ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.127
Committed: Sat Nov 17 23:40:02 2018 UTC (5 years, 7 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.126: +1 -0 lines
Log Message:
copyright update 2018

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
6 *
7 * Deliantra is free software: you can redistribute it and/or modify it under
8 * the terms of the Affero GNU General Public License as published by the
9 * Free Software Foundation, either version 3 of the License, or (at your
10 * option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the Affero GNU General Public License
18 * and the GNU General Public License along with this program. If not, see
19 * <http://www.gnu.org/licenses/>.
20 *
21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */
23
24 #ifndef UTIL_H__
25 #define UTIL_H__
26
27 #include <compiler.h>
28
29 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
30 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
31 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
32
33 #include <pthread.h>
34
35 #include <cstddef>
36 #include <cmath>
37 #include <new>
38 #include <vector>
39
40 #include <glib.h>
41
42 #include <shstr.h>
43 #include <traits.h>
44
45 #if DEBUG_SALLOC
46 # define g_slice_alloc0(s) debug_slice_alloc0(s)
47 # define g_slice_alloc(s) debug_slice_alloc(s)
48 # define g_slice_free1(s,p) debug_slice_free1(s,p)
49 void *g_slice_alloc (unsigned long size);
50 void *g_slice_alloc0 (unsigned long size);
51 void g_slice_free1 (unsigned long size, void *ptr);
52 #elif PREFER_MALLOC
53 # define g_slice_alloc0(s) calloc (1, (s))
54 # define g_slice_alloc(s) malloc ((s))
55 # define g_slice_free1(s,p) free ((p))
56 #endif
57
58 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
59 #define auto(var,expr) decltype(expr) var = (expr)
60
61 #if cplusplus_does_not_suck /* still sucks in codesize with gcc 6, although local types work now */
62 // does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
63 template<typename T, int N>
64 static inline int array_length (const T (&arr)[N])
65 {
66 return N;
67 }
68 #else
69 #define array_length(name) (sizeof (name) / sizeof (name [0]))
70 #endif
71
72 // very ugly macro that basically declares and initialises a variable
73 // that is in scope for the next statement only
74 // works only for stuff that can be assigned 0 and converts to false
75 // (note: works great for pointers)
76 // most ugly macro I ever wrote
77 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
78
79 // in range including end
80 #define IN_RANGE_INC(val,beg,end) \
81 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
82
83 // in range excluding end
84 #define IN_RANGE_EXC(val,beg,end) \
85 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
86
87 ecb_cold void cleanup (const char *cause, bool make_core = false);
88 ecb_cold void fork_abort (const char *msg);
89
90 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
91 // as a is often a constant while b is the variable. it is still a bug, though.
92 template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
93 template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
94 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
95
96 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
97 template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
98 template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
99
100 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
101
102 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
103 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
104
105 // sign returns -1 or +1
106 template<typename T>
107 static inline T sign (T v) { return v < 0 ? -1 : +1; }
108 // relies on 2c representation
109 template<>
110 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
111 template<>
112 inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
113 template<>
114 inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
115
116 // sign0 returns -1, 0 or +1
117 template<typename T>
118 static inline T sign0 (T v) { return v ? sign (v) : 0; }
119
120 //clashes with C++0x
121 template<typename T, typename U>
122 static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
123
124 // div* only work correctly for div > 0
125 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
126 template<typename T> static inline T div (T val, T div)
127 {
128 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
129 }
130
131 template<> inline float div (float val, float div) { return val / div; }
132 template<> inline double div (double val, double div) { return val / div; }
133
134 // div, round-up
135 template<typename T> static inline T div_ru (T val, T div)
136 {
137 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
138 }
139 // div, round-down
140 template<typename T> static inline T div_rd (T val, T div)
141 {
142 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
143 }
144
145 // lerp* only work correctly for min_in < max_in
146 // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
147 template<typename T>
148 static inline T
149 lerp (T val, T min_in, T max_in, T min_out, T max_out)
150 {
151 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
152 }
153
154 // lerp, round-down
155 template<typename T>
156 static inline T
157 lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
158 {
159 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
160 }
161
162 // lerp, round-up
163 template<typename T>
164 static inline T
165 lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
166 {
167 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
168 }
169
170 // lots of stuff taken from FXT
171
172 /* Rotate right. This is used in various places for checksumming */
173 //TODO: that sucks, use a better checksum algo
174 static inline uint32_t
175 rotate_right (uint32_t c, uint32_t count = 1)
176 {
177 return (c << (32 - count)) | (c >> count);
178 }
179
180 static inline uint32_t
181 rotate_left (uint32_t c, uint32_t count = 1)
182 {
183 return (c >> (32 - count)) | (c << count);
184 }
185
186 // Return abs(a-b)
187 // Both a and b must not have the most significant bit set
188 static inline uint32_t
189 upos_abs_diff (uint32_t a, uint32_t b)
190 {
191 long d1 = b - a;
192 long d2 = (d1 & (d1 >> 31)) << 1;
193
194 return d1 - d2; // == (b - d) - (a + d);
195 }
196
197 // Both a and b must not have the most significant bit set
198 static inline uint32_t
199 upos_min (uint32_t a, uint32_t b)
200 {
201 int32_t d = b - a;
202 d &= d >> 31;
203 return a + d;
204 }
205
206 // Both a and b must not have the most significant bit set
207 static inline uint32_t
208 upos_max (uint32_t a, uint32_t b)
209 {
210 int32_t d = b - a;
211 d &= d >> 31;
212 return b - d;
213 }
214
215 // this is much faster than crossfire's original algorithm
216 // on modern cpus
217 inline int
218 isqrt (int n)
219 {
220 return (int)sqrtf ((float)n);
221 }
222
223 // this is kind of like the ^^ operator, if it would exist, without sequence point.
224 // more handy than it looks like, due to the implicit !! done on its arguments
225 inline bool
226 logical_xor (bool a, bool b)
227 {
228 return a != b;
229 }
230
231 inline bool
232 logical_implies (bool a, bool b)
233 {
234 return a <= b;
235 }
236
237 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
238 #if 0
239 // and has a max. error of 6 in the range -100..+100.
240 #else
241 // and has a max. error of 9 in the range -100..+100.
242 #endif
243 inline int
244 idistance (int dx, int dy)
245 {
246 unsigned int dx_ = abs (dx);
247 unsigned int dy_ = abs (dy);
248
249 #if 0
250 return dx_ > dy_
251 ? (dx_ * 61685 + dy_ * 26870) >> 16
252 : (dy_ * 61685 + dx_ * 26870) >> 16;
253 #else
254 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
255 #endif
256 }
257
258 // can be substantially faster than floor, if your value range allows for it
259 template<typename T>
260 inline T
261 fastfloor (T x)
262 {
263 return std::floor (x);
264 }
265
266 inline float
267 fastfloor (float x)
268 {
269 return sint32(x) - (x < 0);
270 }
271
272 inline double
273 fastfloor (double x)
274 {
275 return sint64(x) - (x < 0);
276 }
277
278 /*
279 * absdir(int): Returns a number between 1 and 8, which represent
280 * the "absolute" direction of a number (it actually takes care of
281 * "overflow" in previous calculations of a direction).
282 */
283 inline int
284 absdir (int d)
285 {
286 return ((d - 1) & 7) + 1;
287 }
288
289 #define for_all_bits_sparse_32(mask, idxvar) \
290 for (uint32_t idxvar, mask_ = mask; \
291 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
292
293 extern ssize_t slice_alloc; // statistics
294
295 void *salloc_ (int n);
296 void *salloc_ (int n, void *src);
297
298 // strictly the same as g_slice_alloc, but never returns 0
299 template<typename T>
300 inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
301
302 // also copies src into the new area, like "memdup"
303 // if src is 0, clears the memory
304 template<typename T>
305 inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
306
307 // clears the memory
308 template<typename T>
309 inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
310
311 // for symmetry
312 template<typename T>
313 inline void sfree (T *ptr, int n = 1) noexcept
314 {
315 if (expect_true (ptr))
316 {
317 slice_alloc -= n * sizeof (T);
318 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
319 g_slice_free1 (n * sizeof (T), (void *)ptr);
320 }
321 }
322
323 // nulls the pointer
324 template<typename T>
325 inline void sfree0 (T *&ptr, int n = 1) noexcept
326 {
327 sfree<T> (ptr, n);
328 ptr = 0;
329 }
330
331 // makes dynamically allocated objects zero-initialised
332 struct zero_initialised
333 {
334 void *operator new (size_t s, void *p)
335 {
336 memset (p, 0, s);
337 return p;
338 }
339
340 void *operator new (size_t s)
341 {
342 return salloc0<char> (s);
343 }
344
345 void *operator new[] (size_t s)
346 {
347 return salloc0<char> (s);
348 }
349
350 void operator delete (void *p, size_t s)
351 {
352 sfree ((char *)p, s);
353 }
354
355 void operator delete[] (void *p, size_t s)
356 {
357 sfree ((char *)p, s);
358 }
359 };
360
361 // makes dynamically allocated objects zero-initialised
362 struct slice_allocated
363 {
364 void *operator new (size_t s, void *p)
365 {
366 return p;
367 }
368
369 void *operator new (size_t s)
370 {
371 return salloc<char> (s);
372 }
373
374 void *operator new[] (size_t s)
375 {
376 return salloc<char> (s);
377 }
378
379 void operator delete (void *p, size_t s)
380 {
381 sfree ((char *)p, s);
382 }
383
384 void operator delete[] (void *p, size_t s)
385 {
386 sfree ((char *)p, s);
387 }
388 };
389
390 // a STL-compatible allocator that uses g_slice
391 // boy, this is verbose
392 template<typename Tp>
393 struct slice_allocator
394 {
395 typedef size_t size_type;
396 typedef ptrdiff_t difference_type;
397 typedef Tp *pointer;
398 typedef const Tp *const_pointer;
399 typedef Tp &reference;
400 typedef const Tp &const_reference;
401 typedef Tp value_type;
402
403 template <class U>
404 struct rebind
405 {
406 typedef slice_allocator<U> other;
407 };
408
409 slice_allocator () noexcept { }
410 slice_allocator (const slice_allocator &) noexcept { }
411 template<typename Tp2>
412 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
413
414 ~slice_allocator () { }
415
416 pointer address (reference x) const { return &x; }
417 const_pointer address (const_reference x) const { return &x; }
418
419 pointer allocate (size_type n, const_pointer = 0)
420 {
421 return salloc<Tp> (n);
422 }
423
424 void deallocate (pointer p, size_type n)
425 {
426 sfree<Tp> (p, n);
427 }
428
429 size_type max_size () const noexcept
430 {
431 return size_t (-1) / sizeof (Tp);
432 }
433
434 void construct (pointer p, const Tp &val)
435 {
436 ::new (p) Tp (val);
437 }
438
439 void destroy (pointer p)
440 {
441 p->~Tp ();
442 }
443 };
444
445 // basically a memory area, but refcounted
446 struct refcnt_buf
447 {
448 char *data;
449
450 refcnt_buf (size_t size = 0);
451 refcnt_buf (void *data, size_t size);
452
453 refcnt_buf (const refcnt_buf &src)
454 {
455 data = src.data;
456 inc ();
457 }
458
459 ~refcnt_buf ();
460
461 refcnt_buf &operator =(const refcnt_buf &src);
462
463 operator char *()
464 {
465 return data;
466 }
467
468 size_t size () const
469 {
470 return _size ();
471 }
472
473 protected:
474 enum {
475 overhead = sizeof (uint32_t) * 2
476 };
477
478 uint32_t &_size () const
479 {
480 return ((unsigned int *)data)[-2];
481 }
482
483 uint32_t &_refcnt () const
484 {
485 return ((unsigned int *)data)[-1];
486 }
487
488 void _alloc (uint32_t size)
489 {
490 data = ((char *)salloc<char> (size + overhead)) + overhead;
491 _size () = size;
492 _refcnt () = 1;
493 }
494
495 void _dealloc ();
496
497 void inc ()
498 {
499 ++_refcnt ();
500 }
501
502 void dec ()
503 {
504 if (!--_refcnt ())
505 _dealloc ();
506 }
507 };
508
509 INTERFACE_CLASS (attachable)
510 struct refcnt_base
511 {
512 typedef int refcnt_t;
513 mutable refcnt_t ACC (RW, refcnt);
514
515 MTH void refcnt_inc () const { ++refcnt; }
516 MTH void refcnt_dec () const { --refcnt; }
517
518 refcnt_base () : refcnt (0) { }
519 };
520
521 // to avoid branches with more advanced compilers
522 extern refcnt_base::refcnt_t refcnt_dummy;
523
524 template<class T>
525 struct refptr
526 {
527 // p if not null
528 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
529
530 void refcnt_dec ()
531 {
532 if (!ecb_is_constant (p))
533 --*refcnt_ref ();
534 else if (p)
535 --p->refcnt;
536 }
537
538 void refcnt_inc ()
539 {
540 if (!ecb_is_constant (p))
541 ++*refcnt_ref ();
542 else if (p)
543 ++p->refcnt;
544 }
545
546 T *p;
547
548 refptr () : p(0) { }
549 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
550 refptr (T *p) : p(p) { refcnt_inc (); }
551 ~refptr () { refcnt_dec (); }
552
553 const refptr<T> &operator =(T *o)
554 {
555 // if decrementing ever destroys we need to reverse the order here
556 refcnt_dec ();
557 p = o;
558 refcnt_inc ();
559 return *this;
560 }
561
562 const refptr<T> &operator =(const refptr<T> &o)
563 {
564 *this = o.p;
565 return *this;
566 }
567
568 T &operator * () const { return *p; }
569 T *operator ->() const { return p; }
570
571 operator T *() const { return p; }
572 };
573
574 typedef refptr<maptile> maptile_ptr;
575 typedef refptr<object> object_ptr;
576 typedef refptr<archetype> arch_ptr;
577 typedef refptr<client> client_ptr;
578 typedef refptr<player> player_ptr;
579 typedef refptr<region> region_ptr;
580
581 #define STRHSH_NULL 2166136261
582
583 static inline uint32_t
584 strhsh (const char *s)
585 {
586 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
587 // it is about twice as fast as the one-at-a-time one,
588 // with good distribution.
589 // FNV-1a is faster on many cpus because the multiplication
590 // runs concurrently with the looping logic.
591 // we modify the hash a bit to improve its distribution
592 uint32_t hash = STRHSH_NULL;
593
594 while (*s)
595 hash = (hash ^ *s++) * 16777619U;
596
597 return hash ^ (hash >> 16);
598 }
599
600 static inline uint32_t
601 memhsh (const char *s, size_t len)
602 {
603 uint32_t hash = STRHSH_NULL;
604
605 while (len--)
606 hash = (hash ^ *s++) * 16777619U;
607
608 return hash;
609 }
610
611 struct str_hash
612 {
613 std::size_t operator ()(const char *s) const
614 {
615 return strhsh (s);
616 }
617
618 std::size_t operator ()(const shstr &s) const
619 {
620 return strhsh (s);
621 }
622 };
623
624 struct str_equal
625 {
626 bool operator ()(const char *a, const char *b) const
627 {
628 return !strcmp (a, b);
629 }
630 };
631
632 // Mostly the same as std::vector, but insert/erase can reorder
633 // the elements, making append(=insert)/remove O(1) instead of O(n).
634 //
635 // NOTE: only some forms of erase are available
636 template<class T>
637 struct unordered_vector : std::vector<T, slice_allocator<T> >
638 {
639 typedef typename unordered_vector::iterator iterator;
640
641 void erase (unsigned int pos)
642 {
643 if (pos < this->size () - 1)
644 (*this)[pos] = (*this)[this->size () - 1];
645
646 this->pop_back ();
647 }
648
649 void erase (iterator i)
650 {
651 erase ((unsigned int )(i - this->begin ()));
652 }
653 };
654
655 // This container blends advantages of linked lists
656 // (efficiency) with vectors (random access) by
657 // using an unordered vector and storing the vector
658 // index inside the object.
659 //
660 // + memory-efficient on most 64 bit archs
661 // + O(1) insert/remove
662 // + free unique (but varying) id for inserted objects
663 // + cache-friendly iteration
664 // - only works for pointers to structs
665 //
666 // NOTE: only some forms of erase/insert are available
667 typedef int object_vector_index;
668
669 template<class T, object_vector_index T::*indexmember>
670 struct object_vector : std::vector<T *, slice_allocator<T *> >
671 {
672 typedef typename object_vector::iterator iterator;
673
674 bool contains (const T *obj) const
675 {
676 return obj->*indexmember;
677 }
678
679 iterator find (const T *obj)
680 {
681 return obj->*indexmember
682 ? this->begin () + obj->*indexmember - 1
683 : this->end ();
684 }
685
686 void push_back (T *obj)
687 {
688 std::vector<T *, slice_allocator<T *> >::push_back (obj);
689 obj->*indexmember = this->size ();
690 }
691
692 void insert (T *obj)
693 {
694 push_back (obj);
695 }
696
697 void insert (T &obj)
698 {
699 insert (&obj);
700 }
701
702 void erase (T *obj)
703 {
704 object_vector_index pos = obj->*indexmember;
705 obj->*indexmember = 0;
706
707 if (pos < this->size ())
708 {
709 (*this)[pos - 1] = (*this)[this->size () - 1];
710 (*this)[pos - 1]->*indexmember = pos;
711 }
712
713 this->pop_back ();
714 }
715
716 void erase (T &obj)
717 {
718 erase (&obj);
719 }
720 };
721
722 /////////////////////////////////////////////////////////////////////////////
723
724 // something like a vector or stack, but without
725 // out of bounds checking
726 template<typename T>
727 struct fixed_stack
728 {
729 T *data;
730 int size;
731 int max;
732
733 fixed_stack ()
734 : size (0), data (0)
735 {
736 }
737
738 fixed_stack (int max)
739 : size (0), max (max)
740 {
741 data = salloc<T> (max);
742 }
743
744 void reset (int new_max)
745 {
746 sfree (data, max);
747 size = 0;
748 max = new_max;
749 data = salloc<T> (max);
750 }
751
752 void free ()
753 {
754 sfree (data, max);
755 data = 0;
756 }
757
758 ~fixed_stack ()
759 {
760 sfree (data, max);
761 }
762
763 T &operator[](int idx)
764 {
765 return data [idx];
766 }
767
768 void push (T v)
769 {
770 data [size++] = v;
771 }
772
773 T &pop ()
774 {
775 return data [--size];
776 }
777
778 T remove (int idx)
779 {
780 T v = data [idx];
781
782 data [idx] = data [--size];
783
784 return v;
785 }
786 };
787
788 /////////////////////////////////////////////////////////////////////////////
789
790 // basically does what strncpy should do, but appends "..." to strings exceeding length
791 // returns the number of bytes actually used (including \0)
792 int assign (char *dst, const char *src, int maxsize);
793
794 // type-safe version of assign
795 template<int N>
796 inline int assign (char (&dst)[N], const char *src)
797 {
798 return assign ((char *)&dst, src, N);
799 }
800
801 typedef double tstamp;
802
803 // return current time as timestamp
804 tstamp now ();
805
806 int similar_direction (int a, int b);
807
808 // like v?sprintf, but returns a "static" buffer
809 char *vformat (const char *format, va_list ap);
810 char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
811
812 // safety-check player input which will become object->msg
813 bool msg_is_safe (const char *msg);
814
815 /////////////////////////////////////////////////////////////////////////////
816 // threads, very very thin wrappers around pthreads
817
818 struct thread
819 {
820 pthread_t id;
821
822 void start (void *(*start_routine)(void *), void *arg = 0);
823
824 void cancel ()
825 {
826 pthread_cancel (id);
827 }
828
829 void *join ()
830 {
831 void *ret;
832
833 if (pthread_join (id, &ret))
834 cleanup ("pthread_join failed", 1);
835
836 return ret;
837 }
838 };
839
840 // note that mutexes are not classes
841 typedef pthread_mutex_t smutex;
842
843 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
844 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
845 #else
846 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
847 #endif
848
849 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
850 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
851 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
852
853 typedef pthread_cond_t scond;
854
855 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
856 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
857 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
858 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
859
860 #endif
861