ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.36 by root, Thu Jan 25 03:54:45 2007 UTC vs.
Revision 1.92 by root, Tue Oct 20 05:57:08 2009 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4//#define PREFER_MALLOC 26#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
27#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
28#define PREFER_MALLOC 0 // use malloc and not the slice allocator
5 29
6#if __GNUC__ >= 3 30#if __GNUC__ >= 3
7# define is_constant(c) __builtin_constant_p (c) 31# define is_constant(c) __builtin_constant_p (c)
32# define expect(expr,value) __builtin_expect ((expr),(value))
33# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
34# define noinline __attribute__((__noinline__))
8#else 35#else
9# define is_constant(c) 0 36# define is_constant(c) 0
37# define expect(expr,value) (expr)
38# define prefetch(addr,rw,locality)
39# define noinline
10#endif 40#endif
41
42#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
43# define decltype(x) typeof(x)
44#endif
45
46// put into ifs if you are very sure that the expression
47// is mostly true or mosty false. note that these return
48// booleans, not the expression.
49#define expect_false(expr) expect ((expr) ? 1 : 0, 0)
50#define expect_true(expr) expect ((expr) ? 1 : 0, 1)
51
52#include <pthread.h>
11 53
12#include <cstddef> 54#include <cstddef>
13#include <cmath> 55#include <cmath>
14#include <new> 56#include <new>
15#include <vector> 57#include <vector>
17#include <glib.h> 59#include <glib.h>
18 60
19#include <shstr.h> 61#include <shstr.h>
20#include <traits.h> 62#include <traits.h>
21 63
64#if DEBUG_SALLOC
65# define g_slice_alloc0(s) debug_slice_alloc0(s)
66# define g_slice_alloc(s) debug_slice_alloc(s)
67# define g_slice_free1(s,p) debug_slice_free1(s,p)
68void *g_slice_alloc (unsigned long size);
69void *g_slice_alloc0 (unsigned long size);
70void g_slice_free1 (unsigned long size, void *ptr);
71#elif PREFER_MALLOC
72# define g_slice_alloc0(s) calloc (1, (s))
73# define g_slice_alloc(s) malloc ((s))
74# define g_slice_free1(s,p) free ((p))
75#endif
76
22// use a gcc extension for auto declarations until ISO C++ sanctifies them 77// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
23#define AUTODECL(var,expr) typeof(expr) var = (expr) 78#define auto(var,expr) decltype(expr) var = (expr)
24 79
25// very ugly macro that basicaly declares and initialises a variable 80// very ugly macro that basically declares and initialises a variable
26// that is in scope for the next statement only 81// that is in scope for the next statement only
27// works only for stuff that can be assigned 0 and converts to false 82// works only for stuff that can be assigned 0 and converts to false
28// (note: works great for pointers) 83// (note: works great for pointers)
29// most ugly macro I ever wrote 84// most ugly macro I ever wrote
30#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 85#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31 86
32// in range including end 87// in range including end
33#define IN_RANGE_INC(val,beg,end) \ 88#define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 89 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35 90
36// in range excluding end 91// in range excluding end
37#define IN_RANGE_EXC(val,beg,end) \ 92#define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 93 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39 94
95void cleanup (const char *cause, bool make_core = false);
40void fork_abort (const char *msg); 96void fork_abort (const char *msg);
41 97
42// rationale for using (U) not (T) is to reduce signed/unsigned issues, 98// rationale for using (U) not (T) is to reduce signed/unsigned issues,
43// as a is often a constant while b is the variable. it is still a bug, though. 99// as a is often a constant while b is the variable. it is still a bug, though.
44template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 100template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
45template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 101template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
46template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 102template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47 103
104template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
105template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
106template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
107
48template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 108template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
109
110template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
111template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
112
113// sign returns -1 or +1
114template<typename T>
115static inline T sign (T v) { return v < 0 ? -1 : +1; }
116// relies on 2c representation
117template<>
118inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
119
120// sign0 returns -1, 0 or +1
121template<typename T>
122static inline T sign0 (T v) { return v ? sign (v) : 0; }
123
124// div* only work correctly for div > 0
125// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
126template<typename T> static inline T div (T val, T div)
127{
128 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
129}
130// div, round-up
131template<typename T> static inline T div_ru (T val, T div)
132{
133 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
134}
135// div, round-down
136template<typename T> static inline T div_rd (T val, T div)
137{
138 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
139}
140
141// lerp* only work correctly for min_in < max_in
142// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
143template<typename T>
144static inline T
145lerp (T val, T min_in, T max_in, T min_out, T max_out)
146{
147 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148}
149
150// lerp, round-down
151template<typename T>
152static inline T
153lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
154{
155 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156}
157
158// lerp, round-up
159template<typename T>
160static inline T
161lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
162{
163 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
164}
165
166// lots of stuff taken from FXT
167
168/* Rotate right. This is used in various places for checksumming */
169//TODO: that sucks, use a better checksum algo
170static inline uint32_t
171rotate_right (uint32_t c, uint32_t count = 1)
172{
173 return (c << (32 - count)) | (c >> count);
174}
175
176static inline uint32_t
177rotate_left (uint32_t c, uint32_t count = 1)
178{
179 return (c >> (32 - count)) | (c << count);
180}
181
182// Return abs(a-b)
183// Both a and b must not have the most significant bit set
184static inline uint32_t
185upos_abs_diff (uint32_t a, uint32_t b)
186{
187 long d1 = b - a;
188 long d2 = (d1 & (d1 >> 31)) << 1;
189
190 return d1 - d2; // == (b - d) - (a + d);
191}
192
193// Both a and b must not have the most significant bit set
194static inline uint32_t
195upos_min (uint32_t a, uint32_t b)
196{
197 int32_t d = b - a;
198 d &= d >> 31;
199 return a + d;
200}
201
202// Both a and b must not have the most significant bit set
203static inline uint32_t
204upos_max (uint32_t a, uint32_t b)
205{
206 int32_t d = b - a;
207 d &= d >> 31;
208 return b - d;
209}
49 210
50// this is much faster than crossfires original algorithm 211// this is much faster than crossfires original algorithm
51// on modern cpus 212// on modern cpus
52inline int 213inline int
53isqrt (int n) 214isqrt (int n)
54{ 215{
55 return (int)sqrtf ((float)n); 216 return (int)sqrtf ((float)n);
217}
218
219// this is kind of like the ^^ operator, if it would exist, without sequence point.
220// more handy than it looks like, due to the implicit !! done on its arguments
221inline bool
222logical_xor (bool a, bool b)
223{
224 return a != b;
225}
226
227inline bool
228logical_implies (bool a, bool b)
229{
230 return a <= b;
56} 231}
57 232
58// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 233// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
59#if 0 234#if 0
60// and has a max. error of 6 in the range -100..+100. 235// and has a max. error of 6 in the range -100..+100.
85absdir (int d) 260absdir (int d)
86{ 261{
87 return ((d - 1) & 7) + 1; 262 return ((d - 1) & 7) + 1;
88} 263}
89 264
265extern ssize_t slice_alloc; // statistics
266
267void *salloc_ (int n) throw (std::bad_alloc);
268void *salloc_ (int n, void *src) throw (std::bad_alloc);
269
270// strictly the same as g_slice_alloc, but never returns 0
271template<typename T>
272inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
273
274// also copies src into the new area, like "memdup"
275// if src is 0, clears the memory
276template<typename T>
277inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
278
279// clears the memory
280template<typename T>
281inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
282
283// for symmetry
284template<typename T>
285inline void sfree (T *ptr, int n = 1) throw ()
286{
287 if (expect_true (ptr))
288 {
289 slice_alloc -= n * sizeof (T);
290 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
291 g_slice_free1 (n * sizeof (T), (void *)ptr);
292 assert (slice_alloc >= 0);//D
293 }
294}
295
296// nulls the pointer
297template<typename T>
298inline void sfree0 (T *&ptr, int n = 1) throw ()
299{
300 sfree<T> (ptr, n);
301 ptr = 0;
302}
303
90// makes dynamically allocated objects zero-initialised 304// makes dynamically allocated objects zero-initialised
91struct zero_initialised 305struct zero_initialised
92{ 306{
93 void *operator new (size_t s, void *p) 307 void *operator new (size_t s, void *p)
94 { 308 {
96 return p; 310 return p;
97 } 311 }
98 312
99 void *operator new (size_t s) 313 void *operator new (size_t s)
100 { 314 {
101 return g_slice_alloc0 (s); 315 return salloc0<char> (s);
102 } 316 }
103 317
104 void *operator new[] (size_t s) 318 void *operator new[] (size_t s)
105 { 319 {
106 return g_slice_alloc0 (s); 320 return salloc0<char> (s);
107 } 321 }
108 322
109 void operator delete (void *p, size_t s) 323 void operator delete (void *p, size_t s)
110 { 324 {
111 g_slice_free1 (s, p); 325 sfree ((char *)p, s);
112 } 326 }
113 327
114 void operator delete[] (void *p, size_t s) 328 void operator delete[] (void *p, size_t s)
115 { 329 {
116 g_slice_free1 (s, p); 330 sfree ((char *)p, s);
117 } 331 }
118}; 332};
119 333
120void *salloc_ (int n) throw (std::bad_alloc); 334// makes dynamically allocated objects zero-initialised
121void *salloc_ (int n, void *src) throw (std::bad_alloc); 335struct slice_allocated
122
123// strictly the same as g_slice_alloc, but never returns 0
124template<typename T>
125inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
126
127// also copies src into the new area, like "memdup"
128// if src is 0, clears the memory
129template<typename T>
130inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
131
132// clears the memory
133template<typename T>
134inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
135
136// for symmetry
137template<typename T>
138inline void sfree (T *ptr, int n = 1) throw ()
139{ 336{
140#ifdef PREFER_MALLOC 337 void *operator new (size_t s, void *p)
141 free (ptr); 338 {
142#else 339 return p;
143 g_slice_free1 (n * sizeof (T), (void *)ptr); 340 }
144#endif 341
145} 342 void *operator new (size_t s)
343 {
344 return salloc<char> (s);
345 }
346
347 void *operator new[] (size_t s)
348 {
349 return salloc<char> (s);
350 }
351
352 void operator delete (void *p, size_t s)
353 {
354 sfree ((char *)p, s);
355 }
356
357 void operator delete[] (void *p, size_t s)
358 {
359 sfree ((char *)p, s);
360 }
361};
146 362
147// a STL-compatible allocator that uses g_slice 363// a STL-compatible allocator that uses g_slice
148// boy, this is verbose 364// boy, this is verbose
149template<typename Tp> 365template<typename Tp>
150struct slice_allocator 366struct slice_allocator
162 { 378 {
163 typedef slice_allocator<U> other; 379 typedef slice_allocator<U> other;
164 }; 380 };
165 381
166 slice_allocator () throw () { } 382 slice_allocator () throw () { }
167 slice_allocator (const slice_allocator &o) throw () { } 383 slice_allocator (const slice_allocator &) throw () { }
168 template<typename Tp2> 384 template<typename Tp2>
169 slice_allocator (const slice_allocator<Tp2> &) throw () { } 385 slice_allocator (const slice_allocator<Tp2> &) throw () { }
170 386
171 ~slice_allocator () { } 387 ~slice_allocator () { }
172 388
181 void deallocate (pointer p, size_type n) 397 void deallocate (pointer p, size_type n)
182 { 398 {
183 sfree<Tp> (p, n); 399 sfree<Tp> (p, n);
184 } 400 }
185 401
186 size_type max_size ()const throw () 402 size_type max_size () const throw ()
187 { 403 {
188 return size_t (-1) / sizeof (Tp); 404 return size_t (-1) / sizeof (Tp);
189 } 405 }
190 406
191 void construct (pointer p, const Tp &val) 407 void construct (pointer p, const Tp &val)
202// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 418// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
203// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 419// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
204// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 420// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
205struct tausworthe_random_generator 421struct tausworthe_random_generator
206{ 422{
207 // generator
208 uint32_t state [4]; 423 uint32_t state [4];
209 424
210 void operator =(const tausworthe_random_generator &src) 425 void operator =(const tausworthe_random_generator &src)
211 { 426 {
212 state [0] = src.state [0]; 427 state [0] = src.state [0];
215 state [3] = src.state [3]; 430 state [3] = src.state [3];
216 } 431 }
217 432
218 void seed (uint32_t seed); 433 void seed (uint32_t seed);
219 uint32_t next (); 434 uint32_t next ();
435};
220 436
221 // uniform distribution 437// Xorshift RNGs, George Marsaglia
438// http://www.jstatsoft.org/v08/i14/paper
439// this one is about 40% faster than the tausworthe one above (i.e. not much),
440// despite the inlining, and has the issue of only creating 2**32-1 numbers.
441// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
442struct xorshift_random_generator
443{
444 uint32_t x, y;
445
446 void operator =(const xorshift_random_generator &src)
447 {
448 x = src.x;
449 y = src.y;
450 }
451
452 void seed (uint32_t seed)
453 {
454 x = seed;
455 y = seed * 69069U;
456 }
457
458 uint32_t next ()
459 {
460 uint32_t t = x ^ (x << 10);
461 x = y;
462 y = y ^ (y >> 13) ^ t ^ (t >> 10);
463 return y;
464 }
465};
466
467template<class generator>
468struct random_number_generator : generator
469{
470 // uniform distribution, 0 .. max (0, num - 1)
222 uint32_t operator ()(uint32_t r_max) 471 uint32_t operator ()(uint32_t num)
223 { 472 {
224 return is_constant (r_max) 473 return !is_constant (num) ? get_range (num) // non-constant
225 ? this->next () % r_max 474 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
226 : get_range (r_max); 475 : this->next () & (num - 1); // constant, power-of-two
227 } 476 }
228 477
229 // return a number within (min .. max) 478 // return a number within (min .. max)
230 int operator () (int r_min, int r_max) 479 int operator () (int r_min, int r_max)
231 { 480 {
232 return is_constant (r_min) && is_constant (r_max) 481 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
233 ? r_min + (*this) (max (r_max - r_min + 1, 1)) 482 ? r_min + operator ()(r_max - r_min + 1)
234 : get_range (r_min, r_max); 483 : get_range (r_min, r_max);
235 } 484 }
236 485
237 double operator ()() 486 double operator ()()
238 { 487 {
242protected: 491protected:
243 uint32_t get_range (uint32_t r_max); 492 uint32_t get_range (uint32_t r_max);
244 int get_range (int r_min, int r_max); 493 int get_range (int r_min, int r_max);
245}; 494};
246 495
247typedef tausworthe_random_generator rand_gen; 496typedef random_number_generator<tausworthe_random_generator> rand_gen;
248 497
249extern rand_gen rndm; 498extern rand_gen rndm, rmg_rndm;
499
500INTERFACE_CLASS (attachable)
501struct refcnt_base
502{
503 typedef int refcnt_t;
504 mutable refcnt_t ACC (RW, refcnt);
505
506 MTH void refcnt_inc () const { ++refcnt; }
507 MTH void refcnt_dec () const { --refcnt; }
508
509 refcnt_base () : refcnt (0) { }
510};
511
512// to avoid branches with more advanced compilers
513extern refcnt_base::refcnt_t refcnt_dummy;
250 514
251template<class T> 515template<class T>
252struct refptr 516struct refptr
253{ 517{
518 // p if not null
519 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
520
521 void refcnt_dec ()
522 {
523 if (!is_constant (p))
524 --*refcnt_ref ();
525 else if (p)
526 --p->refcnt;
527 }
528
529 void refcnt_inc ()
530 {
531 if (!is_constant (p))
532 ++*refcnt_ref ();
533 else if (p)
534 ++p->refcnt;
535 }
536
254 T *p; 537 T *p;
255 538
256 refptr () : p(0) { } 539 refptr () : p(0) { }
257 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 540 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
258 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 541 refptr (T *p) : p(p) { refcnt_inc (); }
259 ~refptr () { if (p) p->refcnt_dec (); } 542 ~refptr () { refcnt_dec (); }
260 543
261 const refptr<T> &operator =(T *o) 544 const refptr<T> &operator =(T *o)
262 { 545 {
546 // if decrementing ever destroys we need to reverse the order here
263 if (p) p->refcnt_dec (); 547 refcnt_dec ();
264 p = o; 548 p = o;
265 if (p) p->refcnt_inc (); 549 refcnt_inc ();
266
267 return *this; 550 return *this;
268 } 551 }
269 552
270 const refptr<T> &operator =(const refptr<T> o) 553 const refptr<T> &operator =(const refptr<T> &o)
271 { 554 {
272 *this = o.p; 555 *this = o.p;
273 return *this; 556 return *this;
274 } 557 }
275 558
276 T &operator * () const { return *p; } 559 T &operator * () const { return *p; }
277 T *operator ->() const { return p; } 560 T *operator ->() const { return p; }
278 561
279 operator T *() const { return p; } 562 operator T *() const { return p; }
280}; 563};
281 564
282typedef refptr<maptile> maptile_ptr; 565typedef refptr<maptile> maptile_ptr;
287 570
288struct str_hash 571struct str_hash
289{ 572{
290 std::size_t operator ()(const char *s) const 573 std::size_t operator ()(const char *s) const
291 { 574 {
292 unsigned long hash = 0; 575#if 0
576 uint32_t hash = 0;
293 577
294 /* use the one-at-a-time hash function, which supposedly is 578 /* use the one-at-a-time hash function, which supposedly is
295 * better than the djb2-like one used by perl5.005, but 579 * better than the djb2-like one used by perl5.005, but
296 * certainly is better then the bug used here before. 580 * certainly is better then the bug used here before.
297 * see http://burtleburtle.net/bob/hash/doobs.html 581 * see http://burtleburtle.net/bob/hash/doobs.html
304 } 588 }
305 589
306 hash += hash << 3; 590 hash += hash << 3;
307 hash ^= hash >> 11; 591 hash ^= hash >> 11;
308 hash += hash << 15; 592 hash += hash << 15;
593#else
594 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
595 // it is about twice as fast as the one-at-a-time one,
596 // with good distribution.
597 // FNV-1a is faster on many cpus because the multiplication
598 // runs concurrent with the looping logic.
599 uint32_t hash = 2166136261;
600
601 while (*s)
602 hash = (hash ^ *s++) * 16777619;
603#endif
309 604
310 return hash; 605 return hash;
311 } 606 }
312}; 607};
313 608
317 { 612 {
318 return !strcmp (a, b); 613 return !strcmp (a, b);
319 } 614 }
320}; 615};
321 616
617// Mostly the same as std::vector, but insert/erase can reorder
618// the elements, making append(=insert)/remove O(1) instead of O(n).
619//
620// NOTE: only some forms of erase are available
322template<class T> 621template<class T>
323struct unordered_vector : std::vector<T, slice_allocator<T> > 622struct unordered_vector : std::vector<T, slice_allocator<T> >
324{ 623{
325 typedef typename unordered_vector::iterator iterator; 624 typedef typename unordered_vector::iterator iterator;
326 625
336 { 635 {
337 erase ((unsigned int )(i - this->begin ())); 636 erase ((unsigned int )(i - this->begin ()));
338 } 637 }
339}; 638};
340 639
341template<class T, int T::* index> 640// This container blends advantages of linked lists
641// (efficiency) with vectors (random access) by
642// by using an unordered vector and storing the vector
643// index inside the object.
644//
645// + memory-efficient on most 64 bit archs
646// + O(1) insert/remove
647// + free unique (but varying) id for inserted objects
648// + cache-friendly iteration
649// - only works for pointers to structs
650//
651// NOTE: only some forms of erase/insert are available
652typedef int object_vector_index;
653
654template<class T, object_vector_index T::*indexmember>
342struct object_vector : std::vector<T *, slice_allocator<T *> > 655struct object_vector : std::vector<T *, slice_allocator<T *> >
343{ 656{
657 typedef typename object_vector::iterator iterator;
658
659 bool contains (const T *obj) const
660 {
661 return obj->*indexmember;
662 }
663
664 iterator find (const T *obj)
665 {
666 return obj->*indexmember
667 ? this->begin () + obj->*indexmember - 1
668 : this->end ();
669 }
670
671 void push_back (T *obj)
672 {
673 std::vector<T *, slice_allocator<T *> >::push_back (obj);
674 obj->*indexmember = this->size ();
675 }
676
344 void insert (T *obj) 677 void insert (T *obj)
345 { 678 {
346 assert (!(obj->*index));
347 push_back (obj); 679 push_back (obj);
348 obj->*index = this->size ();
349 } 680 }
350 681
351 void insert (T &obj) 682 void insert (T &obj)
352 { 683 {
353 insert (&obj); 684 insert (&obj);
354 } 685 }
355 686
356 void erase (T *obj) 687 void erase (T *obj)
357 { 688 {
358 assert (obj->*index);
359 int pos = obj->*index; 689 unsigned int pos = obj->*indexmember;
360 obj->*index = 0; 690 obj->*indexmember = 0;
361 691
362 if (pos < this->size ()) 692 if (pos < this->size ())
363 { 693 {
364 (*this)[pos - 1] = (*this)[this->size () - 1]; 694 (*this)[pos - 1] = (*this)[this->size () - 1];
365 (*this)[pos - 1]->*index = pos; 695 (*this)[pos - 1]->*indexmember = pos;
366 } 696 }
367 697
368 this->pop_back (); 698 this->pop_back ();
369 } 699 }
370 700
371 void erase (T &obj) 701 void erase (T &obj)
372 { 702 {
373 errase (&obj); 703 erase (&obj);
374 } 704 }
375}; 705};
376 706
377// basically does what strncpy should do, but appends "..." to strings exceeding length 707// basically does what strncpy should do, but appends "..." to strings exceeding length
708// returns the number of bytes actually used (including \0)
378void assign (char *dst, const char *src, int maxlen); 709int assign (char *dst, const char *src, int maxsize);
379 710
380// type-safe version of assign 711// type-safe version of assign
381template<int N> 712template<int N>
382inline void assign (char (&dst)[N], const char *src) 713inline int assign (char (&dst)[N], const char *src)
383{ 714{
384 assign ((char *)&dst, src, N); 715 return assign ((char *)&dst, src, N);
385} 716}
386 717
387typedef double tstamp; 718typedef double tstamp;
388 719
389// return current time as timestampe 720// return current time as timestamp
390tstamp now (); 721tstamp now ();
391 722
392int similar_direction (int a, int b); 723int similar_direction (int a, int b);
393 724
725// like v?sprintf, but returns a "static" buffer
726char *vformat (const char *format, va_list ap);
727char *format (const char *format, ...);
728
729// safety-check player input which will become object->msg
730bool msg_is_safe (const char *msg);
731
732/////////////////////////////////////////////////////////////////////////////
733// threads, very very thin wrappers around pthreads
734
735struct thread
736{
737 pthread_t id;
738
739 void start (void *(*start_routine)(void *), void *arg = 0);
740
741 void cancel ()
742 {
743 pthread_cancel (id);
744 }
745
746 void *join ()
747 {
748 void *ret;
749
750 if (pthread_join (id, &ret))
751 cleanup ("pthread_join failed", 1);
752
753 return ret;
754 }
755};
756
757// note that mutexes are not classes
758typedef pthread_mutex_t smutex;
759
760#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
761 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
762#else
763 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
394#endif 764#endif
395 765
766#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
767#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
768#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
769
770typedef pthread_cond_t scond;
771
772#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
773#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
774#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
775#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
776
777#endif
778

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines