ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.34 by root, Fri Jan 19 15:15:50 2007 UTC vs.
Revision 1.127 by root, Sat Nov 17 23:40:02 2018 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
6 *
7 * Deliantra is free software: you can redistribute it and/or modify it under
8 * the terms of the Affero GNU General Public License as published by the
9 * Free Software Foundation, either version 3 of the License, or (at your
10 * option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the Affero GNU General Public License
18 * and the GNU General Public License along with this program. If not, see
19 * <http://www.gnu.org/licenses/>.
20 *
21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */
23
1#ifndef UTIL_H__ 24#ifndef UTIL_H__
2#define UTIL_H__ 25#define UTIL_H__
3 26
4#if __GNUC__ >= 3 27#include <compiler.h>
5# define is_constant(c) __builtin_constant_p (c) 28
6#else 29#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) 0 30#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8#endif 31#define PREFER_MALLOC 0 // use malloc and not the slice allocator
32
33#include <pthread.h>
9 34
10#include <cstddef> 35#include <cstddef>
11#include <cmath> 36#include <cmath>
12#include <new> 37#include <new>
13#include <vector> 38#include <vector>
15#include <glib.h> 40#include <glib.h>
16 41
17#include <shstr.h> 42#include <shstr.h>
18#include <traits.h> 43#include <traits.h>
19 44
45#if DEBUG_SALLOC
46# define g_slice_alloc0(s) debug_slice_alloc0(s)
47# define g_slice_alloc(s) debug_slice_alloc(s)
48# define g_slice_free1(s,p) debug_slice_free1(s,p)
49void *g_slice_alloc (unsigned long size);
50void *g_slice_alloc0 (unsigned long size);
51void g_slice_free1 (unsigned long size, void *ptr);
52#elif PREFER_MALLOC
53# define g_slice_alloc0(s) calloc (1, (s))
54# define g_slice_alloc(s) malloc ((s))
55# define g_slice_free1(s,p) free ((p))
56#endif
57
20// use a gcc extension for auto declarations until ISO C++ sanctifies them 58// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
21#define AUTODECL(var,expr) typeof(expr) var = (expr) 59#define auto(var,expr) decltype(expr) var = (expr)
22 60
61#if cplusplus_does_not_suck /* still sucks in codesize with gcc 6, although local types work now */
62// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
63template<typename T, int N>
64static inline int array_length (const T (&arr)[N])
65{
66 return N;
67}
68#else
69#define array_length(name) (sizeof (name) / sizeof (name [0]))
70#endif
71
23// very ugly macro that basicaly declares and initialises a variable 72// very ugly macro that basically declares and initialises a variable
24// that is in scope for the next statement only 73// that is in scope for the next statement only
25// works only for stuff that can be assigned 0 and converts to false 74// works only for stuff that can be assigned 0 and converts to false
26// (note: works great for pointers) 75// (note: works great for pointers)
27// most ugly macro I ever wrote 76// most ugly macro I ever wrote
28#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 77#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
29 78
30// in range including end 79// in range including end
31#define IN_RANGE_INC(val,beg,end) \ 80#define IN_RANGE_INC(val,beg,end) \
32 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 81 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
33 82
34// in range excluding end 83// in range excluding end
35#define IN_RANGE_EXC(val,beg,end) \ 84#define IN_RANGE_EXC(val,beg,end) \
36 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 85 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
37 86
87ecb_cold void cleanup (const char *cause, bool make_core = false);
38void fork_abort (const char *msg); 88ecb_cold void fork_abort (const char *msg);
39 89
90// rationale for using (U) not (T) is to reduce signed/unsigned issues,
91// as a is often a constant while b is the variable. it is still a bug, though.
40template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 92template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
41template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; } 93template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
42template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; } 94template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
95
96template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
97template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
98template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
43 99
44template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 100template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
45 101
102template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
103template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
104
105// sign returns -1 or +1
106template<typename T>
107static inline T sign (T v) { return v < 0 ? -1 : +1; }
108// relies on 2c representation
109template<>
110inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
111template<>
112inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
113template<>
114inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
115
116// sign0 returns -1, 0 or +1
117template<typename T>
118static inline T sign0 (T v) { return v ? sign (v) : 0; }
119
120//clashes with C++0x
121template<typename T, typename U>
122static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
123
124// div* only work correctly for div > 0
125// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
126template<typename T> static inline T div (T val, T div)
127{
128 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
129}
130
131template<> inline float div (float val, float div) { return val / div; }
132template<> inline double div (double val, double div) { return val / div; }
133
134// div, round-up
135template<typename T> static inline T div_ru (T val, T div)
136{
137 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
138}
139// div, round-down
140template<typename T> static inline T div_rd (T val, T div)
141{
142 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
143}
144
145// lerp* only work correctly for min_in < max_in
146// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
147template<typename T>
148static inline T
149lerp (T val, T min_in, T max_in, T min_out, T max_out)
150{
151 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
152}
153
154// lerp, round-down
155template<typename T>
156static inline T
157lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
158{
159 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
160}
161
162// lerp, round-up
163template<typename T>
164static inline T
165lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
166{
167 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
168}
169
170// lots of stuff taken from FXT
171
172/* Rotate right. This is used in various places for checksumming */
173//TODO: that sucks, use a better checksum algo
174static inline uint32_t
175rotate_right (uint32_t c, uint32_t count = 1)
176{
177 return (c << (32 - count)) | (c >> count);
178}
179
180static inline uint32_t
181rotate_left (uint32_t c, uint32_t count = 1)
182{
183 return (c >> (32 - count)) | (c << count);
184}
185
186// Return abs(a-b)
187// Both a and b must not have the most significant bit set
188static inline uint32_t
189upos_abs_diff (uint32_t a, uint32_t b)
190{
191 long d1 = b - a;
192 long d2 = (d1 & (d1 >> 31)) << 1;
193
194 return d1 - d2; // == (b - d) - (a + d);
195}
196
197// Both a and b must not have the most significant bit set
198static inline uint32_t
199upos_min (uint32_t a, uint32_t b)
200{
201 int32_t d = b - a;
202 d &= d >> 31;
203 return a + d;
204}
205
206// Both a and b must not have the most significant bit set
207static inline uint32_t
208upos_max (uint32_t a, uint32_t b)
209{
210 int32_t d = b - a;
211 d &= d >> 31;
212 return b - d;
213}
214
46// this is much faster than crossfires original algorithm 215// this is much faster than crossfire's original algorithm
47// on modern cpus 216// on modern cpus
48inline int 217inline int
49isqrt (int n) 218isqrt (int n)
50{ 219{
51 return (int)sqrtf ((float)n); 220 return (int)sqrtf ((float)n);
221}
222
223// this is kind of like the ^^ operator, if it would exist, without sequence point.
224// more handy than it looks like, due to the implicit !! done on its arguments
225inline bool
226logical_xor (bool a, bool b)
227{
228 return a != b;
229}
230
231inline bool
232logical_implies (bool a, bool b)
233{
234 return a <= b;
52} 235}
53 236
54// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 237// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
55#if 0 238#if 0
56// and has a max. error of 6 in the range -100..+100. 239// and has a max. error of 6 in the range -100..+100.
57#else 240#else
58// and has a max. error of 9 in the range -100..+100. 241// and has a max. error of 9 in the range -100..+100.
59#endif 242#endif
60inline int 243inline int
61idistance (int dx, int dy) 244idistance (int dx, int dy)
62{ 245{
63 unsigned int dx_ = abs (dx); 246 unsigned int dx_ = abs (dx);
64 unsigned int dy_ = abs (dy); 247 unsigned int dy_ = abs (dy);
65 248
66#if 0 249#if 0
67 return dx_ > dy_ 250 return dx_ > dy_
70#else 253#else
71 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 254 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
72#endif 255#endif
73} 256}
74 257
258// can be substantially faster than floor, if your value range allows for it
259template<typename T>
260inline T
261fastfloor (T x)
262{
263 return std::floor (x);
264}
265
266inline float
267fastfloor (float x)
268{
269 return sint32(x) - (x < 0);
270}
271
272inline double
273fastfloor (double x)
274{
275 return sint64(x) - (x < 0);
276}
277
75/* 278/*
76 * absdir(int): Returns a number between 1 and 8, which represent 279 * absdir(int): Returns a number between 1 and 8, which represent
77 * the "absolute" direction of a number (it actually takes care of 280 * the "absolute" direction of a number (it actually takes care of
78 * "overflow" in previous calculations of a direction). 281 * "overflow" in previous calculations of a direction).
79 */ 282 */
81absdir (int d) 284absdir (int d)
82{ 285{
83 return ((d - 1) & 7) + 1; 286 return ((d - 1) & 7) + 1;
84} 287}
85 288
289#define for_all_bits_sparse_32(mask, idxvar) \
290 for (uint32_t idxvar, mask_ = mask; \
291 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
292
293extern ssize_t slice_alloc; // statistics
294
295void *salloc_ (int n);
296void *salloc_ (int n, void *src);
297
298// strictly the same as g_slice_alloc, but never returns 0
299template<typename T>
300inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
301
302// also copies src into the new area, like "memdup"
303// if src is 0, clears the memory
304template<typename T>
305inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
306
307// clears the memory
308template<typename T>
309inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
310
311// for symmetry
312template<typename T>
313inline void sfree (T *ptr, int n = 1) noexcept
314{
315 if (expect_true (ptr))
316 {
317 slice_alloc -= n * sizeof (T);
318 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
319 g_slice_free1 (n * sizeof (T), (void *)ptr);
320 }
321}
322
323// nulls the pointer
324template<typename T>
325inline void sfree0 (T *&ptr, int n = 1) noexcept
326{
327 sfree<T> (ptr, n);
328 ptr = 0;
329}
330
86// makes dynamically allocated objects zero-initialised 331// makes dynamically allocated objects zero-initialised
87struct zero_initialised 332struct zero_initialised
88{ 333{
89 void *operator new (size_t s, void *p) 334 void *operator new (size_t s, void *p)
90 { 335 {
92 return p; 337 return p;
93 } 338 }
94 339
95 void *operator new (size_t s) 340 void *operator new (size_t s)
96 { 341 {
97 return g_slice_alloc0 (s); 342 return salloc0<char> (s);
98 } 343 }
99 344
100 void *operator new[] (size_t s) 345 void *operator new[] (size_t s)
101 { 346 {
102 return g_slice_alloc0 (s); 347 return salloc0<char> (s);
103 } 348 }
104 349
105 void operator delete (void *p, size_t s) 350 void operator delete (void *p, size_t s)
106 { 351 {
107 g_slice_free1 (s, p); 352 sfree ((char *)p, s);
108 } 353 }
109 354
110 void operator delete[] (void *p, size_t s) 355 void operator delete[] (void *p, size_t s)
111 { 356 {
112 g_slice_free1 (s, p); 357 sfree ((char *)p, s);
113 } 358 }
114}; 359};
115 360
116void *salloc_ (int n) throw (std::bad_alloc); 361// makes dynamically allocated objects zero-initialised
117void *salloc_ (int n, void *src) throw (std::bad_alloc); 362struct slice_allocated
118
119// strictly the same as g_slice_alloc, but never returns 0
120template<typename T>
121inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
122
123// also copies src into the new area, like "memdup"
124// if src is 0, clears the memory
125template<typename T>
126inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
127
128// clears the memory
129template<typename T>
130inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
131
132// for symmetry
133template<typename T>
134inline void sfree (T *ptr, int n = 1) throw ()
135{ 363{
136 g_slice_free1 (n * sizeof (T), (void *)ptr); 364 void *operator new (size_t s, void *p)
137} 365 {
366 return p;
367 }
368
369 void *operator new (size_t s)
370 {
371 return salloc<char> (s);
372 }
373
374 void *operator new[] (size_t s)
375 {
376 return salloc<char> (s);
377 }
378
379 void operator delete (void *p, size_t s)
380 {
381 sfree ((char *)p, s);
382 }
383
384 void operator delete[] (void *p, size_t s)
385 {
386 sfree ((char *)p, s);
387 }
388};
138 389
139// a STL-compatible allocator that uses g_slice 390// a STL-compatible allocator that uses g_slice
140// boy, this is verbose 391// boy, this is verbose
141template<typename Tp> 392template<typename Tp>
142struct slice_allocator 393struct slice_allocator
147 typedef const Tp *const_pointer; 398 typedef const Tp *const_pointer;
148 typedef Tp &reference; 399 typedef Tp &reference;
149 typedef const Tp &const_reference; 400 typedef const Tp &const_reference;
150 typedef Tp value_type; 401 typedef Tp value_type;
151 402
152 template <class U> 403 template <class U>
153 struct rebind 404 struct rebind
154 { 405 {
155 typedef slice_allocator<U> other; 406 typedef slice_allocator<U> other;
156 }; 407 };
157 408
158 slice_allocator () throw () { } 409 slice_allocator () noexcept { }
159 slice_allocator (const slice_allocator &o) throw () { } 410 slice_allocator (const slice_allocator &) noexcept { }
160 template<typename Tp2> 411 template<typename Tp2>
161 slice_allocator (const slice_allocator<Tp2> &) throw () { } 412 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
162 413
163 ~slice_allocator () { } 414 ~slice_allocator () { }
164 415
165 pointer address (reference x) const { return &x; } 416 pointer address (reference x) const { return &x; }
166 const_pointer address (const_reference x) const { return &x; } 417 const_pointer address (const_reference x) const { return &x; }
173 void deallocate (pointer p, size_type n) 424 void deallocate (pointer p, size_type n)
174 { 425 {
175 sfree<Tp> (p, n); 426 sfree<Tp> (p, n);
176 } 427 }
177 428
178 size_type max_size ()const throw () 429 size_type max_size () const noexcept
179 { 430 {
180 return size_t (-1) / sizeof (Tp); 431 return size_t (-1) / sizeof (Tp);
181 } 432 }
182 433
183 void construct (pointer p, const Tp &val) 434 void construct (pointer p, const Tp &val)
189 { 440 {
190 p->~Tp (); 441 p->~Tp ();
191 } 442 }
192}; 443};
193 444
194// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 445// basically a memory area, but refcounted
195// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 446struct refcnt_buf
196// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
197struct tausworthe_random_generator
198{ 447{
199 // generator 448 char *data;
200 uint32_t state [4];
201 449
202 void operator =(const tausworthe_random_generator &src) 450 refcnt_buf (size_t size = 0);
203 { 451 refcnt_buf (void *data, size_t size);
204 state [0] = src.state [0];
205 state [1] = src.state [1];
206 state [2] = src.state [2];
207 state [3] = src.state [3];
208 }
209 452
210 void seed (uint32_t seed); 453 refcnt_buf (const refcnt_buf &src)
211 uint32_t next ();
212
213 // uniform distribution
214 uint32_t operator ()(uint32_t r_max)
215 { 454 {
216 return is_constant (r_max) 455 data = src.data;
217 ? this->next () % r_max 456 inc ();
218 : get_range (r_max);
219 } 457 }
220 458
221 // return a number within (min .. max) 459 ~refcnt_buf ();
222 int operator () (int r_min, int r_max)
223 {
224 return is_constant (r_min) && is_constant (r_max)
225 ? r_min + (*this) (max (r_max - r_min + 1, 1))
226 : get_range (r_min, r_max);
227 }
228 460
229 double operator ()() 461 refcnt_buf &operator =(const refcnt_buf &src);
462
463 operator char *()
230 { 464 {
231 return this->next () / (double)0xFFFFFFFFU; 465 return data;
466 }
467
468 size_t size () const
469 {
470 return _size ();
232 } 471 }
233 472
234protected: 473protected:
235 uint32_t get_range (uint32_t r_max); 474 enum {
236 int get_range (int r_min, int r_max); 475 overhead = sizeof (uint32_t) * 2
237}; 476 };
238 477
239typedef tausworthe_random_generator rand_gen; 478 uint32_t &_size () const
479 {
480 return ((unsigned int *)data)[-2];
481 }
240 482
241extern rand_gen rndm; 483 uint32_t &_refcnt () const
484 {
485 return ((unsigned int *)data)[-1];
486 }
487
488 void _alloc (uint32_t size)
489 {
490 data = ((char *)salloc<char> (size + overhead)) + overhead;
491 _size () = size;
492 _refcnt () = 1;
493 }
494
495 void _dealloc ();
496
497 void inc ()
498 {
499 ++_refcnt ();
500 }
501
502 void dec ()
503 {
504 if (!--_refcnt ())
505 _dealloc ();
506 }
507};
508
509INTERFACE_CLASS (attachable)
510struct refcnt_base
511{
512 typedef int refcnt_t;
513 mutable refcnt_t ACC (RW, refcnt);
514
515 MTH void refcnt_inc () const { ++refcnt; }
516 MTH void refcnt_dec () const { --refcnt; }
517
518 refcnt_base () : refcnt (0) { }
519};
520
521// to avoid branches with more advanced compilers
522extern refcnt_base::refcnt_t refcnt_dummy;
242 523
243template<class T> 524template<class T>
244struct refptr 525struct refptr
245{ 526{
527 // p if not null
528 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
529
530 void refcnt_dec ()
531 {
532 if (!ecb_is_constant (p))
533 --*refcnt_ref ();
534 else if (p)
535 --p->refcnt;
536 }
537
538 void refcnt_inc ()
539 {
540 if (!ecb_is_constant (p))
541 ++*refcnt_ref ();
542 else if (p)
543 ++p->refcnt;
544 }
545
246 T *p; 546 T *p;
247 547
248 refptr () : p(0) { } 548 refptr () : p(0) { }
249 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 549 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
250 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 550 refptr (T *p) : p(p) { refcnt_inc (); }
251 ~refptr () { if (p) p->refcnt_dec (); } 551 ~refptr () { refcnt_dec (); }
252 552
253 const refptr<T> &operator =(T *o) 553 const refptr<T> &operator =(T *o)
254 { 554 {
555 // if decrementing ever destroys we need to reverse the order here
255 if (p) p->refcnt_dec (); 556 refcnt_dec ();
256 p = o; 557 p = o;
257 if (p) p->refcnt_inc (); 558 refcnt_inc ();
258
259 return *this; 559 return *this;
260 } 560 }
261 561
262 const refptr<T> &operator =(const refptr<T> o) 562 const refptr<T> &operator =(const refptr<T> &o)
263 { 563 {
264 *this = o.p; 564 *this = o.p;
265 return *this; 565 return *this;
266 } 566 }
267 567
268 T &operator * () const { return *p; } 568 T &operator * () const { return *p; }
269 T *operator ->() const { return p; } 569 T *operator ->() const { return p; }
270 570
271 operator T *() const { return p; } 571 operator T *() const { return p; }
272}; 572};
273 573
274typedef refptr<maptile> maptile_ptr; 574typedef refptr<maptile> maptile_ptr;
275typedef refptr<object> object_ptr; 575typedef refptr<object> object_ptr;
276typedef refptr<archetype> arch_ptr; 576typedef refptr<archetype> arch_ptr;
277typedef refptr<client> client_ptr; 577typedef refptr<client> client_ptr;
278typedef refptr<player> player_ptr; 578typedef refptr<player> player_ptr;
579typedef refptr<region> region_ptr;
580
581#define STRHSH_NULL 2166136261
582
583static inline uint32_t
584strhsh (const char *s)
585{
586 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
587 // it is about twice as fast as the one-at-a-time one,
588 // with good distribution.
589 // FNV-1a is faster on many cpus because the multiplication
590 // runs concurrently with the looping logic.
591 // we modify the hash a bit to improve its distribution
592 uint32_t hash = STRHSH_NULL;
593
594 while (*s)
595 hash = (hash ^ *s++) * 16777619U;
596
597 return hash ^ (hash >> 16);
598}
599
600static inline uint32_t
601memhsh (const char *s, size_t len)
602{
603 uint32_t hash = STRHSH_NULL;
604
605 while (len--)
606 hash = (hash ^ *s++) * 16777619U;
607
608 return hash;
609}
279 610
280struct str_hash 611struct str_hash
281{ 612{
282 std::size_t operator ()(const char *s) const 613 std::size_t operator ()(const char *s) const
283 { 614 {
284 unsigned long hash = 0;
285
286 /* use the one-at-a-time hash function, which supposedly is
287 * better than the djb2-like one used by perl5.005, but
288 * certainly is better then the bug used here before.
289 * see http://burtleburtle.net/bob/hash/doobs.html
290 */
291 while (*s)
292 {
293 hash += *s++;
294 hash += hash << 10;
295 hash ^= hash >> 6;
296 }
297
298 hash += hash << 3;
299 hash ^= hash >> 11;
300 hash += hash << 15;
301
302 return hash; 615 return strhsh (s);
616 }
617
618 std::size_t operator ()(const shstr &s) const
619 {
620 return strhsh (s);
303 } 621 }
304}; 622};
305 623
306struct str_equal 624struct str_equal
307{ 625{
309 { 627 {
310 return !strcmp (a, b); 628 return !strcmp (a, b);
311 } 629 }
312}; 630};
313 631
632// Mostly the same as std::vector, but insert/erase can reorder
633// the elements, making append(=insert)/remove O(1) instead of O(n).
634//
635// NOTE: only some forms of erase are available
314template<class T> 636template<class T>
315struct unordered_vector : std::vector<T, slice_allocator<T> > 637struct unordered_vector : std::vector<T, slice_allocator<T> >
316{ 638{
317 typedef typename unordered_vector::iterator iterator; 639 typedef typename unordered_vector::iterator iterator;
318 640
328 { 650 {
329 erase ((unsigned int )(i - this->begin ())); 651 erase ((unsigned int )(i - this->begin ()));
330 } 652 }
331}; 653};
332 654
333template<class T, int T::* index> 655// This container blends advantages of linked lists
656// (efficiency) with vectors (random access) by
657// using an unordered vector and storing the vector
658// index inside the object.
659//
660// + memory-efficient on most 64 bit archs
661// + O(1) insert/remove
662// + free unique (but varying) id for inserted objects
663// + cache-friendly iteration
664// - only works for pointers to structs
665//
666// NOTE: only some forms of erase/insert are available
667typedef int object_vector_index;
668
669template<class T, object_vector_index T::*indexmember>
334struct object_vector : std::vector<T *, slice_allocator<T *> > 670struct object_vector : std::vector<T *, slice_allocator<T *> >
335{ 671{
672 typedef typename object_vector::iterator iterator;
673
674 bool contains (const T *obj) const
675 {
676 return obj->*indexmember;
677 }
678
679 iterator find (const T *obj)
680 {
681 return obj->*indexmember
682 ? this->begin () + obj->*indexmember - 1
683 : this->end ();
684 }
685
686 void push_back (T *obj)
687 {
688 std::vector<T *, slice_allocator<T *> >::push_back (obj);
689 obj->*indexmember = this->size ();
690 }
691
336 void insert (T *obj) 692 void insert (T *obj)
337 { 693 {
338 assert (!(obj->*index));
339 push_back (obj); 694 push_back (obj);
340 obj->*index = this->size ();
341 } 695 }
342 696
343 void insert (T &obj) 697 void insert (T &obj)
344 { 698 {
345 insert (&obj); 699 insert (&obj);
346 } 700 }
347 701
348 void erase (T *obj) 702 void erase (T *obj)
349 { 703 {
350 assert (obj->*index); 704 object_vector_index pos = obj->*indexmember;
351 int pos = obj->*index;
352 obj->*index = 0; 705 obj->*indexmember = 0;
353 706
354 if (pos < this->size ()) 707 if (pos < this->size ())
355 { 708 {
356 (*this)[pos - 1] = (*this)[this->size () - 1]; 709 (*this)[pos - 1] = (*this)[this->size () - 1];
357 (*this)[pos - 1]->*index = pos; 710 (*this)[pos - 1]->*indexmember = pos;
358 } 711 }
359 712
360 this->pop_back (); 713 this->pop_back ();
361 } 714 }
362 715
363 void erase (T &obj) 716 void erase (T &obj)
364 { 717 {
365 errase (&obj); 718 erase (&obj);
366 } 719 }
367}; 720};
721
722/////////////////////////////////////////////////////////////////////////////
723
724// something like a vector or stack, but without
725// out of bounds checking
726template<typename T>
727struct fixed_stack
728{
729 T *data;
730 int size;
731 int max;
732
733 fixed_stack ()
734 : size (0), data (0)
735 {
736 }
737
738 fixed_stack (int max)
739 : size (0), max (max)
740 {
741 data = salloc<T> (max);
742 }
743
744 void reset (int new_max)
745 {
746 sfree (data, max);
747 size = 0;
748 max = new_max;
749 data = salloc<T> (max);
750 }
751
752 void free ()
753 {
754 sfree (data, max);
755 data = 0;
756 }
757
758 ~fixed_stack ()
759 {
760 sfree (data, max);
761 }
762
763 T &operator[](int idx)
764 {
765 return data [idx];
766 }
767
768 void push (T v)
769 {
770 data [size++] = v;
771 }
772
773 T &pop ()
774 {
775 return data [--size];
776 }
777
778 T remove (int idx)
779 {
780 T v = data [idx];
781
782 data [idx] = data [--size];
783
784 return v;
785 }
786};
787
788/////////////////////////////////////////////////////////////////////////////
368 789
369// basically does what strncpy should do, but appends "..." to strings exceeding length 790// basically does what strncpy should do, but appends "..." to strings exceeding length
791// returns the number of bytes actually used (including \0)
370void assign (char *dst, const char *src, int maxlen); 792int assign (char *dst, const char *src, int maxsize);
371 793
372// type-safe version of assign 794// type-safe version of assign
373template<int N> 795template<int N>
374inline void assign (char (&dst)[N], const char *src) 796inline int assign (char (&dst)[N], const char *src)
375{ 797{
376 assign ((char *)&dst, src, N); 798 return assign ((char *)&dst, src, N);
377} 799}
378 800
379typedef double tstamp; 801typedef double tstamp;
380 802
381// return current time as timestampe 803// return current time as timestamp
382tstamp now (); 804tstamp now ();
383 805
384int similar_direction (int a, int b); 806int similar_direction (int a, int b);
385 807
808// like v?sprintf, but returns a "static" buffer
809char *vformat (const char *format, va_list ap);
810char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
811
812// safety-check player input which will become object->msg
813bool msg_is_safe (const char *msg);
814
815/////////////////////////////////////////////////////////////////////////////
816// threads, very very thin wrappers around pthreads
817
818struct thread
819{
820 pthread_t id;
821
822 void start (void *(*start_routine)(void *), void *arg = 0);
823
824 void cancel ()
825 {
826 pthread_cancel (id);
827 }
828
829 void *join ()
830 {
831 void *ret;
832
833 if (pthread_join (id, &ret))
834 cleanup ("pthread_join failed", 1);
835
836 return ret;
837 }
838};
839
840// note that mutexes are not classes
841typedef pthread_mutex_t smutex;
842
843#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
844 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
845#else
846 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
386#endif 847#endif
387 848
849#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
850#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
851#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
852
853typedef pthread_cond_t scond;
854
855#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
856#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
857#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
858#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
859
860#endif
861

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines