ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.45 by root, Sat May 26 15:44:05 2007 UTC vs.
Revision 1.100 by root, Thu Apr 22 13:01:58 2010 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4//#define PREFER_MALLOC 26#include <compiler.h>
5 27
6#if __GNUC__ >= 3 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) __builtin_constant_p (c) 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8# define expect(expr,value) __builtin_expect ((expr),(value)) 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
9# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
10#else
11# define is_constant(c) 0
12# define expect(expr,value) (expr)
13# define prefetch(addr,rw,locality)
14#endif
15 31
16// put into ifs if you are very sure that the expression 32#include <pthread.h>
17// is mostly true or mosty false. note that these return
18// booleans, not the expression.
19#define expect_false(expr) expect ((expr) != 0, 0)
20#define expect_true(expr) expect ((expr) != 0, 1)
21 33
22#include <cstddef> 34#include <cstddef>
23#include <cmath> 35#include <cmath>
24#include <new> 36#include <new>
25#include <vector> 37#include <vector>
27#include <glib.h> 39#include <glib.h>
28 40
29#include <shstr.h> 41#include <shstr.h>
30#include <traits.h> 42#include <traits.h>
31 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
32// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
33#define auto(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
34 59
35// very ugly macro that basicaly declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
36// that is in scope for the next statement only 61// that is in scope for the next statement only
37// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
38// (note: works great for pointers) 63// (note: works great for pointers)
39// most ugly macro I ever wrote 64// most ugly macro I ever wrote
40#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
41 66
42// in range including end 67// in range including end
43#define IN_RANGE_INC(val,beg,end) \ 68#define IN_RANGE_INC(val,beg,end) \
44 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 69 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
45 70
46// in range excluding end 71// in range excluding end
47#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
48 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
49 74
75void cleanup (const char *cause, bool make_core = false);
50void fork_abort (const char *msg); 76void fork_abort (const char *msg);
51 77
52// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
53// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
54template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
55template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
56template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
57 83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87
58template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 88template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
59 89
90template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92
93// sign returns -1 or +1
94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation
97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99
100// sign0 returns -1, 0 or +1
101template<typename T>
102static inline T sign0 (T v) { return v ? sign (v) : 0; }
103
104template<typename T, typename U>
105static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
106
107// div* only work correctly for div > 0
108// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
109template<typename T> static inline T div (T val, T div)
110{
111 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
112}
113// div, round-up
114template<typename T> static inline T div_ru (T val, T div)
115{
116 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
117}
118// div, round-down
119template<typename T> static inline T div_rd (T val, T div)
120{
121 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
122}
123
124// lerp* only work correctly for min_in < max_in
125// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
60template<typename T> 126template<typename T>
61static inline T 127static inline T
62lerp (T val, T min_in, T max_in, T min_out, T max_out) 128lerp (T val, T min_in, T max_in, T min_out, T max_out)
63{ 129{
64 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 130 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
131}
132
133// lerp, round-down
134template<typename T>
135static inline T
136lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
137{
138 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
139}
140
141// lerp, round-up
142template<typename T>
143static inline T
144lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
145{
146 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
65} 147}
66 148
67// lots of stuff taken from FXT 149// lots of stuff taken from FXT
68 150
69/* Rotate right. This is used in various places for checksumming */ 151/* Rotate right. This is used in various places for checksumming */
107 int32_t d = b - a; 189 int32_t d = b - a;
108 d &= d >> 31; 190 d &= d >> 31;
109 return b - d; 191 return b - d;
110} 192}
111 193
112// this is much faster than crossfires original algorithm 194// this is much faster than crossfire's original algorithm
113// on modern cpus 195// on modern cpus
114inline int 196inline int
115isqrt (int n) 197isqrt (int n)
116{ 198{
117 return (int)sqrtf ((float)n); 199 return (int)sqrtf ((float)n);
200}
201
202// this is kind of like the ^^ operator, if it would exist, without sequence point.
203// more handy than it looks like, due to the implicit !! done on its arguments
204inline bool
205logical_xor (bool a, bool b)
206{
207 return a != b;
208}
209
210inline bool
211logical_implies (bool a, bool b)
212{
213 return a <= b;
118} 214}
119 215
120// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 216// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
121#if 0 217#if 0
122// and has a max. error of 6 in the range -100..+100. 218// and has a max. error of 6 in the range -100..+100.
147absdir (int d) 243absdir (int d)
148{ 244{
149 return ((d - 1) & 7) + 1; 245 return ((d - 1) & 7) + 1;
150} 246}
151 247
248// avoid ctz name because netbsd or freebsd spams it's namespace with it
249#if GCC_VERSION(3,4)
250static inline int least_significant_bit (uint32_t x)
251{
252 return __builtin_ctz (x);
253}
254#else
255int least_significant_bit (uint32_t x);
256#endif
257
258#define for_all_bits_sparse_32(mask, idxvar) \
259 for (uint32_t idxvar, mask_ = mask; \
260 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
261
262extern ssize_t slice_alloc; // statistics
263
264void *salloc_ (int n) throw (std::bad_alloc);
265void *salloc_ (int n, void *src) throw (std::bad_alloc);
266
267// strictly the same as g_slice_alloc, but never returns 0
268template<typename T>
269inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
270
271// also copies src into the new area, like "memdup"
272// if src is 0, clears the memory
273template<typename T>
274inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
275
276// clears the memory
277template<typename T>
278inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
279
280// for symmetry
281template<typename T>
282inline void sfree (T *ptr, int n = 1) throw ()
283{
284 if (expect_true (ptr))
285 {
286 slice_alloc -= n * sizeof (T);
287 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
288 g_slice_free1 (n * sizeof (T), (void *)ptr);
289 assert (slice_alloc >= 0);//D
290 }
291}
292
293// nulls the pointer
294template<typename T>
295inline void sfree0 (T *&ptr, int n = 1) throw ()
296{
297 sfree<T> (ptr, n);
298 ptr = 0;
299}
300
152// makes dynamically allocated objects zero-initialised 301// makes dynamically allocated objects zero-initialised
153struct zero_initialised 302struct zero_initialised
154{ 303{
155 void *operator new (size_t s, void *p) 304 void *operator new (size_t s, void *p)
156 { 305 {
158 return p; 307 return p;
159 } 308 }
160 309
161 void *operator new (size_t s) 310 void *operator new (size_t s)
162 { 311 {
163 return g_slice_alloc0 (s); 312 return salloc0<char> (s);
164 } 313 }
165 314
166 void *operator new[] (size_t s) 315 void *operator new[] (size_t s)
167 { 316 {
168 return g_slice_alloc0 (s); 317 return salloc0<char> (s);
169 } 318 }
170 319
171 void operator delete (void *p, size_t s) 320 void operator delete (void *p, size_t s)
172 { 321 {
173 g_slice_free1 (s, p); 322 sfree ((char *)p, s);
174 } 323 }
175 324
176 void operator delete[] (void *p, size_t s) 325 void operator delete[] (void *p, size_t s)
177 { 326 {
178 g_slice_free1 (s, p); 327 sfree ((char *)p, s);
179 } 328 }
180}; 329};
181 330
182void *salloc_ (int n) throw (std::bad_alloc); 331// makes dynamically allocated objects zero-initialised
183void *salloc_ (int n, void *src) throw (std::bad_alloc); 332struct slice_allocated
184
185// strictly the same as g_slice_alloc, but never returns 0
186template<typename T>
187inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
188
189// also copies src into the new area, like "memdup"
190// if src is 0, clears the memory
191template<typename T>
192inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
193
194// clears the memory
195template<typename T>
196inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
197
198// for symmetry
199template<typename T>
200inline void sfree (T *ptr, int n = 1) throw ()
201{ 333{
202#ifdef PREFER_MALLOC 334 void *operator new (size_t s, void *p)
203 free (ptr); 335 {
204#else 336 return p;
205 g_slice_free1 (n * sizeof (T), (void *)ptr); 337 }
206#endif 338
207} 339 void *operator new (size_t s)
340 {
341 return salloc<char> (s);
342 }
343
344 void *operator new[] (size_t s)
345 {
346 return salloc<char> (s);
347 }
348
349 void operator delete (void *p, size_t s)
350 {
351 sfree ((char *)p, s);
352 }
353
354 void operator delete[] (void *p, size_t s)
355 {
356 sfree ((char *)p, s);
357 }
358};
208 359
209// a STL-compatible allocator that uses g_slice 360// a STL-compatible allocator that uses g_slice
210// boy, this is verbose 361// boy, this is verbose
211template<typename Tp> 362template<typename Tp>
212struct slice_allocator 363struct slice_allocator
224 { 375 {
225 typedef slice_allocator<U> other; 376 typedef slice_allocator<U> other;
226 }; 377 };
227 378
228 slice_allocator () throw () { } 379 slice_allocator () throw () { }
229 slice_allocator (const slice_allocator &o) throw () { } 380 slice_allocator (const slice_allocator &) throw () { }
230 template<typename Tp2> 381 template<typename Tp2>
231 slice_allocator (const slice_allocator<Tp2> &) throw () { } 382 slice_allocator (const slice_allocator<Tp2> &) throw () { }
232 383
233 ~slice_allocator () { } 384 ~slice_allocator () { }
234 385
243 void deallocate (pointer p, size_type n) 394 void deallocate (pointer p, size_type n)
244 { 395 {
245 sfree<Tp> (p, n); 396 sfree<Tp> (p, n);
246 } 397 }
247 398
248 size_type max_size ()const throw () 399 size_type max_size () const throw ()
249 { 400 {
250 return size_t (-1) / sizeof (Tp); 401 return size_t (-1) / sizeof (Tp);
251 } 402 }
252 403
253 void construct (pointer p, const Tp &val) 404 void construct (pointer p, const Tp &val)
264// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 415// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
265// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 416// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
266// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 417// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
267struct tausworthe_random_generator 418struct tausworthe_random_generator
268{ 419{
269 // generator
270 uint32_t state [4]; 420 uint32_t state [4];
271 421
272 void operator =(const tausworthe_random_generator &src) 422 void operator =(const tausworthe_random_generator &src)
273 { 423 {
274 state [0] = src.state [0]; 424 state [0] = src.state [0];
277 state [3] = src.state [3]; 427 state [3] = src.state [3];
278 } 428 }
279 429
280 void seed (uint32_t seed); 430 void seed (uint32_t seed);
281 uint32_t next (); 431 uint32_t next ();
432};
282 433
283 // uniform distribution 434// Xorshift RNGs, George Marsaglia
435// http://www.jstatsoft.org/v08/i14/paper
436// this one is about 40% faster than the tausworthe one above (i.e. not much),
437// despite the inlining, and has the issue of only creating 2**32-1 numbers.
438// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
439struct xorshift_random_generator
440{
441 uint32_t x, y;
442
443 void operator =(const xorshift_random_generator &src)
444 {
445 x = src.x;
446 y = src.y;
447 }
448
449 void seed (uint32_t seed)
450 {
451 x = seed;
452 y = seed * 69069U;
453 }
454
455 uint32_t next ()
456 {
457 uint32_t t = x ^ (x << 10);
458 x = y;
459 y = y ^ (y >> 13) ^ t ^ (t >> 10);
460 return y;
461 }
462};
463
464template<class generator>
465struct random_number_generator : generator
466{
467 // uniform distribution, 0 .. max (0, num - 1)
284 uint32_t operator ()(uint32_t num) 468 uint32_t operator ()(uint32_t num)
285 { 469 {
286 return is_constant (num) 470 return !is_constant (num) ? get_range (num) // non-constant
287 ? (next () * (uint64_t)num) >> 32U 471 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
288 : get_range (num); 472 : this->next () & (num - 1); // constant, power-of-two
289 } 473 }
290 474
291 // return a number within (min .. max) 475 // return a number within the closed interval [min .. max]
292 int operator () (int r_min, int r_max) 476 int operator () (int r_min, int r_max)
293 { 477 {
294 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max 478 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
295 ? r_min + operator ()(r_max - r_min + 1) 479 ? r_min + operator ()(r_max - r_min + 1)
296 : get_range (r_min, r_max); 480 : get_range (r_min, r_max);
297 } 481 }
298 482
483 // return a number within the closed interval [0..1]
299 double operator ()() 484 double operator ()()
300 { 485 {
301 return this->next () / (double)0xFFFFFFFFU; 486 return this->next () / (double)0xFFFFFFFFU;
302 } 487 }
303 488
304protected: 489protected:
305 uint32_t get_range (uint32_t r_max); 490 uint32_t get_range (uint32_t r_max);
306 int get_range (int r_min, int r_max); 491 int get_range (int r_min, int r_max);
307}; 492};
308 493
309typedef tausworthe_random_generator rand_gen; 494typedef random_number_generator<tausworthe_random_generator> rand_gen;
310 495
311extern rand_gen rndm; 496extern rand_gen rndm, rmg_rndm;
497
498INTERFACE_CLASS (attachable)
499struct refcnt_base
500{
501 typedef int refcnt_t;
502 mutable refcnt_t ACC (RW, refcnt);
503
504 MTH void refcnt_inc () const { ++refcnt; }
505 MTH void refcnt_dec () const { --refcnt; }
506
507 refcnt_base () : refcnt (0) { }
508};
509
510// to avoid branches with more advanced compilers
511extern refcnt_base::refcnt_t refcnt_dummy;
312 512
313template<class T> 513template<class T>
314struct refptr 514struct refptr
315{ 515{
516 // p if not null
517 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
518
519 void refcnt_dec ()
520 {
521 if (!is_constant (p))
522 --*refcnt_ref ();
523 else if (p)
524 --p->refcnt;
525 }
526
527 void refcnt_inc ()
528 {
529 if (!is_constant (p))
530 ++*refcnt_ref ();
531 else if (p)
532 ++p->refcnt;
533 }
534
316 T *p; 535 T *p;
317 536
318 refptr () : p(0) { } 537 refptr () : p(0) { }
319 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 538 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
320 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 539 refptr (T *p) : p(p) { refcnt_inc (); }
321 ~refptr () { if (p) p->refcnt_dec (); } 540 ~refptr () { refcnt_dec (); }
322 541
323 const refptr<T> &operator =(T *o) 542 const refptr<T> &operator =(T *o)
324 { 543 {
544 // if decrementing ever destroys we need to reverse the order here
325 if (p) p->refcnt_dec (); 545 refcnt_dec ();
326 p = o; 546 p = o;
327 if (p) p->refcnt_inc (); 547 refcnt_inc ();
328
329 return *this; 548 return *this;
330 } 549 }
331 550
332 const refptr<T> &operator =(const refptr<T> o) 551 const refptr<T> &operator =(const refptr<T> &o)
333 { 552 {
334 *this = o.p; 553 *this = o.p;
335 return *this; 554 return *this;
336 } 555 }
337 556
338 T &operator * () const { return *p; } 557 T &operator * () const { return *p; }
339 T *operator ->() const { return p; } 558 T *operator ->() const { return p; }
340 559
341 operator T *() const { return p; } 560 operator T *() const { return p; }
342}; 561};
343 562
344typedef refptr<maptile> maptile_ptr; 563typedef refptr<maptile> maptile_ptr;
345typedef refptr<object> object_ptr; 564typedef refptr<object> object_ptr;
346typedef refptr<archetype> arch_ptr; 565typedef refptr<archetype> arch_ptr;
347typedef refptr<client> client_ptr; 566typedef refptr<client> client_ptr;
348typedef refptr<player> player_ptr; 567typedef refptr<player> player_ptr;
349 568
569#define STRHSH_NULL 2166136261
570
571static inline uint32_t
572strhsh (const char *s)
573{
574 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
575 // it is about twice as fast as the one-at-a-time one,
576 // with good distribution.
577 // FNV-1a is faster on many cpus because the multiplication
578 // runs concurrently with the looping logic.
579 uint32_t hash = STRHSH_NULL;
580
581 while (*s)
582 hash = (hash ^ *s++) * 16777619U;
583
584 return hash;
585}
586
587static inline uint32_t
588memhsh (const char *s, size_t len)
589{
590 uint32_t hash = STRHSH_NULL;
591
592 while (len--)
593 hash = (hash ^ *s++) * 16777619U;
594
595 return hash;
596}
597
350struct str_hash 598struct str_hash
351{ 599{
352 std::size_t operator ()(const char *s) const 600 std::size_t operator ()(const char *s) const
353 { 601 {
354 unsigned long hash = 0;
355
356 /* use the one-at-a-time hash function, which supposedly is
357 * better than the djb2-like one used by perl5.005, but
358 * certainly is better then the bug used here before.
359 * see http://burtleburtle.net/bob/hash/doobs.html
360 */
361 while (*s)
362 {
363 hash += *s++;
364 hash += hash << 10;
365 hash ^= hash >> 6;
366 }
367
368 hash += hash << 3;
369 hash ^= hash >> 11;
370 hash += hash << 15;
371
372 return hash; 602 return strhsh (s);
603 }
604
605 std::size_t operator ()(const shstr &s) const
606 {
607 return strhsh (s);
373 } 608 }
374}; 609};
375 610
376struct str_equal 611struct str_equal
377{ 612{
379 { 614 {
380 return !strcmp (a, b); 615 return !strcmp (a, b);
381 } 616 }
382}; 617};
383 618
619// Mostly the same as std::vector, but insert/erase can reorder
620// the elements, making append(=insert)/remove O(1) instead of O(n).
621//
622// NOTE: only some forms of erase are available
384template<class T> 623template<class T>
385struct unordered_vector : std::vector<T, slice_allocator<T> > 624struct unordered_vector : std::vector<T, slice_allocator<T> >
386{ 625{
387 typedef typename unordered_vector::iterator iterator; 626 typedef typename unordered_vector::iterator iterator;
388 627
398 { 637 {
399 erase ((unsigned int )(i - this->begin ())); 638 erase ((unsigned int )(i - this->begin ()));
400 } 639 }
401}; 640};
402 641
403template<class T, int T::* index> 642// This container blends advantages of linked lists
643// (efficiency) with vectors (random access) by
644// by using an unordered vector and storing the vector
645// index inside the object.
646//
647// + memory-efficient on most 64 bit archs
648// + O(1) insert/remove
649// + free unique (but varying) id for inserted objects
650// + cache-friendly iteration
651// - only works for pointers to structs
652//
653// NOTE: only some forms of erase/insert are available
654typedef int object_vector_index;
655
656template<class T, object_vector_index T::*indexmember>
404struct object_vector : std::vector<T *, slice_allocator<T *> > 657struct object_vector : std::vector<T *, slice_allocator<T *> >
405{ 658{
659 typedef typename object_vector::iterator iterator;
660
661 bool contains (const T *obj) const
662 {
663 return obj->*indexmember;
664 }
665
666 iterator find (const T *obj)
667 {
668 return obj->*indexmember
669 ? this->begin () + obj->*indexmember - 1
670 : this->end ();
671 }
672
673 void push_back (T *obj)
674 {
675 std::vector<T *, slice_allocator<T *> >::push_back (obj);
676 obj->*indexmember = this->size ();
677 }
678
406 void insert (T *obj) 679 void insert (T *obj)
407 { 680 {
408 assert (!(obj->*index));
409 push_back (obj); 681 push_back (obj);
410 obj->*index = this->size ();
411 } 682 }
412 683
413 void insert (T &obj) 684 void insert (T &obj)
414 { 685 {
415 insert (&obj); 686 insert (&obj);
416 } 687 }
417 688
418 void erase (T *obj) 689 void erase (T *obj)
419 { 690 {
420 assert (obj->*index);
421 unsigned int pos = obj->*index; 691 unsigned int pos = obj->*indexmember;
422 obj->*index = 0; 692 obj->*indexmember = 0;
423 693
424 if (pos < this->size ()) 694 if (pos < this->size ())
425 { 695 {
426 (*this)[pos - 1] = (*this)[this->size () - 1]; 696 (*this)[pos - 1] = (*this)[this->size () - 1];
427 (*this)[pos - 1]->*index = pos; 697 (*this)[pos - 1]->*indexmember = pos;
428 } 698 }
429 699
430 this->pop_back (); 700 this->pop_back ();
431 } 701 }
432 702
433 void erase (T &obj) 703 void erase (T &obj)
434 { 704 {
435 errase (&obj); 705 erase (&obj);
436 } 706 }
437}; 707};
438 708
439// basically does what strncpy should do, but appends "..." to strings exceeding length 709// basically does what strncpy should do, but appends "..." to strings exceeding length
710// returns the number of bytes actually used (including \0)
440void assign (char *dst, const char *src, int maxlen); 711int assign (char *dst, const char *src, int maxsize);
441 712
442// type-safe version of assign 713// type-safe version of assign
443template<int N> 714template<int N>
444inline void assign (char (&dst)[N], const char *src) 715inline int assign (char (&dst)[N], const char *src)
445{ 716{
446 assign ((char *)&dst, src, N); 717 return assign ((char *)&dst, src, N);
447} 718}
448 719
449typedef double tstamp; 720typedef double tstamp;
450 721
451// return current time as timestampe 722// return current time as timestamp
452tstamp now (); 723tstamp now ();
453 724
454int similar_direction (int a, int b); 725int similar_direction (int a, int b);
455 726
456// like printf, but returns a std::string 727// like v?sprintf, but returns a "static" buffer
457const std::string format (const char *format, ...); 728char *vformat (const char *format, va_list ap);
729char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
458 730
731// safety-check player input which will become object->msg
732bool msg_is_safe (const char *msg);
733
734/////////////////////////////////////////////////////////////////////////////
735// threads, very very thin wrappers around pthreads
736
737struct thread
738{
739 pthread_t id;
740
741 void start (void *(*start_routine)(void *), void *arg = 0);
742
743 void cancel ()
744 {
745 pthread_cancel (id);
746 }
747
748 void *join ()
749 {
750 void *ret;
751
752 if (pthread_join (id, &ret))
753 cleanup ("pthread_join failed", 1);
754
755 return ret;
756 }
757};
758
759// note that mutexes are not classes
760typedef pthread_mutex_t smutex;
761
762#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
763 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
764#else
765 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
459#endif 766#endif
460 767
768#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
769#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
770#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
771
772typedef pthread_cond_t scond;
773
774#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
775#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
776#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
777#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
778
779#endif
780

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines