ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.36 by root, Thu Jan 25 03:54:45 2007 UTC vs.
Revision 1.100 by root, Thu Apr 22 13:01:58 2010 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4//#define PREFER_MALLOC 26#include <compiler.h>
5 27
6#if __GNUC__ >= 3 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) __builtin_constant_p (c) 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8#else 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
9# define is_constant(c) 0 31
10#endif 32#include <pthread.h>
11 33
12#include <cstddef> 34#include <cstddef>
13#include <cmath> 35#include <cmath>
14#include <new> 36#include <new>
15#include <vector> 37#include <vector>
17#include <glib.h> 39#include <glib.h>
18 40
19#include <shstr.h> 41#include <shstr.h>
20#include <traits.h> 42#include <traits.h>
21 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
22// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
23#define AUTODECL(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
24 59
25// very ugly macro that basicaly declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
26// that is in scope for the next statement only 61// that is in scope for the next statement only
27// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
28// (note: works great for pointers) 63// (note: works great for pointers)
29// most ugly macro I ever wrote 64// most ugly macro I ever wrote
30#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31 66
32// in range including end 67// in range including end
33#define IN_RANGE_INC(val,beg,end) \ 68#define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 69 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35 70
36// in range excluding end 71// in range excluding end
37#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39 74
75void cleanup (const char *cause, bool make_core = false);
40void fork_abort (const char *msg); 76void fork_abort (const char *msg);
41 77
42// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
43// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
44template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
45template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
46template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47 83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87
48template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 88template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
49 89
90template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92
93// sign returns -1 or +1
94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation
97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99
100// sign0 returns -1, 0 or +1
101template<typename T>
102static inline T sign0 (T v) { return v ? sign (v) : 0; }
103
104template<typename T, typename U>
105static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
106
107// div* only work correctly for div > 0
108// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
109template<typename T> static inline T div (T val, T div)
110{
111 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
112}
113// div, round-up
114template<typename T> static inline T div_ru (T val, T div)
115{
116 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
117}
118// div, round-down
119template<typename T> static inline T div_rd (T val, T div)
120{
121 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
122}
123
124// lerp* only work correctly for min_in < max_in
125// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
126template<typename T>
127static inline T
128lerp (T val, T min_in, T max_in, T min_out, T max_out)
129{
130 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
131}
132
133// lerp, round-down
134template<typename T>
135static inline T
136lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
137{
138 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
139}
140
141// lerp, round-up
142template<typename T>
143static inline T
144lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
145{
146 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
147}
148
149// lots of stuff taken from FXT
150
151/* Rotate right. This is used in various places for checksumming */
152//TODO: that sucks, use a better checksum algo
153static inline uint32_t
154rotate_right (uint32_t c, uint32_t count = 1)
155{
156 return (c << (32 - count)) | (c >> count);
157}
158
159static inline uint32_t
160rotate_left (uint32_t c, uint32_t count = 1)
161{
162 return (c >> (32 - count)) | (c << count);
163}
164
165// Return abs(a-b)
166// Both a and b must not have the most significant bit set
167static inline uint32_t
168upos_abs_diff (uint32_t a, uint32_t b)
169{
170 long d1 = b - a;
171 long d2 = (d1 & (d1 >> 31)) << 1;
172
173 return d1 - d2; // == (b - d) - (a + d);
174}
175
176// Both a and b must not have the most significant bit set
177static inline uint32_t
178upos_min (uint32_t a, uint32_t b)
179{
180 int32_t d = b - a;
181 d &= d >> 31;
182 return a + d;
183}
184
185// Both a and b must not have the most significant bit set
186static inline uint32_t
187upos_max (uint32_t a, uint32_t b)
188{
189 int32_t d = b - a;
190 d &= d >> 31;
191 return b - d;
192}
193
50// this is much faster than crossfires original algorithm 194// this is much faster than crossfire's original algorithm
51// on modern cpus 195// on modern cpus
52inline int 196inline int
53isqrt (int n) 197isqrt (int n)
54{ 198{
55 return (int)sqrtf ((float)n); 199 return (int)sqrtf ((float)n);
200}
201
202// this is kind of like the ^^ operator, if it would exist, without sequence point.
203// more handy than it looks like, due to the implicit !! done on its arguments
204inline bool
205logical_xor (bool a, bool b)
206{
207 return a != b;
208}
209
210inline bool
211logical_implies (bool a, bool b)
212{
213 return a <= b;
56} 214}
57 215
58// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 216// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
59#if 0 217#if 0
60// and has a max. error of 6 in the range -100..+100. 218// and has a max. error of 6 in the range -100..+100.
85absdir (int d) 243absdir (int d)
86{ 244{
87 return ((d - 1) & 7) + 1; 245 return ((d - 1) & 7) + 1;
88} 246}
89 247
248// avoid ctz name because netbsd or freebsd spams it's namespace with it
249#if GCC_VERSION(3,4)
250static inline int least_significant_bit (uint32_t x)
251{
252 return __builtin_ctz (x);
253}
254#else
255int least_significant_bit (uint32_t x);
256#endif
257
258#define for_all_bits_sparse_32(mask, idxvar) \
259 for (uint32_t idxvar, mask_ = mask; \
260 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
261
262extern ssize_t slice_alloc; // statistics
263
264void *salloc_ (int n) throw (std::bad_alloc);
265void *salloc_ (int n, void *src) throw (std::bad_alloc);
266
267// strictly the same as g_slice_alloc, but never returns 0
268template<typename T>
269inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
270
271// also copies src into the new area, like "memdup"
272// if src is 0, clears the memory
273template<typename T>
274inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
275
276// clears the memory
277template<typename T>
278inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
279
280// for symmetry
281template<typename T>
282inline void sfree (T *ptr, int n = 1) throw ()
283{
284 if (expect_true (ptr))
285 {
286 slice_alloc -= n * sizeof (T);
287 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
288 g_slice_free1 (n * sizeof (T), (void *)ptr);
289 assert (slice_alloc >= 0);//D
290 }
291}
292
293// nulls the pointer
294template<typename T>
295inline void sfree0 (T *&ptr, int n = 1) throw ()
296{
297 sfree<T> (ptr, n);
298 ptr = 0;
299}
300
90// makes dynamically allocated objects zero-initialised 301// makes dynamically allocated objects zero-initialised
91struct zero_initialised 302struct zero_initialised
92{ 303{
93 void *operator new (size_t s, void *p) 304 void *operator new (size_t s, void *p)
94 { 305 {
96 return p; 307 return p;
97 } 308 }
98 309
99 void *operator new (size_t s) 310 void *operator new (size_t s)
100 { 311 {
101 return g_slice_alloc0 (s); 312 return salloc0<char> (s);
102 } 313 }
103 314
104 void *operator new[] (size_t s) 315 void *operator new[] (size_t s)
105 { 316 {
106 return g_slice_alloc0 (s); 317 return salloc0<char> (s);
107 } 318 }
108 319
109 void operator delete (void *p, size_t s) 320 void operator delete (void *p, size_t s)
110 { 321 {
111 g_slice_free1 (s, p); 322 sfree ((char *)p, s);
112 } 323 }
113 324
114 void operator delete[] (void *p, size_t s) 325 void operator delete[] (void *p, size_t s)
115 { 326 {
116 g_slice_free1 (s, p); 327 sfree ((char *)p, s);
117 } 328 }
118}; 329};
119 330
120void *salloc_ (int n) throw (std::bad_alloc); 331// makes dynamically allocated objects zero-initialised
121void *salloc_ (int n, void *src) throw (std::bad_alloc); 332struct slice_allocated
122
123// strictly the same as g_slice_alloc, but never returns 0
124template<typename T>
125inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
126
127// also copies src into the new area, like "memdup"
128// if src is 0, clears the memory
129template<typename T>
130inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
131
132// clears the memory
133template<typename T>
134inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
135
136// for symmetry
137template<typename T>
138inline void sfree (T *ptr, int n = 1) throw ()
139{ 333{
140#ifdef PREFER_MALLOC 334 void *operator new (size_t s, void *p)
141 free (ptr); 335 {
142#else 336 return p;
143 g_slice_free1 (n * sizeof (T), (void *)ptr); 337 }
144#endif 338
145} 339 void *operator new (size_t s)
340 {
341 return salloc<char> (s);
342 }
343
344 void *operator new[] (size_t s)
345 {
346 return salloc<char> (s);
347 }
348
349 void operator delete (void *p, size_t s)
350 {
351 sfree ((char *)p, s);
352 }
353
354 void operator delete[] (void *p, size_t s)
355 {
356 sfree ((char *)p, s);
357 }
358};
146 359
147// a STL-compatible allocator that uses g_slice 360// a STL-compatible allocator that uses g_slice
148// boy, this is verbose 361// boy, this is verbose
149template<typename Tp> 362template<typename Tp>
150struct slice_allocator 363struct slice_allocator
162 { 375 {
163 typedef slice_allocator<U> other; 376 typedef slice_allocator<U> other;
164 }; 377 };
165 378
166 slice_allocator () throw () { } 379 slice_allocator () throw () { }
167 slice_allocator (const slice_allocator &o) throw () { } 380 slice_allocator (const slice_allocator &) throw () { }
168 template<typename Tp2> 381 template<typename Tp2>
169 slice_allocator (const slice_allocator<Tp2> &) throw () { } 382 slice_allocator (const slice_allocator<Tp2> &) throw () { }
170 383
171 ~slice_allocator () { } 384 ~slice_allocator () { }
172 385
181 void deallocate (pointer p, size_type n) 394 void deallocate (pointer p, size_type n)
182 { 395 {
183 sfree<Tp> (p, n); 396 sfree<Tp> (p, n);
184 } 397 }
185 398
186 size_type max_size ()const throw () 399 size_type max_size () const throw ()
187 { 400 {
188 return size_t (-1) / sizeof (Tp); 401 return size_t (-1) / sizeof (Tp);
189 } 402 }
190 403
191 void construct (pointer p, const Tp &val) 404 void construct (pointer p, const Tp &val)
202// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 415// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
203// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 416// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
204// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 417// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
205struct tausworthe_random_generator 418struct tausworthe_random_generator
206{ 419{
207 // generator
208 uint32_t state [4]; 420 uint32_t state [4];
209 421
210 void operator =(const tausworthe_random_generator &src) 422 void operator =(const tausworthe_random_generator &src)
211 { 423 {
212 state [0] = src.state [0]; 424 state [0] = src.state [0];
215 state [3] = src.state [3]; 427 state [3] = src.state [3];
216 } 428 }
217 429
218 void seed (uint32_t seed); 430 void seed (uint32_t seed);
219 uint32_t next (); 431 uint32_t next ();
432};
220 433
221 // uniform distribution 434// Xorshift RNGs, George Marsaglia
435// http://www.jstatsoft.org/v08/i14/paper
436// this one is about 40% faster than the tausworthe one above (i.e. not much),
437// despite the inlining, and has the issue of only creating 2**32-1 numbers.
438// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
439struct xorshift_random_generator
440{
441 uint32_t x, y;
442
443 void operator =(const xorshift_random_generator &src)
444 {
445 x = src.x;
446 y = src.y;
447 }
448
449 void seed (uint32_t seed)
450 {
451 x = seed;
452 y = seed * 69069U;
453 }
454
455 uint32_t next ()
456 {
457 uint32_t t = x ^ (x << 10);
458 x = y;
459 y = y ^ (y >> 13) ^ t ^ (t >> 10);
460 return y;
461 }
462};
463
464template<class generator>
465struct random_number_generator : generator
466{
467 // uniform distribution, 0 .. max (0, num - 1)
222 uint32_t operator ()(uint32_t r_max) 468 uint32_t operator ()(uint32_t num)
223 { 469 {
224 return is_constant (r_max) 470 return !is_constant (num) ? get_range (num) // non-constant
225 ? this->next () % r_max 471 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
226 : get_range (r_max); 472 : this->next () & (num - 1); // constant, power-of-two
227 } 473 }
228 474
229 // return a number within (min .. max) 475 // return a number within the closed interval [min .. max]
230 int operator () (int r_min, int r_max) 476 int operator () (int r_min, int r_max)
231 { 477 {
232 return is_constant (r_min) && is_constant (r_max) 478 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
233 ? r_min + (*this) (max (r_max - r_min + 1, 1)) 479 ? r_min + operator ()(r_max - r_min + 1)
234 : get_range (r_min, r_max); 480 : get_range (r_min, r_max);
235 } 481 }
236 482
483 // return a number within the closed interval [0..1]
237 double operator ()() 484 double operator ()()
238 { 485 {
239 return this->next () / (double)0xFFFFFFFFU; 486 return this->next () / (double)0xFFFFFFFFU;
240 } 487 }
241 488
242protected: 489protected:
243 uint32_t get_range (uint32_t r_max); 490 uint32_t get_range (uint32_t r_max);
244 int get_range (int r_min, int r_max); 491 int get_range (int r_min, int r_max);
245}; 492};
246 493
247typedef tausworthe_random_generator rand_gen; 494typedef random_number_generator<tausworthe_random_generator> rand_gen;
248 495
249extern rand_gen rndm; 496extern rand_gen rndm, rmg_rndm;
497
498INTERFACE_CLASS (attachable)
499struct refcnt_base
500{
501 typedef int refcnt_t;
502 mutable refcnt_t ACC (RW, refcnt);
503
504 MTH void refcnt_inc () const { ++refcnt; }
505 MTH void refcnt_dec () const { --refcnt; }
506
507 refcnt_base () : refcnt (0) { }
508};
509
510// to avoid branches with more advanced compilers
511extern refcnt_base::refcnt_t refcnt_dummy;
250 512
251template<class T> 513template<class T>
252struct refptr 514struct refptr
253{ 515{
516 // p if not null
517 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
518
519 void refcnt_dec ()
520 {
521 if (!is_constant (p))
522 --*refcnt_ref ();
523 else if (p)
524 --p->refcnt;
525 }
526
527 void refcnt_inc ()
528 {
529 if (!is_constant (p))
530 ++*refcnt_ref ();
531 else if (p)
532 ++p->refcnt;
533 }
534
254 T *p; 535 T *p;
255 536
256 refptr () : p(0) { } 537 refptr () : p(0) { }
257 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 538 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
258 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 539 refptr (T *p) : p(p) { refcnt_inc (); }
259 ~refptr () { if (p) p->refcnt_dec (); } 540 ~refptr () { refcnt_dec (); }
260 541
261 const refptr<T> &operator =(T *o) 542 const refptr<T> &operator =(T *o)
262 { 543 {
544 // if decrementing ever destroys we need to reverse the order here
263 if (p) p->refcnt_dec (); 545 refcnt_dec ();
264 p = o; 546 p = o;
265 if (p) p->refcnt_inc (); 547 refcnt_inc ();
266
267 return *this; 548 return *this;
268 } 549 }
269 550
270 const refptr<T> &operator =(const refptr<T> o) 551 const refptr<T> &operator =(const refptr<T> &o)
271 { 552 {
272 *this = o.p; 553 *this = o.p;
273 return *this; 554 return *this;
274 } 555 }
275 556
276 T &operator * () const { return *p; } 557 T &operator * () const { return *p; }
277 T *operator ->() const { return p; } 558 T *operator ->() const { return p; }
278 559
279 operator T *() const { return p; } 560 operator T *() const { return p; }
280}; 561};
281 562
282typedef refptr<maptile> maptile_ptr; 563typedef refptr<maptile> maptile_ptr;
283typedef refptr<object> object_ptr; 564typedef refptr<object> object_ptr;
284typedef refptr<archetype> arch_ptr; 565typedef refptr<archetype> arch_ptr;
285typedef refptr<client> client_ptr; 566typedef refptr<client> client_ptr;
286typedef refptr<player> player_ptr; 567typedef refptr<player> player_ptr;
287 568
569#define STRHSH_NULL 2166136261
570
571static inline uint32_t
572strhsh (const char *s)
573{
574 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
575 // it is about twice as fast as the one-at-a-time one,
576 // with good distribution.
577 // FNV-1a is faster on many cpus because the multiplication
578 // runs concurrently with the looping logic.
579 uint32_t hash = STRHSH_NULL;
580
581 while (*s)
582 hash = (hash ^ *s++) * 16777619U;
583
584 return hash;
585}
586
587static inline uint32_t
588memhsh (const char *s, size_t len)
589{
590 uint32_t hash = STRHSH_NULL;
591
592 while (len--)
593 hash = (hash ^ *s++) * 16777619U;
594
595 return hash;
596}
597
288struct str_hash 598struct str_hash
289{ 599{
290 std::size_t operator ()(const char *s) const 600 std::size_t operator ()(const char *s) const
291 { 601 {
292 unsigned long hash = 0;
293
294 /* use the one-at-a-time hash function, which supposedly is
295 * better than the djb2-like one used by perl5.005, but
296 * certainly is better then the bug used here before.
297 * see http://burtleburtle.net/bob/hash/doobs.html
298 */
299 while (*s)
300 {
301 hash += *s++;
302 hash += hash << 10;
303 hash ^= hash >> 6;
304 }
305
306 hash += hash << 3;
307 hash ^= hash >> 11;
308 hash += hash << 15;
309
310 return hash; 602 return strhsh (s);
603 }
604
605 std::size_t operator ()(const shstr &s) const
606 {
607 return strhsh (s);
311 } 608 }
312}; 609};
313 610
314struct str_equal 611struct str_equal
315{ 612{
317 { 614 {
318 return !strcmp (a, b); 615 return !strcmp (a, b);
319 } 616 }
320}; 617};
321 618
619// Mostly the same as std::vector, but insert/erase can reorder
620// the elements, making append(=insert)/remove O(1) instead of O(n).
621//
622// NOTE: only some forms of erase are available
322template<class T> 623template<class T>
323struct unordered_vector : std::vector<T, slice_allocator<T> > 624struct unordered_vector : std::vector<T, slice_allocator<T> >
324{ 625{
325 typedef typename unordered_vector::iterator iterator; 626 typedef typename unordered_vector::iterator iterator;
326 627
336 { 637 {
337 erase ((unsigned int )(i - this->begin ())); 638 erase ((unsigned int )(i - this->begin ()));
338 } 639 }
339}; 640};
340 641
341template<class T, int T::* index> 642// This container blends advantages of linked lists
643// (efficiency) with vectors (random access) by
644// by using an unordered vector and storing the vector
645// index inside the object.
646//
647// + memory-efficient on most 64 bit archs
648// + O(1) insert/remove
649// + free unique (but varying) id for inserted objects
650// + cache-friendly iteration
651// - only works for pointers to structs
652//
653// NOTE: only some forms of erase/insert are available
654typedef int object_vector_index;
655
656template<class T, object_vector_index T::*indexmember>
342struct object_vector : std::vector<T *, slice_allocator<T *> > 657struct object_vector : std::vector<T *, slice_allocator<T *> >
343{ 658{
659 typedef typename object_vector::iterator iterator;
660
661 bool contains (const T *obj) const
662 {
663 return obj->*indexmember;
664 }
665
666 iterator find (const T *obj)
667 {
668 return obj->*indexmember
669 ? this->begin () + obj->*indexmember - 1
670 : this->end ();
671 }
672
673 void push_back (T *obj)
674 {
675 std::vector<T *, slice_allocator<T *> >::push_back (obj);
676 obj->*indexmember = this->size ();
677 }
678
344 void insert (T *obj) 679 void insert (T *obj)
345 { 680 {
346 assert (!(obj->*index));
347 push_back (obj); 681 push_back (obj);
348 obj->*index = this->size ();
349 } 682 }
350 683
351 void insert (T &obj) 684 void insert (T &obj)
352 { 685 {
353 insert (&obj); 686 insert (&obj);
354 } 687 }
355 688
356 void erase (T *obj) 689 void erase (T *obj)
357 { 690 {
358 assert (obj->*index);
359 int pos = obj->*index; 691 unsigned int pos = obj->*indexmember;
360 obj->*index = 0; 692 obj->*indexmember = 0;
361 693
362 if (pos < this->size ()) 694 if (pos < this->size ())
363 { 695 {
364 (*this)[pos - 1] = (*this)[this->size () - 1]; 696 (*this)[pos - 1] = (*this)[this->size () - 1];
365 (*this)[pos - 1]->*index = pos; 697 (*this)[pos - 1]->*indexmember = pos;
366 } 698 }
367 699
368 this->pop_back (); 700 this->pop_back ();
369 } 701 }
370 702
371 void erase (T &obj) 703 void erase (T &obj)
372 { 704 {
373 errase (&obj); 705 erase (&obj);
374 } 706 }
375}; 707};
376 708
377// basically does what strncpy should do, but appends "..." to strings exceeding length 709// basically does what strncpy should do, but appends "..." to strings exceeding length
710// returns the number of bytes actually used (including \0)
378void assign (char *dst, const char *src, int maxlen); 711int assign (char *dst, const char *src, int maxsize);
379 712
380// type-safe version of assign 713// type-safe version of assign
381template<int N> 714template<int N>
382inline void assign (char (&dst)[N], const char *src) 715inline int assign (char (&dst)[N], const char *src)
383{ 716{
384 assign ((char *)&dst, src, N); 717 return assign ((char *)&dst, src, N);
385} 718}
386 719
387typedef double tstamp; 720typedef double tstamp;
388 721
389// return current time as timestampe 722// return current time as timestamp
390tstamp now (); 723tstamp now ();
391 724
392int similar_direction (int a, int b); 725int similar_direction (int a, int b);
393 726
727// like v?sprintf, but returns a "static" buffer
728char *vformat (const char *format, va_list ap);
729char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
730
731// safety-check player input which will become object->msg
732bool msg_is_safe (const char *msg);
733
734/////////////////////////////////////////////////////////////////////////////
735// threads, very very thin wrappers around pthreads
736
737struct thread
738{
739 pthread_t id;
740
741 void start (void *(*start_routine)(void *), void *arg = 0);
742
743 void cancel ()
744 {
745 pthread_cancel (id);
746 }
747
748 void *join ()
749 {
750 void *ret;
751
752 if (pthread_join (id, &ret))
753 cleanup ("pthread_join failed", 1);
754
755 return ret;
756 }
757};
758
759// note that mutexes are not classes
760typedef pthread_mutex_t smutex;
761
762#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
763 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
764#else
765 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
394#endif 766#endif
395 767
768#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
769#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
770#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
771
772typedef pthread_cond_t scond;
773
774#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
775#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
776#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
777#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
778
779#endif
780

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines