ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.36 by root, Thu Jan 25 03:54:45 2007 UTC vs.
Revision 1.74 by root, Sun May 4 14:12:37 2008 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
1#ifndef UTIL_H__ 22#ifndef UTIL_H__
2#define UTIL_H__ 23#define UTIL_H__
3 24
4//#define PREFER_MALLOC 25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator
5 28
6#if __GNUC__ >= 3 29#if __GNUC__ >= 3
7# define is_constant(c) __builtin_constant_p (c) 30# define is_constant(c) __builtin_constant_p (c)
31# define expect(expr,value) __builtin_expect ((expr),(value))
32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
8#else 33#else
9# define is_constant(c) 0 34# define is_constant(c) 0
35# define expect(expr,value) (expr)
36# define prefetch(addr,rw,locality)
10#endif 37#endif
38
39#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40# define decltype(x) typeof(x)
41#endif
42
43// put into ifs if you are very sure that the expression
44// is mostly true or mosty false. note that these return
45// booleans, not the expression.
46#define expect_false(expr) expect ((expr) != 0, 0)
47#define expect_true(expr) expect ((expr) != 0, 1)
48
49#include <pthread.h>
11 50
12#include <cstddef> 51#include <cstddef>
13#include <cmath> 52#include <cmath>
14#include <new> 53#include <new>
15#include <vector> 54#include <vector>
17#include <glib.h> 56#include <glib.h>
18 57
19#include <shstr.h> 58#include <shstr.h>
20#include <traits.h> 59#include <traits.h>
21 60
61#if DEBUG_SALLOC
62# define g_slice_alloc0(s) debug_slice_alloc0(s)
63# define g_slice_alloc(s) debug_slice_alloc(s)
64# define g_slice_free1(s,p) debug_slice_free1(s,p)
65void *g_slice_alloc (unsigned long size);
66void *g_slice_alloc0 (unsigned long size);
67void g_slice_free1 (unsigned long size, void *ptr);
68#elif PREFER_MALLOC
69# define g_slice_alloc0(s) calloc (1, (s))
70# define g_slice_alloc(s) malloc ((s))
71# define g_slice_free1(s,p) free ((p))
72#endif
73
22// use a gcc extension for auto declarations until ISO C++ sanctifies them 74// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
23#define AUTODECL(var,expr) typeof(expr) var = (expr) 75#define auto(var,expr) decltype(expr) var = (expr)
24 76
25// very ugly macro that basicaly declares and initialises a variable 77// very ugly macro that basicaly declares and initialises a variable
26// that is in scope for the next statement only 78// that is in scope for the next statement only
27// works only for stuff that can be assigned 0 and converts to false 79// works only for stuff that can be assigned 0 and converts to false
28// (note: works great for pointers) 80// (note: works great for pointers)
29// most ugly macro I ever wrote 81// most ugly macro I ever wrote
30#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 82#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31 83
32// in range including end 84// in range including end
33#define IN_RANGE_INC(val,beg,end) \ 85#define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 86 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35 87
36// in range excluding end 88// in range excluding end
37#define IN_RANGE_EXC(val,beg,end) \ 89#define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 90 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39 91
92void cleanup (const char *cause, bool make_core = false);
40void fork_abort (const char *msg); 93void fork_abort (const char *msg);
41 94
42// rationale for using (U) not (T) is to reduce signed/unsigned issues, 95// rationale for using (U) not (T) is to reduce signed/unsigned issues,
43// as a is often a constant while b is the variable. it is still a bug, though. 96// as a is often a constant while b is the variable. it is still a bug, though.
44template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 97template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
45template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 98template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
46template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 99template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47 100
48template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 101template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
102
103template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
104template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
105
106template<typename T>
107static inline T
108lerp (T val, T min_in, T max_in, T min_out, T max_out)
109{
110 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
111}
112
113// lots of stuff taken from FXT
114
115/* Rotate right. This is used in various places for checksumming */
116//TODO: that sucks, use a better checksum algo
117static inline uint32_t
118rotate_right (uint32_t c, uint32_t count = 1)
119{
120 return (c << (32 - count)) | (c >> count);
121}
122
123static inline uint32_t
124rotate_left (uint32_t c, uint32_t count = 1)
125{
126 return (c >> (32 - count)) | (c << count);
127}
128
129// Return abs(a-b)
130// Both a and b must not have the most significant bit set
131static inline uint32_t
132upos_abs_diff (uint32_t a, uint32_t b)
133{
134 long d1 = b - a;
135 long d2 = (d1 & (d1 >> 31)) << 1;
136
137 return d1 - d2; // == (b - d) - (a + d);
138}
139
140// Both a and b must not have the most significant bit set
141static inline uint32_t
142upos_min (uint32_t a, uint32_t b)
143{
144 int32_t d = b - a;
145 d &= d >> 31;
146 return a + d;
147}
148
149// Both a and b must not have the most significant bit set
150static inline uint32_t
151upos_max (uint32_t a, uint32_t b)
152{
153 int32_t d = b - a;
154 d &= d >> 31;
155 return b - d;
156}
49 157
50// this is much faster than crossfires original algorithm 158// this is much faster than crossfires original algorithm
51// on modern cpus 159// on modern cpus
52inline int 160inline int
53isqrt (int n) 161isqrt (int n)
85absdir (int d) 193absdir (int d)
86{ 194{
87 return ((d - 1) & 7) + 1; 195 return ((d - 1) & 7) + 1;
88} 196}
89 197
90// makes dynamically allocated objects zero-initialised 198extern ssize_t slice_alloc; // statistics
91struct zero_initialised
92{
93 void *operator new (size_t s, void *p)
94 {
95 memset (p, 0, s);
96 return p;
97 }
98
99 void *operator new (size_t s)
100 {
101 return g_slice_alloc0 (s);
102 }
103
104 void *operator new[] (size_t s)
105 {
106 return g_slice_alloc0 (s);
107 }
108
109 void operator delete (void *p, size_t s)
110 {
111 g_slice_free1 (s, p);
112 }
113
114 void operator delete[] (void *p, size_t s)
115 {
116 g_slice_free1 (s, p);
117 }
118};
119 199
120void *salloc_ (int n) throw (std::bad_alloc); 200void *salloc_ (int n) throw (std::bad_alloc);
121void *salloc_ (int n, void *src) throw (std::bad_alloc); 201void *salloc_ (int n, void *src) throw (std::bad_alloc);
122 202
123// strictly the same as g_slice_alloc, but never returns 0 203// strictly the same as g_slice_alloc, but never returns 0
135 215
136// for symmetry 216// for symmetry
137template<typename T> 217template<typename T>
138inline void sfree (T *ptr, int n = 1) throw () 218inline void sfree (T *ptr, int n = 1) throw ()
139{ 219{
140#ifdef PREFER_MALLOC 220 if (expect_true (ptr))
141 free (ptr); 221 {
142#else 222 slice_alloc -= n * sizeof (T);
223 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
143 g_slice_free1 (n * sizeof (T), (void *)ptr); 224 g_slice_free1 (n * sizeof (T), (void *)ptr);
144#endif 225 assert (slice_alloc >= 0);//D
226 }
145} 227}
228
229// nulls the pointer
230template<typename T>
231inline void sfree0 (T *&ptr, int n = 1) throw ()
232{
233 sfree<T> (ptr, n);
234 ptr = 0;
235}
236
237// makes dynamically allocated objects zero-initialised
238struct zero_initialised
239{
240 void *operator new (size_t s, void *p)
241 {
242 memset (p, 0, s);
243 return p;
244 }
245
246 void *operator new (size_t s)
247 {
248 return salloc0<char> (s);
249 }
250
251 void *operator new[] (size_t s)
252 {
253 return salloc0<char> (s);
254 }
255
256 void operator delete (void *p, size_t s)
257 {
258 sfree ((char *)p, s);
259 }
260
261 void operator delete[] (void *p, size_t s)
262 {
263 sfree ((char *)p, s);
264 }
265};
266
267// makes dynamically allocated objects zero-initialised
268struct slice_allocated
269{
270 void *operator new (size_t s, void *p)
271 {
272 return p;
273 }
274
275 void *operator new (size_t s)
276 {
277 return salloc<char> (s);
278 }
279
280 void *operator new[] (size_t s)
281 {
282 return salloc<char> (s);
283 }
284
285 void operator delete (void *p, size_t s)
286 {
287 sfree ((char *)p, s);
288 }
289
290 void operator delete[] (void *p, size_t s)
291 {
292 sfree ((char *)p, s);
293 }
294};
146 295
147// a STL-compatible allocator that uses g_slice 296// a STL-compatible allocator that uses g_slice
148// boy, this is verbose 297// boy, this is verbose
149template<typename Tp> 298template<typename Tp>
150struct slice_allocator 299struct slice_allocator
162 { 311 {
163 typedef slice_allocator<U> other; 312 typedef slice_allocator<U> other;
164 }; 313 };
165 314
166 slice_allocator () throw () { } 315 slice_allocator () throw () { }
167 slice_allocator (const slice_allocator &o) throw () { } 316 slice_allocator (const slice_allocator &) throw () { }
168 template<typename Tp2> 317 template<typename Tp2>
169 slice_allocator (const slice_allocator<Tp2> &) throw () { } 318 slice_allocator (const slice_allocator<Tp2> &) throw () { }
170 319
171 ~slice_allocator () { } 320 ~slice_allocator () { }
172 321
181 void deallocate (pointer p, size_type n) 330 void deallocate (pointer p, size_type n)
182 { 331 {
183 sfree<Tp> (p, n); 332 sfree<Tp> (p, n);
184 } 333 }
185 334
186 size_type max_size ()const throw () 335 size_type max_size () const throw ()
187 { 336 {
188 return size_t (-1) / sizeof (Tp); 337 return size_t (-1) / sizeof (Tp);
189 } 338 }
190 339
191 void construct (pointer p, const Tp &val) 340 void construct (pointer p, const Tp &val)
217 366
218 void seed (uint32_t seed); 367 void seed (uint32_t seed);
219 uint32_t next (); 368 uint32_t next ();
220 369
221 // uniform distribution 370 // uniform distribution
222 uint32_t operator ()(uint32_t r_max) 371 uint32_t operator ()(uint32_t num)
223 { 372 {
224 return is_constant (r_max) 373 return is_constant (num)
225 ? this->next () % r_max 374 ? (next () * (uint64_t)num) >> 32U
226 : get_range (r_max); 375 : get_range (num);
227 } 376 }
228 377
229 // return a number within (min .. max) 378 // return a number within (min .. max)
230 int operator () (int r_min, int r_max) 379 int operator () (int r_min, int r_max)
231 { 380 {
232 return is_constant (r_min) && is_constant (r_max) 381 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
233 ? r_min + (*this) (max (r_max - r_min + 1, 1)) 382 ? r_min + operator ()(r_max - r_min + 1)
234 : get_range (r_min, r_max); 383 : get_range (r_min, r_max);
235 } 384 }
236 385
237 double operator ()() 386 double operator ()()
238 { 387 {
244 int get_range (int r_min, int r_max); 393 int get_range (int r_min, int r_max);
245}; 394};
246 395
247typedef tausworthe_random_generator rand_gen; 396typedef tausworthe_random_generator rand_gen;
248 397
249extern rand_gen rndm; 398extern rand_gen rndm, rmg_rndm;
399
400INTERFACE_CLASS (attachable)
401struct refcnt_base
402{
403 typedef int refcnt_t;
404 mutable refcnt_t ACC (RW, refcnt);
405
406 MTH void refcnt_inc () const { ++refcnt; }
407 MTH void refcnt_dec () const { --refcnt; }
408
409 refcnt_base () : refcnt (0) { }
410};
411
412// to avoid branches with more advanced compilers
413extern refcnt_base::refcnt_t refcnt_dummy;
250 414
251template<class T> 415template<class T>
252struct refptr 416struct refptr
253{ 417{
418 // p if not null
419 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
420
421 void refcnt_dec ()
422 {
423 if (!is_constant (p))
424 --*refcnt_ref ();
425 else if (p)
426 --p->refcnt;
427 }
428
429 void refcnt_inc ()
430 {
431 if (!is_constant (p))
432 ++*refcnt_ref ();
433 else if (p)
434 ++p->refcnt;
435 }
436
254 T *p; 437 T *p;
255 438
256 refptr () : p(0) { } 439 refptr () : p(0) { }
257 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 440 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
258 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 441 refptr (T *p) : p(p) { refcnt_inc (); }
259 ~refptr () { if (p) p->refcnt_dec (); } 442 ~refptr () { refcnt_dec (); }
260 443
261 const refptr<T> &operator =(T *o) 444 const refptr<T> &operator =(T *o)
262 { 445 {
446 // if decrementing ever destroys we need to reverse the order here
263 if (p) p->refcnt_dec (); 447 refcnt_dec ();
264 p = o; 448 p = o;
265 if (p) p->refcnt_inc (); 449 refcnt_inc ();
266
267 return *this; 450 return *this;
268 } 451 }
269 452
270 const refptr<T> &operator =(const refptr<T> o) 453 const refptr<T> &operator =(const refptr<T> &o)
271 { 454 {
272 *this = o.p; 455 *this = o.p;
273 return *this; 456 return *this;
274 } 457 }
275 458
276 T &operator * () const { return *p; } 459 T &operator * () const { return *p; }
277 T *operator ->() const { return p; } 460 T *operator ->() const { return p; }
278 461
279 operator T *() const { return p; } 462 operator T *() const { return p; }
280}; 463};
281 464
282typedef refptr<maptile> maptile_ptr; 465typedef refptr<maptile> maptile_ptr;
317 { 500 {
318 return !strcmp (a, b); 501 return !strcmp (a, b);
319 } 502 }
320}; 503};
321 504
505// Mostly the same as std::vector, but insert/erase can reorder
506// the elements, making append(=insert)/remove O(1) instead of O(n).
507//
508// NOTE: only some forms of erase are available
322template<class T> 509template<class T>
323struct unordered_vector : std::vector<T, slice_allocator<T> > 510struct unordered_vector : std::vector<T, slice_allocator<T> >
324{ 511{
325 typedef typename unordered_vector::iterator iterator; 512 typedef typename unordered_vector::iterator iterator;
326 513
336 { 523 {
337 erase ((unsigned int )(i - this->begin ())); 524 erase ((unsigned int )(i - this->begin ()));
338 } 525 }
339}; 526};
340 527
341template<class T, int T::* index> 528// This container blends advantages of linked lists
529// (efficiency) with vectors (random access) by
530// by using an unordered vector and storing the vector
531// index inside the object.
532//
533// + memory-efficient on most 64 bit archs
534// + O(1) insert/remove
535// + free unique (but varying) id for inserted objects
536// + cache-friendly iteration
537// - only works for pointers to structs
538//
539// NOTE: only some forms of erase/insert are available
540typedef int object_vector_index;
541
542template<class T, object_vector_index T::*indexmember>
342struct object_vector : std::vector<T *, slice_allocator<T *> > 543struct object_vector : std::vector<T *, slice_allocator<T *> >
343{ 544{
545 typedef typename object_vector::iterator iterator;
546
547 bool contains (const T *obj) const
548 {
549 return obj->*indexmember;
550 }
551
552 iterator find (const T *obj)
553 {
554 return obj->*indexmember
555 ? this->begin () + obj->*indexmember - 1
556 : this->end ();
557 }
558
559 void push_back (T *obj)
560 {
561 std::vector<T *, slice_allocator<T *> >::push_back (obj);
562 obj->*indexmember = this->size ();
563 }
564
344 void insert (T *obj) 565 void insert (T *obj)
345 { 566 {
346 assert (!(obj->*index));
347 push_back (obj); 567 push_back (obj);
348 obj->*index = this->size ();
349 } 568 }
350 569
351 void insert (T &obj) 570 void insert (T &obj)
352 { 571 {
353 insert (&obj); 572 insert (&obj);
354 } 573 }
355 574
356 void erase (T *obj) 575 void erase (T *obj)
357 { 576 {
358 assert (obj->*index);
359 int pos = obj->*index; 577 unsigned int pos = obj->*indexmember;
360 obj->*index = 0; 578 obj->*indexmember = 0;
361 579
362 if (pos < this->size ()) 580 if (pos < this->size ())
363 { 581 {
364 (*this)[pos - 1] = (*this)[this->size () - 1]; 582 (*this)[pos - 1] = (*this)[this->size () - 1];
365 (*this)[pos - 1]->*index = pos; 583 (*this)[pos - 1]->*indexmember = pos;
366 } 584 }
367 585
368 this->pop_back (); 586 this->pop_back ();
369 } 587 }
370 588
371 void erase (T &obj) 589 void erase (T &obj)
372 { 590 {
373 errase (&obj); 591 erase (&obj);
374 } 592 }
375}; 593};
376 594
377// basically does what strncpy should do, but appends "..." to strings exceeding length 595// basically does what strncpy should do, but appends "..." to strings exceeding length
378void assign (char *dst, const char *src, int maxlen); 596void assign (char *dst, const char *src, int maxlen);
384 assign ((char *)&dst, src, N); 602 assign ((char *)&dst, src, N);
385} 603}
386 604
387typedef double tstamp; 605typedef double tstamp;
388 606
389// return current time as timestampe 607// return current time as timestamp
390tstamp now (); 608tstamp now ();
391 609
392int similar_direction (int a, int b); 610int similar_direction (int a, int b);
393 611
612// like sprintf, but returns a "static" buffer
613const char *format (const char *format, ...);
614
615/////////////////////////////////////////////////////////////////////////////
616// threads, very very thin wrappers around pthreads
617
618struct thread
619{
620 pthread_t id;
621
622 void start (void *(*start_routine)(void *), void *arg = 0);
623
624 void cancel ()
625 {
626 pthread_cancel (id);
627 }
628
629 void *join ()
630 {
631 void *ret;
632
633 if (pthread_join (id, &ret))
634 cleanup ("pthread_join failed", 1);
635
636 return ret;
637 }
638};
639
640// note that mutexes are not classes
641typedef pthread_mutex_t smutex;
642
643#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
644 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
645#else
646 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
394#endif 647#endif
395 648
649#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
650#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
651#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
652
653typedef pthread_cond_t scond;
654
655#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
656#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
657#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
658#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
659
660#endif
661

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines