ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.37 by root, Thu Feb 15 15:43:36 2007 UTC vs.
Revision 1.129 by root, Sat Dec 1 20:22:13 2018 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
6 *
7 * Deliantra is free software: you can redistribute it and/or modify it under
8 * the terms of the Affero GNU General Public License as published by the
9 * Free Software Foundation, either version 3 of the License, or (at your
10 * option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the Affero GNU General Public License
18 * and the GNU General Public License along with this program. If not, see
19 * <http://www.gnu.org/licenses/>.
20 *
21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */
23
1#ifndef UTIL_H__ 24#ifndef UTIL_H__
2#define UTIL_H__ 25#define UTIL_H__
3 26
4//#define PREFER_MALLOC 27#include <compiler.h>
5 28
6#if __GNUC__ >= 3 29#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) __builtin_constant_p (c) 30#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8#else 31#define PREFER_MALLOC 0 // use malloc and not the slice allocator
9# define is_constant(c) 0 32
10#endif 33#include <pthread.h>
11 34
12#include <cstddef> 35#include <cstddef>
13#include <cmath> 36#include <cmath>
14#include <new> 37#include <new>
15#include <vector> 38#include <vector>
16 39
17#include <glib.h> 40#include <glib.h>
18 41
42#include <flat_hash_map.hpp>
43
19#include <shstr.h> 44#include <shstr.h>
20#include <traits.h> 45#include <traits.h>
21 46
22// use a gcc extension for auto declarations until ISO C++ sanctifies them 47#if DEBUG_SALLOC
23#define AUTODECL(var,expr) typeof(expr) var = (expr) 48# define g_slice_alloc0(s) debug_slice_alloc0(s)
49# define g_slice_alloc(s) debug_slice_alloc(s)
50# define g_slice_free1(s,p) debug_slice_free1(s,p)
51void *g_slice_alloc (unsigned long size);
52void *g_slice_alloc0 (unsigned long size);
53void g_slice_free1 (unsigned long size, void *ptr);
54#elif PREFER_MALLOC
55# define g_slice_alloc0(s) calloc (1, (s))
56# define g_slice_alloc(s) malloc ((s))
57# define g_slice_free1(s,p) free ((p))
58#endif
24 59
25// very ugly macro that basicaly declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
26// that is in scope for the next statement only 61// that is in scope for the next statement only
27// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
28// (note: works great for pointers) 63// (note: works great for pointers)
29// most ugly macro I ever wrote 64// most ugly macro I ever wrote
30#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31 66
32// in range including end 67// in range including end
33#define IN_RANGE_INC(val,beg,end) \ 68#define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 69 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35 70
36// in range excluding end 71// in range excluding end
37#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39 74
75ecb_cold void cleanup (const char *cause, bool make_core = false);
40void fork_abort (const char *msg); 76ecb_cold void fork_abort (const char *msg);
41 77
42// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
43// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
44template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
45template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
46template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47 83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87
48template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 88template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
49 89
90template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92
93// sign returns -1 or +1
94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation
97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99template<>
100inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
101template<>
102inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
103
104// sign0 returns -1, 0 or +1
105template<typename T>
106static inline T sign0 (T v) { return v ? sign (v) : 0; }
107
108//clashes with C++0x
109template<typename T, typename U>
110static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
111
112// div* only work correctly for div > 0
113// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
114template<typename T> static inline T div (T val, T div)
115{
116 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
117}
118
119template<> inline float div (float val, float div) { return val / div; }
120template<> inline double div (double val, double div) { return val / div; }
121
122// div, round-up
123template<typename T> static inline T div_ru (T val, T div)
124{
125 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
126}
127// div, round-down
128template<typename T> static inline T div_rd (T val, T div)
129{
130 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
131}
132
133// lerp* only work correctly for min_in < max_in
134// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
135template<typename T>
136static inline T
137lerp (T val, T min_in, T max_in, T min_out, T max_out)
138{
139 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
140}
141
142// lerp, round-down
143template<typename T>
144static inline T
145lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
146{
147 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148}
149
150// lerp, round-up
151template<typename T>
152static inline T
153lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
154{
155 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156}
157
50// lots of stuff taken from FXT 158// lots of stuff taken from FXT
51 159
52/* Rotate right. This is used in various places for checksumming */ 160/* Rotate right. This is used in various places for checksumming */
53//TODO: this sucks, use a better checksum algo 161//TODO: that sucks, use a better checksum algo
54static inline uint32_t 162static inline uint32_t
55rotate_right (uint32_t c) 163rotate_right (uint32_t c, uint32_t count = 1)
56{ 164{
57 return (c << 31) | (c >> 1); 165 return (c << (32 - count)) | (c >> count);
166}
167
168static inline uint32_t
169rotate_left (uint32_t c, uint32_t count = 1)
170{
171 return (c >> (32 - count)) | (c << count);
58} 172}
59 173
60// Return abs(a-b) 174// Return abs(a-b)
61// Both a and b must not have the most significant bit set 175// Both a and b must not have the most significant bit set
62static inline uint32_t 176static inline uint32_t
84 int32_t d = b - a; 198 int32_t d = b - a;
85 d &= d >> 31; 199 d &= d >> 31;
86 return b - d; 200 return b - d;
87} 201}
88 202
89// this is much faster than crossfires original algorithm 203// this is much faster than crossfire's original algorithm
90// on modern cpus 204// on modern cpus
91inline int 205inline int
92isqrt (int n) 206isqrt (int n)
93{ 207{
94 return (int)sqrtf ((float)n); 208 return (int)sqrtf ((float)n);
209}
210
211// this is kind of like the ^^ operator, if it would exist, without sequence point.
212// more handy than it looks like, due to the implicit !! done on its arguments
213inline bool
214logical_xor (bool a, bool b)
215{
216 return a != b;
217}
218
219inline bool
220logical_implies (bool a, bool b)
221{
222 return a <= b;
95} 223}
96 224
97// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 225// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
98#if 0 226#if 0
99// and has a max. error of 6 in the range -100..+100. 227// and has a max. error of 6 in the range -100..+100.
100#else 228#else
101// and has a max. error of 9 in the range -100..+100. 229// and has a max. error of 9 in the range -100..+100.
102#endif 230#endif
103inline int 231inline int
104idistance (int dx, int dy) 232idistance (int dx, int dy)
105{ 233{
106 unsigned int dx_ = abs (dx); 234 unsigned int dx_ = abs (dx);
107 unsigned int dy_ = abs (dy); 235 unsigned int dy_ = abs (dy);
108 236
109#if 0 237#if 0
110 return dx_ > dy_ 238 return dx_ > dy_
113#else 241#else
114 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 242 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
115#endif 243#endif
116} 244}
117 245
246// can be substantially faster than floor, if your value range allows for it
247template<typename T>
248inline T
249fastfloor (T x)
250{
251 return std::floor (x);
252}
253
254inline float
255fastfloor (float x)
256{
257 return sint32(x) - (x < 0);
258}
259
260inline double
261fastfloor (double x)
262{
263 return sint64(x) - (x < 0);
264}
265
118/* 266/*
119 * absdir(int): Returns a number between 1 and 8, which represent 267 * absdir(int): Returns a number between 1 and 8, which represent
120 * the "absolute" direction of a number (it actually takes care of 268 * the "absolute" direction of a number (it actually takes care of
121 * "overflow" in previous calculations of a direction). 269 * "overflow" in previous calculations of a direction).
122 */ 270 */
124absdir (int d) 272absdir (int d)
125{ 273{
126 return ((d - 1) & 7) + 1; 274 return ((d - 1) & 7) + 1;
127} 275}
128 276
277#define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
280
281extern ssize_t slice_alloc; // statistics
282
283void *salloc_ (int n);
284void *salloc_ (int n, void *src);
285
286// strictly the same as g_slice_alloc, but never returns 0
287template<typename T>
288inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
289
290// also copies src into the new area, like "memdup"
291// if src is 0, clears the memory
292template<typename T>
293inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
294
295// clears the memory
296template<typename T>
297inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
298
299// for symmetry
300template<typename T>
301inline void sfree (T *ptr, int n = 1) noexcept
302{
303 if (expect_true (ptr))
304 {
305 slice_alloc -= n * sizeof (T);
306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
307 g_slice_free1 (n * sizeof (T), (void *)ptr);
308 }
309}
310
311// nulls the pointer
312template<typename T>
313inline void sfree0 (T *&ptr, int n = 1) noexcept
314{
315 sfree<T> (ptr, n);
316 ptr = 0;
317}
318
129// makes dynamically allocated objects zero-initialised 319// makes dynamically allocated objects zero-initialised
130struct zero_initialised 320struct zero_initialised
131{ 321{
132 void *operator new (size_t s, void *p) 322 void *operator new (size_t s, void *p)
133 { 323 {
135 return p; 325 return p;
136 } 326 }
137 327
138 void *operator new (size_t s) 328 void *operator new (size_t s)
139 { 329 {
140 return g_slice_alloc0 (s); 330 return salloc0<char> (s);
141 } 331 }
142 332
143 void *operator new[] (size_t s) 333 void *operator new[] (size_t s)
144 { 334 {
145 return g_slice_alloc0 (s); 335 return salloc0<char> (s);
146 } 336 }
147 337
148 void operator delete (void *p, size_t s) 338 void operator delete (void *p, size_t s)
149 { 339 {
150 g_slice_free1 (s, p); 340 sfree ((char *)p, s);
151 } 341 }
152 342
153 void operator delete[] (void *p, size_t s) 343 void operator delete[] (void *p, size_t s)
154 { 344 {
155 g_slice_free1 (s, p); 345 sfree ((char *)p, s);
156 } 346 }
157}; 347};
158 348
159void *salloc_ (int n) throw (std::bad_alloc); 349// makes dynamically allocated objects zero-initialised
160void *salloc_ (int n, void *src) throw (std::bad_alloc); 350struct slice_allocated
161
162// strictly the same as g_slice_alloc, but never returns 0
163template<typename T>
164inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
165
166// also copies src into the new area, like "memdup"
167// if src is 0, clears the memory
168template<typename T>
169inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
170
171// clears the memory
172template<typename T>
173inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
174
175// for symmetry
176template<typename T>
177inline void sfree (T *ptr, int n = 1) throw ()
178{ 351{
179#ifdef PREFER_MALLOC 352 void *operator new (size_t s, void *p)
180 free (ptr); 353 {
181#else 354 return p;
182 g_slice_free1 (n * sizeof (T), (void *)ptr); 355 }
183#endif 356
184} 357 void *operator new (size_t s)
358 {
359 return salloc<char> (s);
360 }
361
362 void *operator new[] (size_t s)
363 {
364 return salloc<char> (s);
365 }
366
367 void operator delete (void *p, size_t s)
368 {
369 sfree ((char *)p, s);
370 }
371
372 void operator delete[] (void *p, size_t s)
373 {
374 sfree ((char *)p, s);
375 }
376};
185 377
186// a STL-compatible allocator that uses g_slice 378// a STL-compatible allocator that uses g_slice
187// boy, this is verbose 379// boy, this is verbose
188template<typename Tp> 380template<typename Tp>
189struct slice_allocator 381struct slice_allocator
194 typedef const Tp *const_pointer; 386 typedef const Tp *const_pointer;
195 typedef Tp &reference; 387 typedef Tp &reference;
196 typedef const Tp &const_reference; 388 typedef const Tp &const_reference;
197 typedef Tp value_type; 389 typedef Tp value_type;
198 390
199 template <class U> 391 template <class U>
200 struct rebind 392 struct rebind
201 { 393 {
202 typedef slice_allocator<U> other; 394 typedef slice_allocator<U> other;
203 }; 395 };
204 396
205 slice_allocator () throw () { } 397 slice_allocator () noexcept { }
206 slice_allocator (const slice_allocator &o) throw () { } 398 slice_allocator (const slice_allocator &) noexcept { }
207 template<typename Tp2> 399 template<typename Tp2>
208 slice_allocator (const slice_allocator<Tp2> &) throw () { } 400 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
209 401
210 ~slice_allocator () { } 402 ~slice_allocator () { }
211 403
212 pointer address (reference x) const { return &x; } 404 pointer address (reference x) const { return &x; }
213 const_pointer address (const_reference x) const { return &x; } 405 const_pointer address (const_reference x) const { return &x; }
220 void deallocate (pointer p, size_type n) 412 void deallocate (pointer p, size_type n)
221 { 413 {
222 sfree<Tp> (p, n); 414 sfree<Tp> (p, n);
223 } 415 }
224 416
225 size_type max_size ()const throw () 417 size_type max_size () const noexcept
226 { 418 {
227 return size_t (-1) / sizeof (Tp); 419 return size_t (-1) / sizeof (Tp);
228 } 420 }
229 421
230 void construct (pointer p, const Tp &val) 422 void construct (pointer p, const Tp &val)
236 { 428 {
237 p->~Tp (); 429 p->~Tp ();
238 } 430 }
239}; 431};
240 432
241// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 433// basically a memory area, but refcounted
242// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 434struct refcnt_buf
243// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
244struct tausworthe_random_generator
245{ 435{
246 // generator 436 char *data;
247 uint32_t state [4];
248 437
249 void operator =(const tausworthe_random_generator &src) 438 refcnt_buf (size_t size = 0);
250 { 439 refcnt_buf (void *data, size_t size);
251 state [0] = src.state [0];
252 state [1] = src.state [1];
253 state [2] = src.state [2];
254 state [3] = src.state [3];
255 }
256 440
257 void seed (uint32_t seed); 441 refcnt_buf (const refcnt_buf &src)
258 uint32_t next ();
259
260 // uniform distribution
261 uint32_t operator ()(uint32_t r_max)
262 { 442 {
263 return is_constant (r_max) 443 data = src.data;
264 ? this->next () % r_max 444 inc ();
265 : get_range (r_max);
266 } 445 }
267 446
268 // return a number within (min .. max) 447 ~refcnt_buf ();
269 int operator () (int r_min, int r_max)
270 {
271 return is_constant (r_min) && is_constant (r_max)
272 ? r_min + (*this) (max (r_max - r_min + 1, 1))
273 : get_range (r_min, r_max);
274 }
275 448
276 double operator ()() 449 refcnt_buf &operator =(const refcnt_buf &src);
450
451 operator char *()
277 { 452 {
278 return this->next () / (double)0xFFFFFFFFU; 453 return data;
454 }
455
456 size_t size () const
457 {
458 return _size ();
279 } 459 }
280 460
281protected: 461protected:
282 uint32_t get_range (uint32_t r_max); 462 enum {
283 int get_range (int r_min, int r_max); 463 overhead = sizeof (uint32_t) * 2
284}; 464 };
285 465
286typedef tausworthe_random_generator rand_gen; 466 uint32_t &_size () const
467 {
468 return ((unsigned int *)data)[-2];
469 }
287 470
288extern rand_gen rndm; 471 uint32_t &_refcnt () const
472 {
473 return ((unsigned int *)data)[-1];
474 }
475
476 void _alloc (uint32_t size)
477 {
478 data = ((char *)salloc<char> (size + overhead)) + overhead;
479 _size () = size;
480 _refcnt () = 1;
481 }
482
483 void _dealloc ();
484
485 void inc ()
486 {
487 ++_refcnt ();
488 }
489
490 void dec ()
491 {
492 if (!--_refcnt ())
493 _dealloc ();
494 }
495};
496
497INTERFACE_CLASS (attachable)
498struct refcnt_base
499{
500 typedef int refcnt_t;
501 mutable refcnt_t ACC (RW, refcnt);
502
503 MTH void refcnt_inc () const { ++refcnt; }
504 MTH void refcnt_dec () const { --refcnt; }
505
506 refcnt_base () : refcnt (0) { }
507};
508
509// to avoid branches with more advanced compilers
510extern refcnt_base::refcnt_t refcnt_dummy;
289 511
290template<class T> 512template<class T>
291struct refptr 513struct refptr
292{ 514{
515 // p if not null
516 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
517
518 void refcnt_dec ()
519 {
520 if (!ecb_is_constant (p))
521 --*refcnt_ref ();
522 else if (p)
523 --p->refcnt;
524 }
525
526 void refcnt_inc ()
527 {
528 if (!ecb_is_constant (p))
529 ++*refcnt_ref ();
530 else if (p)
531 ++p->refcnt;
532 }
533
293 T *p; 534 T *p;
294 535
295 refptr () : p(0) { } 536 refptr () : p(0) { }
296 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 537 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
297 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 538 refptr (T *p) : p(p) { refcnt_inc (); }
298 ~refptr () { if (p) p->refcnt_dec (); } 539 ~refptr () { refcnt_dec (); }
299 540
300 const refptr<T> &operator =(T *o) 541 const refptr<T> &operator =(T *o)
301 { 542 {
543 // if decrementing ever destroys we need to reverse the order here
302 if (p) p->refcnt_dec (); 544 refcnt_dec ();
303 p = o; 545 p = o;
304 if (p) p->refcnt_inc (); 546 refcnt_inc ();
305
306 return *this; 547 return *this;
307 } 548 }
308 549
309 const refptr<T> &operator =(const refptr<T> o) 550 const refptr<T> &operator =(const refptr<T> &o)
310 { 551 {
311 *this = o.p; 552 *this = o.p;
312 return *this; 553 return *this;
313 } 554 }
314 555
315 T &operator * () const { return *p; } 556 T &operator * () const { return *p; }
316 T *operator ->() const { return p; } 557 T *operator ->() const { return p; }
317 558
318 operator T *() const { return p; } 559 operator T *() const { return p; }
319}; 560};
320 561
321typedef refptr<maptile> maptile_ptr; 562typedef refptr<maptile> maptile_ptr;
322typedef refptr<object> object_ptr; 563typedef refptr<object> object_ptr;
323typedef refptr<archetype> arch_ptr; 564typedef refptr<archetype> arch_ptr;
324typedef refptr<client> client_ptr; 565typedef refptr<client> client_ptr;
325typedef refptr<player> player_ptr; 566typedef refptr<player> player_ptr;
567typedef refptr<region> region_ptr;
568
569#define STRHSH_NULL 2166136261
570
571static inline uint32_t
572strhsh (const char *s)
573{
574 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
575 // it is about twice as fast as the one-at-a-time one,
576 // with good distribution.
577 // FNV-1a is faster on many cpus because the multiplication
578 // runs concurrently with the looping logic.
579 // we modify the hash a bit to improve its distribution
580 uint32_t hash = STRHSH_NULL;
581
582 while (*s)
583 hash = (hash ^ *s++) * 16777619U;
584
585 return hash ^ (hash >> 16);
586}
587
588static inline uint32_t
589memhsh (const char *s, size_t len)
590{
591 uint32_t hash = STRHSH_NULL;
592
593 while (len--)
594 hash = (hash ^ *s++) * 16777619U;
595
596 return hash;
597}
326 598
327struct str_hash 599struct str_hash
328{ 600{
329 std::size_t operator ()(const char *s) const 601 std::size_t operator ()(const char *s) const
330 { 602 {
331 unsigned long hash = 0;
332
333 /* use the one-at-a-time hash function, which supposedly is
334 * better than the djb2-like one used by perl5.005, but
335 * certainly is better then the bug used here before.
336 * see http://burtleburtle.net/bob/hash/doobs.html
337 */
338 while (*s)
339 {
340 hash += *s++;
341 hash += hash << 10;
342 hash ^= hash >> 6;
343 }
344
345 hash += hash << 3;
346 hash ^= hash >> 11;
347 hash += hash << 15;
348
349 return hash; 603 return strhsh (s);
350 } 604 }
605
606 std::size_t operator ()(const shstr &s) const
607 {
608 return strhsh (s);
609 }
610
611 typedef ska::power_of_two_hash_policy hash_policy;
351}; 612};
352 613
353struct str_equal 614struct str_equal
354{ 615{
355 bool operator ()(const char *a, const char *b) const 616 bool operator ()(const char *a, const char *b) const
356 { 617 {
357 return !strcmp (a, b); 618 return !strcmp (a, b);
358 } 619 }
359}; 620};
360 621
622// Mostly the same as std::vector, but insert/erase can reorder
623// the elements, making append(=insert)/remove O(1) instead of O(n).
624//
625// NOTE: only some forms of erase are available
361template<class T> 626template<class T>
362struct unordered_vector : std::vector<T, slice_allocator<T> > 627struct unordered_vector : std::vector<T, slice_allocator<T> >
363{ 628{
364 typedef typename unordered_vector::iterator iterator; 629 typedef typename unordered_vector::iterator iterator;
365 630
375 { 640 {
376 erase ((unsigned int )(i - this->begin ())); 641 erase ((unsigned int )(i - this->begin ()));
377 } 642 }
378}; 643};
379 644
380template<class T, int T::* index> 645// This container blends advantages of linked lists
646// (efficiency) with vectors (random access) by
647// using an unordered vector and storing the vector
648// index inside the object.
649//
650// + memory-efficient on most 64 bit archs
651// + O(1) insert/remove
652// + free unique (but varying) id for inserted objects
653// + cache-friendly iteration
654// - only works for pointers to structs
655//
656// NOTE: only some forms of erase/insert are available
657typedef int object_vector_index;
658
659template<class T, object_vector_index T::*indexmember>
381struct object_vector : std::vector<T *, slice_allocator<T *> > 660struct object_vector : std::vector<T *, slice_allocator<T *> >
382{ 661{
662 typedef typename object_vector::iterator iterator;
663
664 bool contains (const T *obj) const
665 {
666 return obj->*indexmember;
667 }
668
669 iterator find (const T *obj)
670 {
671 return obj->*indexmember
672 ? this->begin () + obj->*indexmember - 1
673 : this->end ();
674 }
675
676 void push_back (T *obj)
677 {
678 std::vector<T *, slice_allocator<T *> >::push_back (obj);
679 obj->*indexmember = this->size ();
680 }
681
383 void insert (T *obj) 682 void insert (T *obj)
384 { 683 {
385 assert (!(obj->*index));
386 push_back (obj); 684 push_back (obj);
387 obj->*index = this->size ();
388 } 685 }
389 686
390 void insert (T &obj) 687 void insert (T &obj)
391 { 688 {
392 insert (&obj); 689 insert (&obj);
393 } 690 }
394 691
395 void erase (T *obj) 692 void erase (T *obj)
396 { 693 {
397 assert (obj->*index); 694 object_vector_index pos = obj->*indexmember;
398 int pos = obj->*index;
399 obj->*index = 0; 695 obj->*indexmember = 0;
400 696
401 if (pos < this->size ()) 697 if (pos < this->size ())
402 { 698 {
403 (*this)[pos - 1] = (*this)[this->size () - 1]; 699 (*this)[pos - 1] = (*this)[this->size () - 1];
404 (*this)[pos - 1]->*index = pos; 700 (*this)[pos - 1]->*indexmember = pos;
405 } 701 }
406 702
407 this->pop_back (); 703 this->pop_back ();
408 } 704 }
409 705
410 void erase (T &obj) 706 void erase (T &obj)
411 { 707 {
412 errase (&obj); 708 erase (&obj);
413 } 709 }
414}; 710};
711
712/////////////////////////////////////////////////////////////////////////////
713
714// something like a vector or stack, but without
715// out of bounds checking
716template<typename T>
717struct fixed_stack
718{
719 T *data;
720 int size;
721 int max;
722
723 fixed_stack ()
724 : size (0), data (0)
725 {
726 }
727
728 fixed_stack (int max)
729 : size (0), max (max)
730 {
731 data = salloc<T> (max);
732 }
733
734 void reset (int new_max)
735 {
736 sfree (data, max);
737 size = 0;
738 max = new_max;
739 data = salloc<T> (max);
740 }
741
742 void free ()
743 {
744 sfree (data, max);
745 data = 0;
746 }
747
748 ~fixed_stack ()
749 {
750 sfree (data, max);
751 }
752
753 T &operator[](int idx)
754 {
755 return data [idx];
756 }
757
758 void push (T v)
759 {
760 data [size++] = v;
761 }
762
763 T &pop ()
764 {
765 return data [--size];
766 }
767
768 T remove (int idx)
769 {
770 T v = data [idx];
771
772 data [idx] = data [--size];
773
774 return v;
775 }
776};
777
778/////////////////////////////////////////////////////////////////////////////
415 779
416// basically does what strncpy should do, but appends "..." to strings exceeding length 780// basically does what strncpy should do, but appends "..." to strings exceeding length
781// returns the number of bytes actually used (including \0)
417void assign (char *dst, const char *src, int maxlen); 782int assign (char *dst, const char *src, int maxsize);
418 783
419// type-safe version of assign 784// type-safe version of assign
420template<int N> 785template<int N>
421inline void assign (char (&dst)[N], const char *src) 786inline int assign (char (&dst)[N], const char *src)
422{ 787{
423 assign ((char *)&dst, src, N); 788 return assign ((char *)&dst, src, N);
424} 789}
425 790
426typedef double tstamp; 791typedef double tstamp;
427 792
428// return current time as timestampe 793// return current time as timestamp
429tstamp now (); 794tstamp now ();
430 795
431int similar_direction (int a, int b); 796int similar_direction (int a, int b);
432 797
798// like v?sprintf, but returns a "static" buffer
799char *vformat (const char *format, va_list ap);
800char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
801
802// safety-check player input which will become object->msg
803bool msg_is_safe (const char *msg);
804
805/////////////////////////////////////////////////////////////////////////////
806// threads, very very thin wrappers around pthreads
807
808struct thread
809{
810 pthread_t id;
811
812 void start (void *(*start_routine)(void *), void *arg = 0);
813
814 void cancel ()
815 {
816 pthread_cancel (id);
817 }
818
819 void *join ()
820 {
821 void *ret;
822
823 if (pthread_join (id, &ret))
824 cleanup ("pthread_join failed", 1);
825
826 return ret;
827 }
828};
829
830// note that mutexes are not classes
831typedef pthread_mutex_t smutex;
832
833#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
834 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
835#else
836 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
433#endif 837#endif
434 838
839#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
840#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
841#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
842
843typedef pthread_cond_t scond;
844
845#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
846#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
847#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
848#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
849
850#endif
851

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines