109     void operator delete (void *p, size_t s)
110     {
111     g_slice_free1 (s, p);
112     }
113    
114     void operator delete[] (void *p, size_t s)
115     {
116     g_slice_free1 (s, p);
117     }
118     };
119    
120 root 1.20 void *salloc_ (int n) throw (std::bad_alloc);
121     void *salloc_ (int n, void *src) throw (std::bad_alloc);
122    
123 root 1.12 // strictly the same as g_slice_alloc, but never returns 0
124 root 1.20 template<typename T>
125     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
126    
127 root 1.17 // also copies src into the new area, like "memdup"
128 root 1.18 // if src is 0, clears the memory
129     template<typename T>
130 root 1.20 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
131 root 1.18
132 root 1.21 // clears the memory
133     template<typename T>
134     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
135    
136 root 1.12 // for symmetry
137 root 1.18 template<typename T>
138 root 1.20 inline void sfree (T *ptr, int n = 1) throw ()
139 root 1.12 {
140 root 1.36 #ifdef PREFER_MALLOC
141     free (ptr);
142     #else
143 root 1.20 g_slice_free1 (n * sizeof (T), (void *)ptr);
144 root 1.36 #endif
145 root 1.12 }
146 root 1.11
147     // a STL-compatible allocator that uses g_slice
148     // boy, this is verbose
149     template<typename Tp>
150     struct slice_allocator
151     {
152     typedef size_t size_type;
153     typedef ptrdiff_t difference_type;
154     typedef Tp *pointer;
155     typedef const Tp *const_pointer;
156     typedef Tp &reference;
157     typedef const Tp &const_reference;
158     typedef Tp value_type;
159    
160     template <class U>
161     struct rebind
162     {
163     typedef slice_allocator<U> other;
164     };
165    
166     slice_allocator () throw () { }
167     slice_allocator (const slice_allocator &o) throw () { }
168     template<typename Tp2>
169     slice_allocator (const slice_allocator<Tp2> &) throw () { }
170    
171     ~slice_allocator () { }
172    
173     pointer address (reference x) const { return &x; }
174     const_pointer address (const_reference x) const { return &x; }
175    
176     pointer allocate (size_type n, const_pointer = 0)
177     {
178 root 1.18 return salloc<Tp> (n);
179 root 1.11 }
180    
181     void deallocate (pointer p, size_type n)
182     {
183 root 1.19 sfree<Tp> (p, n);
184 root 1.11 }
185    
186     size_type max_size ()const throw ()
187     {
188     return size_t (-1) / sizeof (Tp);
189     }
190    
191     void construct (pointer p, const Tp &val)
192     {
193     ::new (p) Tp (val);
194     }
195    
196     void destroy (pointer p)
197     {
198     p->~Tp ();
199     }
200 root 1.1 };
201    
202 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
203     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
204     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
205     struct tausworthe_random_generator
206     {
207 root 1.34 // generator
208 root 1.32 uint32_t state [4];
209    
210 root 1.34 void operator =(const tausworthe_random_generator &src)
211     {
212     state [0] = src.state [0];
213     state [1] = src.state [1];
214     state [2] = src.state [2];
215     state [3] = src.state [3];
216     }
217    
218     void seed (uint32_t seed);
219 root 1.32 uint32_t next ();
220    
221 root 1.34 // uniform distribution
222 root 1.32 uint32_t operator ()(uint32_t r_max)
223     {
224 root 1.34 return is_constant (r_max)
225     ? this->next () % r_max
226     : get_range (r_max);
227 root 1.32 }
228    
229     // return a number within (min .. max)
230     int operator () (int r_min, int r_max)
231     {
232 root 1.34 return is_constant (r_min) && is_constant (r_max)
233     ? r_min + (*this) (max (r_max - r_min + 1, 1))
234     : get_range (r_min, r_max);
235 root 1.32 }
236    
237     double operator ()()
238     {
239 root 1.34 return this->next () / (double)0xFFFFFFFFU;
240 root 1.32 }
241 root 1.34
242     protected:
243     uint32_t get_range (uint32_t r_max);
244     int get_range (int r_min, int r_max);
245 root 1.32 };
246    
247     typedef tausworthe_random_generator rand_gen;
248    
249     extern rand_gen rndm;
250    
251 root 1.7 template<class T>
252     struct refptr
253     {
254     T *p;
255    
256     refptr () : p(0) { }
257     refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); }
258     refptr (T *p) : p(p) { if (p) p->refcnt_inc (); }
259     ~refptr () { if (p) p->refcnt_dec (); }
260    
261     const refptr<T> &operator =(T *o)
262     {
263     if (p) p->refcnt_dec ();
264     p = o;
265     if (p) p->refcnt_inc ();
266    
267     return *this;
268     }
269    
270     const refptr<T> &operator =(const refptr<T> o)
271     {
272     *this = o.p;
273     return *this;
274     }
275    
276     T &operator * () const { return *p; }
277     T *operator ->() const { return p; }
278    
279     operator T *() const { return p; }
280     };
281    
282 root 1.24 typedef refptr<maptile> maptile_ptr;
283 root 1.22 typedef refptr<object> object_ptr;
284     typedef refptr<archetype> arch_ptr;
285 root 1.24 typedef refptr<client> client_ptr;
286     typedef refptr<player> player_ptr;
287 root 1.22
288 root 1.4 struct str_hash
289     {
290     std::size_t operator ()(const char *s) const
291     {
292     unsigned long hash = 0;
293    
294     /* use the one-at-a-time hash function, which supposedly is
295     * better than the djb2-like one used by perl5.005, but
296     * certainly is better then the bug used here before.
297     * see http://burtleburtle.net/bob/hash/doobs.html
298     */
299     while (*s)
300     {
301     hash += *s++;
302     hash += hash << 10;
303     hash ^= hash >> 6;
304     }
305    
306     hash += hash << 3;
307     hash ^= hash >> 11;
308     hash += hash << 15;
309    
310     return hash;
311     }
312     };
313    
314     struct str_equal
315     {
316     bool operator ()(const char *a, const char *b) const
317     {
318     return !strcmp (a, b);
319     }
320     };
321    
322 root 1.26 template<class T>
323     struct unordered_vector : std::vector<T, slice_allocator<T> >
324 root 1.6 {
325 root 1.11 typedef typename unordered_vector::iterator iterator;
326 root 1.6
327     void erase (unsigned int pos)
328     {
329     if (pos < this->size () - 1)
330     (*this)[pos] = (*this)[this->size () - 1];
331    
332     this->pop_back ();
333     }
334    
335     void erase (iterator i)
336     {
337     erase ((unsigned int )(i - this->begin ()));
338     }
339     };
340    
341 root 1.26 template<class T, int T::* index>
342     struct object_vector : std::vector<T *, slice_allocator<T *> >
343     {
344     void insert (T *obj)
345     {
346     assert (!(obj->*index));
347     push_back (obj);
348     obj->*index = this->size ();
349     }
350    
351     void insert (T &obj)
352     {
353     insert (&obj);
354     }
355    
356     void erase (T *obj)
357     {
358     assert (obj->*index);
359     int pos = obj->*index;
360     obj->*index = 0;
361    
362     if (pos < this->size ())
363     {
364     (*this)[pos - 1] = (*this)[this->size () - 1];
365     (*this)[pos - 1]->*index = pos;
366     }
367    
368     this->pop_back ();
369     }
370    
371     void erase (T &obj)
372     {
373     errase (&obj);
374     }
375     };
376    
377 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
378     void assign (char *dst, const char *src, int maxlen);
379    
380     // type-safe version of assign
381 root 1.9 template<int N>
382     inline void assign (char (&dst)[N], const char *src)
383     {
384 root 1.10 assign ((char *)&dst, src, N);
385 root 1.9 }
386    
387 root 1.17 typedef double tstamp;
388    
389     // return current time as timestampe
390     tstamp now ();
391    
392 root 1.25 int similar_direction (int a, int b);
393    
394 root 1.1 #endif
395