ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.92
Committed: Tue Oct 20 05:57:08 2009 UTC (14 years, 8 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-2_82, rel-2_90
Changes since 1.91: +14 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.46 *
4 root 1.75 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.46 *
6 root 1.90 * Deliantra is free software: you can redistribute it and/or modify it under
7     * the terms of the Affero GNU General Public License as published by the
8     * Free Software Foundation, either version 3 of the License, or (at your
9     * option) any later version.
10 root 1.46 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.46 *
16 root 1.90 * You should have received a copy of the Affero GNU General Public License
17     * and the GNU General Public License along with this program. If not, see
18     * <http://www.gnu.org/licenses/>.
19 root 1.46 *
20 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
21 root 1.46 */
22    
23 root 1.1 #ifndef UTIL_H__
24     #define UTIL_H__
25    
26 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
27 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
28     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
29 root 1.36
30 root 1.2 #if __GNUC__ >= 3
31 root 1.45 # define is_constant(c) __builtin_constant_p (c)
32     # define expect(expr,value) __builtin_expect ((expr),(value))
33     # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
34 root 1.85 # define noinline __attribute__((__noinline__))
35 root 1.2 #else
36 root 1.45 # define is_constant(c) 0
37     # define expect(expr,value) (expr)
38     # define prefetch(addr,rw,locality)
39 root 1.85 # define noinline
40 root 1.2 #endif
41    
42 root 1.47 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
43     # define decltype(x) typeof(x)
44     #endif
45    
46 root 1.45 // put into ifs if you are very sure that the expression
47     // is mostly true or mosty false. note that these return
48     // booleans, not the expression.
49 root 1.84 #define expect_false(expr) expect ((expr) ? 1 : 0, 0)
50     #define expect_true(expr) expect ((expr) ? 1 : 0, 1)
51 root 1.45
52 root 1.66 #include <pthread.h>
53    
54 root 1.11 #include <cstddef>
55 root 1.28 #include <cmath>
56 root 1.25 #include <new>
57     #include <vector>
58 root 1.11
59     #include <glib.h>
60    
61 root 1.25 #include <shstr.h>
62     #include <traits.h>
63    
64 root 1.65 #if DEBUG_SALLOC
65 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
66     # define g_slice_alloc(s) debug_slice_alloc(s)
67     # define g_slice_free1(s,p) debug_slice_free1(s,p)
68     void *g_slice_alloc (unsigned long size);
69     void *g_slice_alloc0 (unsigned long size);
70     void g_slice_free1 (unsigned long size, void *ptr);
71 root 1.67 #elif PREFER_MALLOC
72     # define g_slice_alloc0(s) calloc (1, (s))
73     # define g_slice_alloc(s) malloc ((s))
74 root 1.68 # define g_slice_free1(s,p) free ((p))
75 root 1.60 #endif
76    
77 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
78 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
79 root 1.14
80 root 1.81 // very ugly macro that basically declares and initialises a variable
81 root 1.26 // that is in scope for the next statement only
82     // works only for stuff that can be assigned 0 and converts to false
83     // (note: works great for pointers)
84     // most ugly macro I ever wrote
85 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
86 root 1.26
87 root 1.27 // in range including end
88     #define IN_RANGE_INC(val,beg,end) \
89     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
90    
91     // in range excluding end
92     #define IN_RANGE_EXC(val,beg,end) \
93     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
94    
95 root 1.66 void cleanup (const char *cause, bool make_core = false);
96 root 1.31 void fork_abort (const char *msg);
97    
98 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
99     // as a is often a constant while b is the variable. it is still a bug, though.
100     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
101     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
102     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
103 root 1.32
104 root 1.80 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
105     template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
106     template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
107 root 1.78
108 root 1.32 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
109    
110 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
111     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
112    
113 root 1.79 // sign returns -1 or +1
114     template<typename T>
115     static inline T sign (T v) { return v < 0 ? -1 : +1; }
116     // relies on 2c representation
117     template<>
118     inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
119    
120     // sign0 returns -1, 0 or +1
121     template<typename T>
122     static inline T sign0 (T v) { return v ? sign (v) : 0; }
123    
124 root 1.88 // div* only work correctly for div > 0
125 root 1.78 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
126 root 1.88 template<typename T> static inline T div (T val, T div)
127     {
128     return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
129     }
130 root 1.78 // div, round-up
131 root 1.88 template<typename T> static inline T div_ru (T val, T div)
132     {
133     return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
134     }
135 root 1.78 // div, round-down
136 root 1.88 template<typename T> static inline T div_rd (T val, T div)
137     {
138     return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
139     }
140 root 1.78
141 root 1.88 // lerp* only work correctly for min_in < max_in
142     // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
143 root 1.44 template<typename T>
144     static inline T
145     lerp (T val, T min_in, T max_in, T min_out, T max_out)
146     {
147 root 1.78 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148     }
149    
150     // lerp, round-down
151     template<typename T>
152     static inline T
153     lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
154     {
155     return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156     }
157    
158     // lerp, round-up
159     template<typename T>
160     static inline T
161     lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
162     {
163     return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
164 root 1.44 }
165    
166 root 1.37 // lots of stuff taken from FXT
167    
168     /* Rotate right. This is used in various places for checksumming */
169 root 1.38 //TODO: that sucks, use a better checksum algo
170 root 1.37 static inline uint32_t
171 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
172 root 1.37 {
173 root 1.38 return (c << (32 - count)) | (c >> count);
174     }
175    
176     static inline uint32_t
177     rotate_left (uint32_t c, uint32_t count = 1)
178     {
179     return (c >> (32 - count)) | (c << count);
180 root 1.37 }
181    
182     // Return abs(a-b)
183     // Both a and b must not have the most significant bit set
184     static inline uint32_t
185     upos_abs_diff (uint32_t a, uint32_t b)
186     {
187     long d1 = b - a;
188     long d2 = (d1 & (d1 >> 31)) << 1;
189    
190     return d1 - d2; // == (b - d) - (a + d);
191     }
192    
193     // Both a and b must not have the most significant bit set
194     static inline uint32_t
195     upos_min (uint32_t a, uint32_t b)
196     {
197     int32_t d = b - a;
198     d &= d >> 31;
199     return a + d;
200     }
201    
202     // Both a and b must not have the most significant bit set
203     static inline uint32_t
204     upos_max (uint32_t a, uint32_t b)
205     {
206     int32_t d = b - a;
207     d &= d >> 31;
208     return b - d;
209     }
210    
211 root 1.28 // this is much faster than crossfires original algorithm
212     // on modern cpus
213     inline int
214     isqrt (int n)
215     {
216     return (int)sqrtf ((float)n);
217     }
218    
219 root 1.92 // this is kind of like the ^^ operator, if it would exist, without sequence point.
220     // more handy than it looks like, due to the implicit !! done on its arguments
221     inline bool
222     logical_xor (bool a, bool b)
223     {
224     return a != b;
225     }
226    
227     inline bool
228     logical_implies (bool a, bool b)
229     {
230     return a <= b;
231     }
232    
233 root 1.28 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
234     #if 0
235     // and has a max. error of 6 in the range -100..+100.
236     #else
237     // and has a max. error of 9 in the range -100..+100.
238     #endif
239     inline int
240     idistance (int dx, int dy)
241     {
242     unsigned int dx_ = abs (dx);
243     unsigned int dy_ = abs (dy);
244    
245     #if 0
246     return dx_ > dy_
247     ? (dx_ * 61685 + dy_ * 26870) >> 16
248     : (dy_ * 61685 + dx_ * 26870) >> 16;
249     #else
250 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
251 root 1.28 #endif
252     }
253    
254 root 1.29 /*
255     * absdir(int): Returns a number between 1 and 8, which represent
256     * the "absolute" direction of a number (it actually takes care of
257     * "overflow" in previous calculations of a direction).
258     */
259     inline int
260     absdir (int d)
261     {
262     return ((d - 1) & 7) + 1;
263     }
264 root 1.28
265 root 1.67 extern ssize_t slice_alloc; // statistics
266    
267     void *salloc_ (int n) throw (std::bad_alloc);
268     void *salloc_ (int n, void *src) throw (std::bad_alloc);
269    
270     // strictly the same as g_slice_alloc, but never returns 0
271     template<typename T>
272     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
273    
274     // also copies src into the new area, like "memdup"
275     // if src is 0, clears the memory
276     template<typename T>
277     inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
278    
279     // clears the memory
280     template<typename T>
281     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
282    
283     // for symmetry
284     template<typename T>
285     inline void sfree (T *ptr, int n = 1) throw ()
286     {
287     if (expect_true (ptr))
288     {
289     slice_alloc -= n * sizeof (T);
290 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
291 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
292     assert (slice_alloc >= 0);//D
293     }
294     }
295 root 1.57
296 root 1.72 // nulls the pointer
297     template<typename T>
298     inline void sfree0 (T *&ptr, int n = 1) throw ()
299     {
300     sfree<T> (ptr, n);
301     ptr = 0;
302     }
303    
304 root 1.1 // makes dynamically allocated objects zero-initialised
305     struct zero_initialised
306     {
307 root 1.11 void *operator new (size_t s, void *p)
308     {
309     memset (p, 0, s);
310     return p;
311     }
312    
313     void *operator new (size_t s)
314     {
315 root 1.67 return salloc0<char> (s);
316 root 1.11 }
317    
318     void *operator new[] (size_t s)
319     {
320 root 1.67 return salloc0<char> (s);
321 root 1.11 }
322    
323     void operator delete (void *p, size_t s)
324     {
325 root 1.67 sfree ((char *)p, s);
326 root 1.11 }
327    
328     void operator delete[] (void *p, size_t s)
329     {
330 root 1.67 sfree ((char *)p, s);
331 root 1.11 }
332     };
333    
334 root 1.73 // makes dynamically allocated objects zero-initialised
335     struct slice_allocated
336     {
337     void *operator new (size_t s, void *p)
338     {
339     return p;
340     }
341    
342     void *operator new (size_t s)
343     {
344     return salloc<char> (s);
345     }
346    
347     void *operator new[] (size_t s)
348     {
349     return salloc<char> (s);
350     }
351    
352     void operator delete (void *p, size_t s)
353     {
354     sfree ((char *)p, s);
355     }
356    
357     void operator delete[] (void *p, size_t s)
358     {
359     sfree ((char *)p, s);
360     }
361     };
362    
363 root 1.11 // a STL-compatible allocator that uses g_slice
364     // boy, this is verbose
365     template<typename Tp>
366     struct slice_allocator
367     {
368     typedef size_t size_type;
369     typedef ptrdiff_t difference_type;
370     typedef Tp *pointer;
371     typedef const Tp *const_pointer;
372     typedef Tp &reference;
373     typedef const Tp &const_reference;
374     typedef Tp value_type;
375    
376     template <class U>
377     struct rebind
378     {
379     typedef slice_allocator<U> other;
380     };
381    
382     slice_allocator () throw () { }
383 root 1.64 slice_allocator (const slice_allocator &) throw () { }
384 root 1.11 template<typename Tp2>
385     slice_allocator (const slice_allocator<Tp2> &) throw () { }
386    
387     ~slice_allocator () { }
388    
389     pointer address (reference x) const { return &x; }
390     const_pointer address (const_reference x) const { return &x; }
391    
392     pointer allocate (size_type n, const_pointer = 0)
393     {
394 root 1.18 return salloc<Tp> (n);
395 root 1.11 }
396    
397     void deallocate (pointer p, size_type n)
398     {
399 root 1.19 sfree<Tp> (p, n);
400 root 1.11 }
401    
402 root 1.64 size_type max_size () const throw ()
403 root 1.11 {
404     return size_t (-1) / sizeof (Tp);
405     }
406    
407     void construct (pointer p, const Tp &val)
408     {
409     ::new (p) Tp (val);
410     }
411    
412     void destroy (pointer p)
413     {
414     p->~Tp ();
415     }
416 root 1.1 };
417    
418 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
419     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
420     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
421     struct tausworthe_random_generator
422     {
423     uint32_t state [4];
424    
425 root 1.34 void operator =(const tausworthe_random_generator &src)
426     {
427     state [0] = src.state [0];
428     state [1] = src.state [1];
429     state [2] = src.state [2];
430     state [3] = src.state [3];
431     }
432    
433     void seed (uint32_t seed);
434 root 1.32 uint32_t next ();
435 root 1.83 };
436    
437     // Xorshift RNGs, George Marsaglia
438     // http://www.jstatsoft.org/v08/i14/paper
439     // this one is about 40% faster than the tausworthe one above (i.e. not much),
440     // despite the inlining, and has the issue of only creating 2**32-1 numbers.
441 root 1.86 // see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
442 root 1.83 struct xorshift_random_generator
443     {
444     uint32_t x, y;
445    
446     void operator =(const xorshift_random_generator &src)
447     {
448     x = src.x;
449     y = src.y;
450     }
451    
452     void seed (uint32_t seed)
453     {
454     x = seed;
455     y = seed * 69069U;
456     }
457 root 1.32
458 root 1.83 uint32_t next ()
459     {
460     uint32_t t = x ^ (x << 10);
461     x = y;
462     y = y ^ (y >> 13) ^ t ^ (t >> 10);
463     return y;
464     }
465     };
466    
467     template<class generator>
468     struct random_number_generator : generator
469     {
470 root 1.77 // uniform distribution, 0 .. max (0, num - 1)
471 root 1.42 uint32_t operator ()(uint32_t num)
472 root 1.32 {
473 root 1.83 return !is_constant (num) ? get_range (num) // non-constant
474     : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
475     : this->next () & (num - 1); // constant, power-of-two
476 root 1.32 }
477    
478     // return a number within (min .. max)
479     int operator () (int r_min, int r_max)
480     {
481 root 1.42 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
482     ? r_min + operator ()(r_max - r_min + 1)
483 root 1.34 : get_range (r_min, r_max);
484 root 1.32 }
485    
486     double operator ()()
487     {
488 root 1.34 return this->next () / (double)0xFFFFFFFFU;
489 root 1.32 }
490 root 1.34
491     protected:
492     uint32_t get_range (uint32_t r_max);
493     int get_range (int r_min, int r_max);
494 root 1.32 };
495    
496 root 1.83 typedef random_number_generator<tausworthe_random_generator> rand_gen;
497 root 1.32
498 root 1.74 extern rand_gen rndm, rmg_rndm;
499 root 1.32
500 root 1.54 INTERFACE_CLASS (attachable)
501     struct refcnt_base
502     {
503     typedef int refcnt_t;
504     mutable refcnt_t ACC (RW, refcnt);
505    
506     MTH void refcnt_inc () const { ++refcnt; }
507     MTH void refcnt_dec () const { --refcnt; }
508    
509     refcnt_base () : refcnt (0) { }
510     };
511    
512 root 1.56 // to avoid branches with more advanced compilers
513 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
514    
515 root 1.7 template<class T>
516     struct refptr
517     {
518 root 1.54 // p if not null
519     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
520    
521     void refcnt_dec ()
522     {
523     if (!is_constant (p))
524     --*refcnt_ref ();
525     else if (p)
526     --p->refcnt;
527     }
528    
529     void refcnt_inc ()
530     {
531     if (!is_constant (p))
532     ++*refcnt_ref ();
533     else if (p)
534     ++p->refcnt;
535     }
536    
537 root 1.7 T *p;
538    
539     refptr () : p(0) { }
540 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
541     refptr (T *p) : p(p) { refcnt_inc (); }
542     ~refptr () { refcnt_dec (); }
543 root 1.7
544     const refptr<T> &operator =(T *o)
545     {
546 root 1.54 // if decrementing ever destroys we need to reverse the order here
547     refcnt_dec ();
548 root 1.7 p = o;
549 root 1.54 refcnt_inc ();
550 root 1.7 return *this;
551     }
552    
553 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
554 root 1.7 {
555     *this = o.p;
556     return *this;
557     }
558    
559     T &operator * () const { return *p; }
560 root 1.54 T *operator ->() const { return p; }
561 root 1.7
562     operator T *() const { return p; }
563     };
564    
565 root 1.24 typedef refptr<maptile> maptile_ptr;
566 root 1.22 typedef refptr<object> object_ptr;
567     typedef refptr<archetype> arch_ptr;
568 root 1.24 typedef refptr<client> client_ptr;
569     typedef refptr<player> player_ptr;
570 root 1.22
571 root 1.4 struct str_hash
572     {
573     std::size_t operator ()(const char *s) const
574     {
575 root 1.84 #if 0
576     uint32_t hash = 0;
577 root 1.4
578     /* use the one-at-a-time hash function, which supposedly is
579     * better than the djb2-like one used by perl5.005, but
580     * certainly is better then the bug used here before.
581     * see http://burtleburtle.net/bob/hash/doobs.html
582     */
583     while (*s)
584     {
585     hash += *s++;
586     hash += hash << 10;
587     hash ^= hash >> 6;
588     }
589    
590     hash += hash << 3;
591     hash ^= hash >> 11;
592     hash += hash << 15;
593 root 1.84 #else
594     // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
595     // it is about twice as fast as the one-at-a-time one,
596     // with good distribution.
597     // FNV-1a is faster on many cpus because the multiplication
598     // runs concurrent with the looping logic.
599     uint32_t hash = 2166136261;
600    
601     while (*s)
602     hash = (hash ^ *s++) * 16777619;
603     #endif
604 root 1.4
605     return hash;
606     }
607     };
608    
609     struct str_equal
610     {
611     bool operator ()(const char *a, const char *b) const
612     {
613     return !strcmp (a, b);
614     }
615     };
616    
617 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
618 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
619 root 1.49 //
620 root 1.52 // NOTE: only some forms of erase are available
621 root 1.26 template<class T>
622     struct unordered_vector : std::vector<T, slice_allocator<T> >
623 root 1.6 {
624 root 1.11 typedef typename unordered_vector::iterator iterator;
625 root 1.6
626     void erase (unsigned int pos)
627     {
628     if (pos < this->size () - 1)
629     (*this)[pos] = (*this)[this->size () - 1];
630    
631     this->pop_back ();
632     }
633    
634     void erase (iterator i)
635     {
636     erase ((unsigned int )(i - this->begin ()));
637     }
638     };
639    
640 root 1.49 // This container blends advantages of linked lists
641     // (efficiency) with vectors (random access) by
642     // by using an unordered vector and storing the vector
643     // index inside the object.
644     //
645     // + memory-efficient on most 64 bit archs
646     // + O(1) insert/remove
647     // + free unique (but varying) id for inserted objects
648     // + cache-friendly iteration
649     // - only works for pointers to structs
650     //
651     // NOTE: only some forms of erase/insert are available
652 root 1.50 typedef int object_vector_index;
653    
654     template<class T, object_vector_index T::*indexmember>
655 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
656     {
657 root 1.48 typedef typename object_vector::iterator iterator;
658    
659     bool contains (const T *obj) const
660     {
661 root 1.50 return obj->*indexmember;
662 root 1.48 }
663    
664     iterator find (const T *obj)
665     {
666 root 1.50 return obj->*indexmember
667     ? this->begin () + obj->*indexmember - 1
668 root 1.48 : this->end ();
669     }
670    
671 root 1.53 void push_back (T *obj)
672     {
673     std::vector<T *, slice_allocator<T *> >::push_back (obj);
674     obj->*indexmember = this->size ();
675     }
676    
677 root 1.26 void insert (T *obj)
678     {
679     push_back (obj);
680     }
681    
682     void insert (T &obj)
683     {
684     insert (&obj);
685     }
686    
687     void erase (T *obj)
688     {
689 root 1.50 unsigned int pos = obj->*indexmember;
690     obj->*indexmember = 0;
691 root 1.26
692     if (pos < this->size ())
693     {
694     (*this)[pos - 1] = (*this)[this->size () - 1];
695 root 1.50 (*this)[pos - 1]->*indexmember = pos;
696 root 1.26 }
697    
698     this->pop_back ();
699     }
700    
701     void erase (T &obj)
702     {
703 root 1.50 erase (&obj);
704 root 1.26 }
705     };
706    
707 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
708 root 1.87 // returns the number of bytes actually used (including \0)
709     int assign (char *dst, const char *src, int maxsize);
710 root 1.10
711     // type-safe version of assign
712 root 1.9 template<int N>
713 root 1.87 inline int assign (char (&dst)[N], const char *src)
714 root 1.9 {
715 root 1.87 return assign ((char *)&dst, src, N);
716 root 1.9 }
717    
718 root 1.17 typedef double tstamp;
719    
720 root 1.59 // return current time as timestamp
721 root 1.17 tstamp now ();
722    
723 root 1.25 int similar_direction (int a, int b);
724    
725 root 1.91 // like v?sprintf, but returns a "static" buffer
726     char *vformat (const char *format, va_list ap);
727     char *format (const char *format, ...);
728 root 1.43
729 sf-marcmagus 1.89 // safety-check player input which will become object->msg
730     bool msg_is_safe (const char *msg);
731    
732 root 1.66 /////////////////////////////////////////////////////////////////////////////
733     // threads, very very thin wrappers around pthreads
734    
735     struct thread
736     {
737     pthread_t id;
738    
739     void start (void *(*start_routine)(void *), void *arg = 0);
740    
741     void cancel ()
742     {
743     pthread_cancel (id);
744     }
745    
746     void *join ()
747     {
748     void *ret;
749    
750     if (pthread_join (id, &ret))
751     cleanup ("pthread_join failed", 1);
752    
753     return ret;
754     }
755     };
756    
757     // note that mutexes are not classes
758     typedef pthread_mutex_t smutex;
759    
760     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
761     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
762     #else
763     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
764     #endif
765    
766     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
767 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
768 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
769    
770 root 1.68 typedef pthread_cond_t scond;
771    
772     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
773     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
774     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
775     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
776    
777 root 1.1 #endif
778