ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.37 by root, Thu Feb 15 15:43:36 2007 UTC vs.
Revision 1.117 by root, Tue Jan 3 11:23:41 2012 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4//#define PREFER_MALLOC 26#include <compiler.h>
5 27
6#if __GNUC__ >= 3 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) __builtin_constant_p (c) 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8#else 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
9# define is_constant(c) 0 31
10#endif 32#include <pthread.h>
11 33
12#include <cstddef> 34#include <cstddef>
13#include <cmath> 35#include <cmath>
14#include <new> 36#include <new>
15#include <vector> 37#include <vector>
17#include <glib.h> 39#include <glib.h>
18 40
19#include <shstr.h> 41#include <shstr.h>
20#include <traits.h> 42#include <traits.h>
21 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
22// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
23#define AUTODECL(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
24 59
60#if cplusplus_does_not_suck
61// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62template<typename T, int N>
63static inline int array_length (const T (&arr)[N])
64{
65 return N;
66}
67#else
68#define array_length(name) (sizeof (name) / sizeof (name [0]))
69#endif
70
25// very ugly macro that basicaly declares and initialises a variable 71// very ugly macro that basically declares and initialises a variable
26// that is in scope for the next statement only 72// that is in scope for the next statement only
27// works only for stuff that can be assigned 0 and converts to false 73// works only for stuff that can be assigned 0 and converts to false
28// (note: works great for pointers) 74// (note: works great for pointers)
29// most ugly macro I ever wrote 75// most ugly macro I ever wrote
30#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 76#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31 77
32// in range including end 78// in range including end
33#define IN_RANGE_INC(val,beg,end) \ 79#define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 80 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35 81
36// in range excluding end 82// in range excluding end
37#define IN_RANGE_EXC(val,beg,end) \ 83#define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 84 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39 85
86void cleanup (const char *cause, bool make_core = false);
40void fork_abort (const char *msg); 87void fork_abort (const char *msg);
41 88
42// rationale for using (U) not (T) is to reduce signed/unsigned issues, 89// rationale for using (U) not (T) is to reduce signed/unsigned issues,
43// as a is often a constant while b is the variable. it is still a bug, though. 90// as a is often a constant while b is the variable. it is still a bug, though.
44template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 91template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
45template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 92template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
46template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 93template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47 94
95template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98
48template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 99template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
49 100
101template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103
104// sign returns -1 or +1
105template<typename T>
106static inline T sign (T v) { return v < 0 ? -1 : +1; }
107// relies on 2c representation
108template<>
109inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110template<>
111inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112template<>
113inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114
115// sign0 returns -1, 0 or +1
116template<typename T>
117static inline T sign0 (T v) { return v ? sign (v) : 0; }
118
119//clashes with C++0x
120template<typename T, typename U>
121static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
122
123// div* only work correctly for div > 0
124// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125template<typename T> static inline T div (T val, T div)
126{
127 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128}
129
130template<> inline float div (float val, float div) { return val / div; }
131template<> inline double div (double val, double div) { return val / div; }
132
133// div, round-up
134template<typename T> static inline T div_ru (T val, T div)
135{
136 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
137}
138// div, round-down
139template<typename T> static inline T div_rd (T val, T div)
140{
141 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
142}
143
144// lerp* only work correctly for min_in < max_in
145// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
146template<typename T>
147static inline T
148lerp (T val, T min_in, T max_in, T min_out, T max_out)
149{
150 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151}
152
153// lerp, round-down
154template<typename T>
155static inline T
156lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
157{
158 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
159}
160
161// lerp, round-up
162template<typename T>
163static inline T
164lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
165{
166 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
167}
168
50// lots of stuff taken from FXT 169// lots of stuff taken from FXT
51 170
52/* Rotate right. This is used in various places for checksumming */ 171/* Rotate right. This is used in various places for checksumming */
53//TODO: this sucks, use a better checksum algo 172//TODO: that sucks, use a better checksum algo
54static inline uint32_t 173static inline uint32_t
55rotate_right (uint32_t c) 174rotate_right (uint32_t c, uint32_t count = 1)
56{ 175{
57 return (c << 31) | (c >> 1); 176 return (c << (32 - count)) | (c >> count);
177}
178
179static inline uint32_t
180rotate_left (uint32_t c, uint32_t count = 1)
181{
182 return (c >> (32 - count)) | (c << count);
58} 183}
59 184
60// Return abs(a-b) 185// Return abs(a-b)
61// Both a and b must not have the most significant bit set 186// Both a and b must not have the most significant bit set
62static inline uint32_t 187static inline uint32_t
84 int32_t d = b - a; 209 int32_t d = b - a;
85 d &= d >> 31; 210 d &= d >> 31;
86 return b - d; 211 return b - d;
87} 212}
88 213
89// this is much faster than crossfires original algorithm 214// this is much faster than crossfire's original algorithm
90// on modern cpus 215// on modern cpus
91inline int 216inline int
92isqrt (int n) 217isqrt (int n)
93{ 218{
94 return (int)sqrtf ((float)n); 219 return (int)sqrtf ((float)n);
220}
221
222// this is kind of like the ^^ operator, if it would exist, without sequence point.
223// more handy than it looks like, due to the implicit !! done on its arguments
224inline bool
225logical_xor (bool a, bool b)
226{
227 return a != b;
228}
229
230inline bool
231logical_implies (bool a, bool b)
232{
233 return a <= b;
95} 234}
96 235
97// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 236// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
98#if 0 237#if 0
99// and has a max. error of 6 in the range -100..+100. 238// and has a max. error of 6 in the range -100..+100.
113#else 252#else
114 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 253 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
115#endif 254#endif
116} 255}
117 256
257// can be substantially faster than floor, if your value range allows for it
258template<typename T>
259inline T
260fastfloor (T x)
261{
262 return std::floor (x);
263}
264
265inline float
266fastfloor (float x)
267{
268 return sint32(x) - (x < 0);
269}
270
271inline double
272fastfloor (double x)
273{
274 return sint64(x) - (x < 0);
275}
276
118/* 277/*
119 * absdir(int): Returns a number between 1 and 8, which represent 278 * absdir(int): Returns a number between 1 and 8, which represent
120 * the "absolute" direction of a number (it actually takes care of 279 * the "absolute" direction of a number (it actually takes care of
121 * "overflow" in previous calculations of a direction). 280 * "overflow" in previous calculations of a direction).
122 */ 281 */
124absdir (int d) 283absdir (int d)
125{ 284{
126 return ((d - 1) & 7) + 1; 285 return ((d - 1) & 7) + 1;
127} 286}
128 287
288// avoid ctz name because netbsd or freebsd spams it's namespace with it
289#if GCC_VERSION(3,4)
290static inline int least_significant_bit (uint32_t x)
291{
292 return __builtin_ctz (x);
293}
294#else
295int least_significant_bit (uint32_t x);
296#endif
297
298#define for_all_bits_sparse_32(mask, idxvar) \
299 for (uint32_t idxvar, mask_ = mask; \
300 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
301
302extern ssize_t slice_alloc; // statistics
303
304void *salloc_ (int n) throw (std::bad_alloc);
305void *salloc_ (int n, void *src) throw (std::bad_alloc);
306
307// strictly the same as g_slice_alloc, but never returns 0
308template<typename T>
309inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
310
311// also copies src into the new area, like "memdup"
312// if src is 0, clears the memory
313template<typename T>
314inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
315
316// clears the memory
317template<typename T>
318inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
319
320// for symmetry
321template<typename T>
322inline void sfree (T *ptr, int n = 1) throw ()
323{
324 if (expect_true (ptr))
325 {
326 slice_alloc -= n * sizeof (T);
327 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
328 g_slice_free1 (n * sizeof (T), (void *)ptr);
329 }
330}
331
332// nulls the pointer
333template<typename T>
334inline void sfree0 (T *&ptr, int n = 1) throw ()
335{
336 sfree<T> (ptr, n);
337 ptr = 0;
338}
339
129// makes dynamically allocated objects zero-initialised 340// makes dynamically allocated objects zero-initialised
130struct zero_initialised 341struct zero_initialised
131{ 342{
132 void *operator new (size_t s, void *p) 343 void *operator new (size_t s, void *p)
133 { 344 {
135 return p; 346 return p;
136 } 347 }
137 348
138 void *operator new (size_t s) 349 void *operator new (size_t s)
139 { 350 {
140 return g_slice_alloc0 (s); 351 return salloc0<char> (s);
141 } 352 }
142 353
143 void *operator new[] (size_t s) 354 void *operator new[] (size_t s)
144 { 355 {
145 return g_slice_alloc0 (s); 356 return salloc0<char> (s);
146 } 357 }
147 358
148 void operator delete (void *p, size_t s) 359 void operator delete (void *p, size_t s)
149 { 360 {
150 g_slice_free1 (s, p); 361 sfree ((char *)p, s);
151 } 362 }
152 363
153 void operator delete[] (void *p, size_t s) 364 void operator delete[] (void *p, size_t s)
154 { 365 {
155 g_slice_free1 (s, p); 366 sfree ((char *)p, s);
156 } 367 }
157}; 368};
158 369
159void *salloc_ (int n) throw (std::bad_alloc); 370// makes dynamically allocated objects zero-initialised
160void *salloc_ (int n, void *src) throw (std::bad_alloc); 371struct slice_allocated
161
162// strictly the same as g_slice_alloc, but never returns 0
163template<typename T>
164inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
165
166// also copies src into the new area, like "memdup"
167// if src is 0, clears the memory
168template<typename T>
169inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
170
171// clears the memory
172template<typename T>
173inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
174
175// for symmetry
176template<typename T>
177inline void sfree (T *ptr, int n = 1) throw ()
178{ 372{
179#ifdef PREFER_MALLOC 373 void *operator new (size_t s, void *p)
180 free (ptr); 374 {
181#else 375 return p;
182 g_slice_free1 (n * sizeof (T), (void *)ptr); 376 }
183#endif 377
184} 378 void *operator new (size_t s)
379 {
380 return salloc<char> (s);
381 }
382
383 void *operator new[] (size_t s)
384 {
385 return salloc<char> (s);
386 }
387
388 void operator delete (void *p, size_t s)
389 {
390 sfree ((char *)p, s);
391 }
392
393 void operator delete[] (void *p, size_t s)
394 {
395 sfree ((char *)p, s);
396 }
397};
185 398
186// a STL-compatible allocator that uses g_slice 399// a STL-compatible allocator that uses g_slice
187// boy, this is verbose 400// boy, this is verbose
188template<typename Tp> 401template<typename Tp>
189struct slice_allocator 402struct slice_allocator
201 { 414 {
202 typedef slice_allocator<U> other; 415 typedef slice_allocator<U> other;
203 }; 416 };
204 417
205 slice_allocator () throw () { } 418 slice_allocator () throw () { }
206 slice_allocator (const slice_allocator &o) throw () { } 419 slice_allocator (const slice_allocator &) throw () { }
207 template<typename Tp2> 420 template<typename Tp2>
208 slice_allocator (const slice_allocator<Tp2> &) throw () { } 421 slice_allocator (const slice_allocator<Tp2> &) throw () { }
209 422
210 ~slice_allocator () { } 423 ~slice_allocator () { }
211 424
220 void deallocate (pointer p, size_type n) 433 void deallocate (pointer p, size_type n)
221 { 434 {
222 sfree<Tp> (p, n); 435 sfree<Tp> (p, n);
223 } 436 }
224 437
225 size_type max_size ()const throw () 438 size_type max_size () const throw ()
226 { 439 {
227 return size_t (-1) / sizeof (Tp); 440 return size_t (-1) / sizeof (Tp);
228 } 441 }
229 442
230 void construct (pointer p, const Tp &val) 443 void construct (pointer p, const Tp &val)
236 { 449 {
237 p->~Tp (); 450 p->~Tp ();
238 } 451 }
239}; 452};
240 453
241// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 454// basically a memory area, but refcounted
242// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 455struct refcnt_buf
243// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
244struct tausworthe_random_generator
245{ 456{
246 // generator 457 char *data;
247 uint32_t state [4];
248 458
249 void operator =(const tausworthe_random_generator &src) 459 refcnt_buf (size_t size = 0);
250 { 460 refcnt_buf (void *data, size_t size);
251 state [0] = src.state [0];
252 state [1] = src.state [1];
253 state [2] = src.state [2];
254 state [3] = src.state [3];
255 }
256 461
257 void seed (uint32_t seed); 462 refcnt_buf (const refcnt_buf &src)
258 uint32_t next ();
259
260 // uniform distribution
261 uint32_t operator ()(uint32_t r_max)
262 { 463 {
263 return is_constant (r_max) 464 data = src.data;
264 ? this->next () % r_max 465 ++_refcnt ();
265 : get_range (r_max);
266 } 466 }
267 467
268 // return a number within (min .. max) 468 ~refcnt_buf ();
269 int operator () (int r_min, int r_max)
270 {
271 return is_constant (r_min) && is_constant (r_max)
272 ? r_min + (*this) (max (r_max - r_min + 1, 1))
273 : get_range (r_min, r_max);
274 }
275 469
276 double operator ()() 470 refcnt_buf &operator =(const refcnt_buf &src);
471
472 operator char *()
277 { 473 {
278 return this->next () / (double)0xFFFFFFFFU; 474 return data;
475 }
476
477 size_t size () const
478 {
479 return _size ();
279 } 480 }
280 481
281protected: 482protected:
282 uint32_t get_range (uint32_t r_max); 483 enum {
283 int get_range (int r_min, int r_max); 484 overhead = sizeof (unsigned int) * 2
284}; 485 };
285 486
286typedef tausworthe_random_generator rand_gen; 487 unsigned int &_size () const
488 {
489 return ((unsigned int *)data)[-2];
490 }
287 491
288extern rand_gen rndm; 492 unsigned int &_refcnt () const
493 {
494 return ((unsigned int *)data)[-1];
495 }
496
497 void _alloc (unsigned int size)
498 {
499 data = ((char *)salloc<char> (size + overhead)) + overhead;
500 _size () = size;
501 _refcnt () = 1;
502 }
503
504 void dec ()
505 {
506 if (!--_refcnt ())
507 sfree<char> (data - overhead, size () + overhead);
508 }
509};
510
511INTERFACE_CLASS (attachable)
512struct refcnt_base
513{
514 typedef int refcnt_t;
515 mutable refcnt_t ACC (RW, refcnt);
516
517 MTH void refcnt_inc () const { ++refcnt; }
518 MTH void refcnt_dec () const { --refcnt; }
519
520 refcnt_base () : refcnt (0) { }
521};
522
523// to avoid branches with more advanced compilers
524extern refcnt_base::refcnt_t refcnt_dummy;
289 525
290template<class T> 526template<class T>
291struct refptr 527struct refptr
292{ 528{
529 // p if not null
530 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
531
532 void refcnt_dec ()
533 {
534 if (!is_constant (p))
535 --*refcnt_ref ();
536 else if (p)
537 --p->refcnt;
538 }
539
540 void refcnt_inc ()
541 {
542 if (!is_constant (p))
543 ++*refcnt_ref ();
544 else if (p)
545 ++p->refcnt;
546 }
547
293 T *p; 548 T *p;
294 549
295 refptr () : p(0) { } 550 refptr () : p(0) { }
296 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 551 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
297 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 552 refptr (T *p) : p(p) { refcnt_inc (); }
298 ~refptr () { if (p) p->refcnt_dec (); } 553 ~refptr () { refcnt_dec (); }
299 554
300 const refptr<T> &operator =(T *o) 555 const refptr<T> &operator =(T *o)
301 { 556 {
557 // if decrementing ever destroys we need to reverse the order here
302 if (p) p->refcnt_dec (); 558 refcnt_dec ();
303 p = o; 559 p = o;
304 if (p) p->refcnt_inc (); 560 refcnt_inc ();
305
306 return *this; 561 return *this;
307 } 562 }
308 563
309 const refptr<T> &operator =(const refptr<T> o) 564 const refptr<T> &operator =(const refptr<T> &o)
310 { 565 {
311 *this = o.p; 566 *this = o.p;
312 return *this; 567 return *this;
313 } 568 }
314 569
315 T &operator * () const { return *p; } 570 T &operator * () const { return *p; }
316 T *operator ->() const { return p; } 571 T *operator ->() const { return p; }
317 572
318 operator T *() const { return p; } 573 operator T *() const { return p; }
319}; 574};
320 575
321typedef refptr<maptile> maptile_ptr; 576typedef refptr<maptile> maptile_ptr;
322typedef refptr<object> object_ptr; 577typedef refptr<object> object_ptr;
323typedef refptr<archetype> arch_ptr; 578typedef refptr<archetype> arch_ptr;
324typedef refptr<client> client_ptr; 579typedef refptr<client> client_ptr;
325typedef refptr<player> player_ptr; 580typedef refptr<player> player_ptr;
581typedef refptr<region> region_ptr;
582
583#define STRHSH_NULL 2166136261
584
585static inline uint32_t
586strhsh (const char *s)
587{
588 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
589 // it is about twice as fast as the one-at-a-time one,
590 // with good distribution.
591 // FNV-1a is faster on many cpus because the multiplication
592 // runs concurrently with the looping logic.
593 // we modify the hash a bit to improve its distribution
594 uint32_t hash = STRHSH_NULL;
595
596 while (*s)
597 hash = (hash ^ *s++) * 16777619U;
598
599 return hash ^ (hash >> 16);
600}
601
602static inline uint32_t
603memhsh (const char *s, size_t len)
604{
605 uint32_t hash = STRHSH_NULL;
606
607 while (len--)
608 hash = (hash ^ *s++) * 16777619U;
609
610 return hash;
611}
326 612
327struct str_hash 613struct str_hash
328{ 614{
329 std::size_t operator ()(const char *s) const 615 std::size_t operator ()(const char *s) const
330 { 616 {
331 unsigned long hash = 0;
332
333 /* use the one-at-a-time hash function, which supposedly is
334 * better than the djb2-like one used by perl5.005, but
335 * certainly is better then the bug used here before.
336 * see http://burtleburtle.net/bob/hash/doobs.html
337 */
338 while (*s)
339 {
340 hash += *s++;
341 hash += hash << 10;
342 hash ^= hash >> 6;
343 }
344
345 hash += hash << 3;
346 hash ^= hash >> 11;
347 hash += hash << 15;
348
349 return hash; 617 return strhsh (s);
618 }
619
620 std::size_t operator ()(const shstr &s) const
621 {
622 return strhsh (s);
350 } 623 }
351}; 624};
352 625
353struct str_equal 626struct str_equal
354{ 627{
356 { 629 {
357 return !strcmp (a, b); 630 return !strcmp (a, b);
358 } 631 }
359}; 632};
360 633
634// Mostly the same as std::vector, but insert/erase can reorder
635// the elements, making append(=insert)/remove O(1) instead of O(n).
636//
637// NOTE: only some forms of erase are available
361template<class T> 638template<class T>
362struct unordered_vector : std::vector<T, slice_allocator<T> > 639struct unordered_vector : std::vector<T, slice_allocator<T> >
363{ 640{
364 typedef typename unordered_vector::iterator iterator; 641 typedef typename unordered_vector::iterator iterator;
365 642
375 { 652 {
376 erase ((unsigned int )(i - this->begin ())); 653 erase ((unsigned int )(i - this->begin ()));
377 } 654 }
378}; 655};
379 656
380template<class T, int T::* index> 657// This container blends advantages of linked lists
658// (efficiency) with vectors (random access) by
659// by using an unordered vector and storing the vector
660// index inside the object.
661//
662// + memory-efficient on most 64 bit archs
663// + O(1) insert/remove
664// + free unique (but varying) id for inserted objects
665// + cache-friendly iteration
666// - only works for pointers to structs
667//
668// NOTE: only some forms of erase/insert are available
669typedef int object_vector_index;
670
671template<class T, object_vector_index T::*indexmember>
381struct object_vector : std::vector<T *, slice_allocator<T *> > 672struct object_vector : std::vector<T *, slice_allocator<T *> >
382{ 673{
674 typedef typename object_vector::iterator iterator;
675
676 bool contains (const T *obj) const
677 {
678 return obj->*indexmember;
679 }
680
681 iterator find (const T *obj)
682 {
683 return obj->*indexmember
684 ? this->begin () + obj->*indexmember - 1
685 : this->end ();
686 }
687
688 void push_back (T *obj)
689 {
690 std::vector<T *, slice_allocator<T *> >::push_back (obj);
691 obj->*indexmember = this->size ();
692 }
693
383 void insert (T *obj) 694 void insert (T *obj)
384 { 695 {
385 assert (!(obj->*index));
386 push_back (obj); 696 push_back (obj);
387 obj->*index = this->size ();
388 } 697 }
389 698
390 void insert (T &obj) 699 void insert (T &obj)
391 { 700 {
392 insert (&obj); 701 insert (&obj);
393 } 702 }
394 703
395 void erase (T *obj) 704 void erase (T *obj)
396 { 705 {
397 assert (obj->*index);
398 int pos = obj->*index; 706 unsigned int pos = obj->*indexmember;
399 obj->*index = 0; 707 obj->*indexmember = 0;
400 708
401 if (pos < this->size ()) 709 if (pos < this->size ())
402 { 710 {
403 (*this)[pos - 1] = (*this)[this->size () - 1]; 711 (*this)[pos - 1] = (*this)[this->size () - 1];
404 (*this)[pos - 1]->*index = pos; 712 (*this)[pos - 1]->*indexmember = pos;
405 } 713 }
406 714
407 this->pop_back (); 715 this->pop_back ();
408 } 716 }
409 717
410 void erase (T &obj) 718 void erase (T &obj)
411 { 719 {
412 errase (&obj); 720 erase (&obj);
413 } 721 }
414}; 722};
723
724/////////////////////////////////////////////////////////////////////////////
725
726// something like a vector or stack, but without
727// out of bounds checking
728template<typename T>
729struct fixed_stack
730{
731 T *data;
732 int size;
733 int max;
734
735 fixed_stack ()
736 : size (0), data (0)
737 {
738 }
739
740 fixed_stack (int max)
741 : size (0), max (max)
742 {
743 data = salloc<T> (max);
744 }
745
746 void reset (int new_max)
747 {
748 sfree (data, max);
749 size = 0;
750 max = new_max;
751 data = salloc<T> (max);
752 }
753
754 void free ()
755 {
756 sfree (data, max);
757 data = 0;
758 }
759
760 ~fixed_stack ()
761 {
762 sfree (data, max);
763 }
764
765 T &operator[](int idx)
766 {
767 return data [idx];
768 }
769
770 void push (T v)
771 {
772 data [size++] = v;
773 }
774
775 T &pop ()
776 {
777 return data [--size];
778 }
779
780 T remove (int idx)
781 {
782 T v = data [idx];
783
784 data [idx] = data [--size];
785
786 return v;
787 }
788};
789
790/////////////////////////////////////////////////////////////////////////////
415 791
416// basically does what strncpy should do, but appends "..." to strings exceeding length 792// basically does what strncpy should do, but appends "..." to strings exceeding length
793// returns the number of bytes actually used (including \0)
417void assign (char *dst, const char *src, int maxlen); 794int assign (char *dst, const char *src, int maxsize);
418 795
419// type-safe version of assign 796// type-safe version of assign
420template<int N> 797template<int N>
421inline void assign (char (&dst)[N], const char *src) 798inline int assign (char (&dst)[N], const char *src)
422{ 799{
423 assign ((char *)&dst, src, N); 800 return assign ((char *)&dst, src, N);
424} 801}
425 802
426typedef double tstamp; 803typedef double tstamp;
427 804
428// return current time as timestampe 805// return current time as timestamp
429tstamp now (); 806tstamp now ();
430 807
431int similar_direction (int a, int b); 808int similar_direction (int a, int b);
432 809
810// like v?sprintf, but returns a "static" buffer
811char *vformat (const char *format, va_list ap);
812char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
813
814// safety-check player input which will become object->msg
815bool msg_is_safe (const char *msg);
816
817/////////////////////////////////////////////////////////////////////////////
818// threads, very very thin wrappers around pthreads
819
820struct thread
821{
822 pthread_t id;
823
824 void start (void *(*start_routine)(void *), void *arg = 0);
825
826 void cancel ()
827 {
828 pthread_cancel (id);
829 }
830
831 void *join ()
832 {
833 void *ret;
834
835 if (pthread_join (id, &ret))
836 cleanup ("pthread_join failed", 1);
837
838 return ret;
839 }
840};
841
842// note that mutexes are not classes
843typedef pthread_mutex_t smutex;
844
845#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
846 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
847#else
848 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
433#endif 849#endif
434 850
851#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
852#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
853#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
854
855typedef pthread_cond_t scond;
856
857#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
858#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
859#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
860#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
861
862#endif
863

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines