ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.45 by root, Sat May 26 15:44:05 2007 UTC vs.
Revision 1.102 by root, Thu Apr 29 12:24:04 2010 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4//#define PREFER_MALLOC 26#include <compiler.h>
5 27
6#if __GNUC__ >= 3 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) __builtin_constant_p (c) 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8# define expect(expr,value) __builtin_expect ((expr),(value)) 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
9# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
10#else
11# define is_constant(c) 0
12# define expect(expr,value) (expr)
13# define prefetch(addr,rw,locality)
14#endif
15 31
16// put into ifs if you are very sure that the expression 32#include <pthread.h>
17// is mostly true or mosty false. note that these return
18// booleans, not the expression.
19#define expect_false(expr) expect ((expr) != 0, 0)
20#define expect_true(expr) expect ((expr) != 0, 1)
21 33
22#include <cstddef> 34#include <cstddef>
23#include <cmath> 35#include <cmath>
24#include <new> 36#include <new>
25#include <vector> 37#include <vector>
27#include <glib.h> 39#include <glib.h>
28 40
29#include <shstr.h> 41#include <shstr.h>
30#include <traits.h> 42#include <traits.h>
31 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
32// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
33#define auto(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
34 59
60// could use the sizeof (arr) /( sizeof (arr [0]) here, but C++ is
61// much more obfuscated... :)
62
63template<typename T, int N>
64inline int array_length (const T (&arr)[N])
65{
66 return N;
67}
68
35// very ugly macro that basicaly declares and initialises a variable 69// very ugly macro that basically declares and initialises a variable
36// that is in scope for the next statement only 70// that is in scope for the next statement only
37// works only for stuff that can be assigned 0 and converts to false 71// works only for stuff that can be assigned 0 and converts to false
38// (note: works great for pointers) 72// (note: works great for pointers)
39// most ugly macro I ever wrote 73// most ugly macro I ever wrote
40#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 74#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
41 75
42// in range including end 76// in range including end
43#define IN_RANGE_INC(val,beg,end) \ 77#define IN_RANGE_INC(val,beg,end) \
44 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 78 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
45 79
46// in range excluding end 80// in range excluding end
47#define IN_RANGE_EXC(val,beg,end) \ 81#define IN_RANGE_EXC(val,beg,end) \
48 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 82 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
49 83
84void cleanup (const char *cause, bool make_core = false);
50void fork_abort (const char *msg); 85void fork_abort (const char *msg);
51 86
52// rationale for using (U) not (T) is to reduce signed/unsigned issues, 87// rationale for using (U) not (T) is to reduce signed/unsigned issues,
53// as a is often a constant while b is the variable. it is still a bug, though. 88// as a is often a constant while b is the variable. it is still a bug, though.
54template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 89template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
55template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 90template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
56template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 91template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
57 92
93template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
94template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
95template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
96
58template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 97template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
59 98
99template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
100template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
101
102// sign returns -1 or +1
103template<typename T>
104static inline T sign (T v) { return v < 0 ? -1 : +1; }
105// relies on 2c representation
106template<>
107inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
108
109// sign0 returns -1, 0 or +1
110template<typename T>
111static inline T sign0 (T v) { return v ? sign (v) : 0; }
112
113template<typename T, typename U>
114static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
115
116// div* only work correctly for div > 0
117// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
118template<typename T> static inline T div (T val, T div)
119{
120 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
121}
122// div, round-up
123template<typename T> static inline T div_ru (T val, T div)
124{
125 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
126}
127// div, round-down
128template<typename T> static inline T div_rd (T val, T div)
129{
130 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
131}
132
133// lerp* only work correctly for min_in < max_in
134// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
60template<typename T> 135template<typename T>
61static inline T 136static inline T
62lerp (T val, T min_in, T max_in, T min_out, T max_out) 137lerp (T val, T min_in, T max_in, T min_out, T max_out)
63{ 138{
64 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 139 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
140}
141
142// lerp, round-down
143template<typename T>
144static inline T
145lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
146{
147 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148}
149
150// lerp, round-up
151template<typename T>
152static inline T
153lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
154{
155 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
65} 156}
66 157
67// lots of stuff taken from FXT 158// lots of stuff taken from FXT
68 159
69/* Rotate right. This is used in various places for checksumming */ 160/* Rotate right. This is used in various places for checksumming */
107 int32_t d = b - a; 198 int32_t d = b - a;
108 d &= d >> 31; 199 d &= d >> 31;
109 return b - d; 200 return b - d;
110} 201}
111 202
112// this is much faster than crossfires original algorithm 203// this is much faster than crossfire's original algorithm
113// on modern cpus 204// on modern cpus
114inline int 205inline int
115isqrt (int n) 206isqrt (int n)
116{ 207{
117 return (int)sqrtf ((float)n); 208 return (int)sqrtf ((float)n);
209}
210
211// this is kind of like the ^^ operator, if it would exist, without sequence point.
212// more handy than it looks like, due to the implicit !! done on its arguments
213inline bool
214logical_xor (bool a, bool b)
215{
216 return a != b;
217}
218
219inline bool
220logical_implies (bool a, bool b)
221{
222 return a <= b;
118} 223}
119 224
120// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 225// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
121#if 0 226#if 0
122// and has a max. error of 6 in the range -100..+100. 227// and has a max. error of 6 in the range -100..+100.
147absdir (int d) 252absdir (int d)
148{ 253{
149 return ((d - 1) & 7) + 1; 254 return ((d - 1) & 7) + 1;
150} 255}
151 256
257// avoid ctz name because netbsd or freebsd spams it's namespace with it
258#if GCC_VERSION(3,4)
259static inline int least_significant_bit (uint32_t x)
260{
261 return __builtin_ctz (x);
262}
263#else
264int least_significant_bit (uint32_t x);
265#endif
266
267#define for_all_bits_sparse_32(mask, idxvar) \
268 for (uint32_t idxvar, mask_ = mask; \
269 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
270
271extern ssize_t slice_alloc; // statistics
272
273void *salloc_ (int n) throw (std::bad_alloc);
274void *salloc_ (int n, void *src) throw (std::bad_alloc);
275
276// strictly the same as g_slice_alloc, but never returns 0
277template<typename T>
278inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
279
280// also copies src into the new area, like "memdup"
281// if src is 0, clears the memory
282template<typename T>
283inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
284
285// clears the memory
286template<typename T>
287inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
288
289// for symmetry
290template<typename T>
291inline void sfree (T *ptr, int n = 1) throw ()
292{
293 if (expect_true (ptr))
294 {
295 slice_alloc -= n * sizeof (T);
296 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
297 g_slice_free1 (n * sizeof (T), (void *)ptr);
298 assert (slice_alloc >= 0);//D
299 }
300}
301
302// nulls the pointer
303template<typename T>
304inline void sfree0 (T *&ptr, int n = 1) throw ()
305{
306 sfree<T> (ptr, n);
307 ptr = 0;
308}
309
152// makes dynamically allocated objects zero-initialised 310// makes dynamically allocated objects zero-initialised
153struct zero_initialised 311struct zero_initialised
154{ 312{
155 void *operator new (size_t s, void *p) 313 void *operator new (size_t s, void *p)
156 { 314 {
158 return p; 316 return p;
159 } 317 }
160 318
161 void *operator new (size_t s) 319 void *operator new (size_t s)
162 { 320 {
163 return g_slice_alloc0 (s); 321 return salloc0<char> (s);
164 } 322 }
165 323
166 void *operator new[] (size_t s) 324 void *operator new[] (size_t s)
167 { 325 {
168 return g_slice_alloc0 (s); 326 return salloc0<char> (s);
169 } 327 }
170 328
171 void operator delete (void *p, size_t s) 329 void operator delete (void *p, size_t s)
172 { 330 {
173 g_slice_free1 (s, p); 331 sfree ((char *)p, s);
174 } 332 }
175 333
176 void operator delete[] (void *p, size_t s) 334 void operator delete[] (void *p, size_t s)
177 { 335 {
178 g_slice_free1 (s, p); 336 sfree ((char *)p, s);
179 } 337 }
180}; 338};
181 339
182void *salloc_ (int n) throw (std::bad_alloc); 340// makes dynamically allocated objects zero-initialised
183void *salloc_ (int n, void *src) throw (std::bad_alloc); 341struct slice_allocated
184
185// strictly the same as g_slice_alloc, but never returns 0
186template<typename T>
187inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
188
189// also copies src into the new area, like "memdup"
190// if src is 0, clears the memory
191template<typename T>
192inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
193
194// clears the memory
195template<typename T>
196inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
197
198// for symmetry
199template<typename T>
200inline void sfree (T *ptr, int n = 1) throw ()
201{ 342{
202#ifdef PREFER_MALLOC 343 void *operator new (size_t s, void *p)
203 free (ptr); 344 {
204#else 345 return p;
205 g_slice_free1 (n * sizeof (T), (void *)ptr); 346 }
206#endif 347
207} 348 void *operator new (size_t s)
349 {
350 return salloc<char> (s);
351 }
352
353 void *operator new[] (size_t s)
354 {
355 return salloc<char> (s);
356 }
357
358 void operator delete (void *p, size_t s)
359 {
360 sfree ((char *)p, s);
361 }
362
363 void operator delete[] (void *p, size_t s)
364 {
365 sfree ((char *)p, s);
366 }
367};
208 368
209// a STL-compatible allocator that uses g_slice 369// a STL-compatible allocator that uses g_slice
210// boy, this is verbose 370// boy, this is verbose
211template<typename Tp> 371template<typename Tp>
212struct slice_allocator 372struct slice_allocator
224 { 384 {
225 typedef slice_allocator<U> other; 385 typedef slice_allocator<U> other;
226 }; 386 };
227 387
228 slice_allocator () throw () { } 388 slice_allocator () throw () { }
229 slice_allocator (const slice_allocator &o) throw () { } 389 slice_allocator (const slice_allocator &) throw () { }
230 template<typename Tp2> 390 template<typename Tp2>
231 slice_allocator (const slice_allocator<Tp2> &) throw () { } 391 slice_allocator (const slice_allocator<Tp2> &) throw () { }
232 392
233 ~slice_allocator () { } 393 ~slice_allocator () { }
234 394
243 void deallocate (pointer p, size_type n) 403 void deallocate (pointer p, size_type n)
244 { 404 {
245 sfree<Tp> (p, n); 405 sfree<Tp> (p, n);
246 } 406 }
247 407
248 size_type max_size ()const throw () 408 size_type max_size () const throw ()
249 { 409 {
250 return size_t (-1) / sizeof (Tp); 410 return size_t (-1) / sizeof (Tp);
251 } 411 }
252 412
253 void construct (pointer p, const Tp &val) 413 void construct (pointer p, const Tp &val)
264// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 424// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
265// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 425// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
266// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 426// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
267struct tausworthe_random_generator 427struct tausworthe_random_generator
268{ 428{
269 // generator
270 uint32_t state [4]; 429 uint32_t state [4];
271 430
272 void operator =(const tausworthe_random_generator &src) 431 void operator =(const tausworthe_random_generator &src)
273 { 432 {
274 state [0] = src.state [0]; 433 state [0] = src.state [0];
277 state [3] = src.state [3]; 436 state [3] = src.state [3];
278 } 437 }
279 438
280 void seed (uint32_t seed); 439 void seed (uint32_t seed);
281 uint32_t next (); 440 uint32_t next ();
441};
282 442
283 // uniform distribution 443// Xorshift RNGs, George Marsaglia
444// http://www.jstatsoft.org/v08/i14/paper
445// this one is about 40% faster than the tausworthe one above (i.e. not much),
446// despite the inlining, and has the issue of only creating 2**32-1 numbers.
447// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
448struct xorshift_random_generator
449{
450 uint32_t x, y;
451
452 void operator =(const xorshift_random_generator &src)
453 {
454 x = src.x;
455 y = src.y;
456 }
457
458 void seed (uint32_t seed)
459 {
460 x = seed;
461 y = seed * 69069U;
462 }
463
464 uint32_t next ()
465 {
466 uint32_t t = x ^ (x << 10);
467 x = y;
468 y = y ^ (y >> 13) ^ t ^ (t >> 10);
469 return y;
470 }
471};
472
473template<class generator>
474struct random_number_generator : generator
475{
476 // uniform distribution, 0 .. max (0, num - 1)
284 uint32_t operator ()(uint32_t num) 477 uint32_t operator ()(uint32_t num)
285 { 478 {
286 return is_constant (num) 479 return !is_constant (num) ? get_range (num) // non-constant
287 ? (next () * (uint64_t)num) >> 32U 480 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
288 : get_range (num); 481 : this->next () & (num - 1); // constant, power-of-two
289 } 482 }
290 483
291 // return a number within (min .. max) 484 // return a number within the closed interval [min .. max]
292 int operator () (int r_min, int r_max) 485 int operator () (int r_min, int r_max)
293 { 486 {
294 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max 487 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
295 ? r_min + operator ()(r_max - r_min + 1) 488 ? r_min + operator ()(r_max - r_min + 1)
296 : get_range (r_min, r_max); 489 : get_range (r_min, r_max);
297 } 490 }
298 491
492 // return a number within the closed interval [0..1]
299 double operator ()() 493 double operator ()()
300 { 494 {
301 return this->next () / (double)0xFFFFFFFFU; 495 return this->next () / (double)0xFFFFFFFFU;
302 } 496 }
303 497
304protected: 498protected:
305 uint32_t get_range (uint32_t r_max); 499 uint32_t get_range (uint32_t r_max);
306 int get_range (int r_min, int r_max); 500 int get_range (int r_min, int r_max);
307}; 501};
308 502
309typedef tausworthe_random_generator rand_gen; 503typedef random_number_generator<tausworthe_random_generator> rand_gen;
310 504
311extern rand_gen rndm; 505extern rand_gen rndm, rmg_rndm;
506
507INTERFACE_CLASS (attachable)
508struct refcnt_base
509{
510 typedef int refcnt_t;
511 mutable refcnt_t ACC (RW, refcnt);
512
513 MTH void refcnt_inc () const { ++refcnt; }
514 MTH void refcnt_dec () const { --refcnt; }
515
516 refcnt_base () : refcnt (0) { }
517};
518
519// to avoid branches with more advanced compilers
520extern refcnt_base::refcnt_t refcnt_dummy;
312 521
313template<class T> 522template<class T>
314struct refptr 523struct refptr
315{ 524{
525 // p if not null
526 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
527
528 void refcnt_dec ()
529 {
530 if (!is_constant (p))
531 --*refcnt_ref ();
532 else if (p)
533 --p->refcnt;
534 }
535
536 void refcnt_inc ()
537 {
538 if (!is_constant (p))
539 ++*refcnt_ref ();
540 else if (p)
541 ++p->refcnt;
542 }
543
316 T *p; 544 T *p;
317 545
318 refptr () : p(0) { } 546 refptr () : p(0) { }
319 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 547 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
320 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 548 refptr (T *p) : p(p) { refcnt_inc (); }
321 ~refptr () { if (p) p->refcnt_dec (); } 549 ~refptr () { refcnt_dec (); }
322 550
323 const refptr<T> &operator =(T *o) 551 const refptr<T> &operator =(T *o)
324 { 552 {
553 // if decrementing ever destroys we need to reverse the order here
325 if (p) p->refcnt_dec (); 554 refcnt_dec ();
326 p = o; 555 p = o;
327 if (p) p->refcnt_inc (); 556 refcnt_inc ();
328
329 return *this; 557 return *this;
330 } 558 }
331 559
332 const refptr<T> &operator =(const refptr<T> o) 560 const refptr<T> &operator =(const refptr<T> &o)
333 { 561 {
334 *this = o.p; 562 *this = o.p;
335 return *this; 563 return *this;
336 } 564 }
337 565
338 T &operator * () const { return *p; } 566 T &operator * () const { return *p; }
339 T *operator ->() const { return p; } 567 T *operator ->() const { return p; }
340 568
341 operator T *() const { return p; } 569 operator T *() const { return p; }
342}; 570};
343 571
344typedef refptr<maptile> maptile_ptr; 572typedef refptr<maptile> maptile_ptr;
345typedef refptr<object> object_ptr; 573typedef refptr<object> object_ptr;
346typedef refptr<archetype> arch_ptr; 574typedef refptr<archetype> arch_ptr;
347typedef refptr<client> client_ptr; 575typedef refptr<client> client_ptr;
348typedef refptr<player> player_ptr; 576typedef refptr<player> player_ptr;
577typedef refptr<region> region_ptr;
578
579#define STRHSH_NULL 2166136261
580
581static inline uint32_t
582strhsh (const char *s)
583{
584 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
585 // it is about twice as fast as the one-at-a-time one,
586 // with good distribution.
587 // FNV-1a is faster on many cpus because the multiplication
588 // runs concurrently with the looping logic.
589 uint32_t hash = STRHSH_NULL;
590
591 while (*s)
592 hash = (hash ^ *s++) * 16777619U;
593
594 return hash;
595}
596
597static inline uint32_t
598memhsh (const char *s, size_t len)
599{
600 uint32_t hash = STRHSH_NULL;
601
602 while (len--)
603 hash = (hash ^ *s++) * 16777619U;
604
605 return hash;
606}
349 607
350struct str_hash 608struct str_hash
351{ 609{
352 std::size_t operator ()(const char *s) const 610 std::size_t operator ()(const char *s) const
353 { 611 {
354 unsigned long hash = 0;
355
356 /* use the one-at-a-time hash function, which supposedly is
357 * better than the djb2-like one used by perl5.005, but
358 * certainly is better then the bug used here before.
359 * see http://burtleburtle.net/bob/hash/doobs.html
360 */
361 while (*s)
362 {
363 hash += *s++;
364 hash += hash << 10;
365 hash ^= hash >> 6;
366 }
367
368 hash += hash << 3;
369 hash ^= hash >> 11;
370 hash += hash << 15;
371
372 return hash; 612 return strhsh (s);
613 }
614
615 std::size_t operator ()(const shstr &s) const
616 {
617 return strhsh (s);
373 } 618 }
374}; 619};
375 620
376struct str_equal 621struct str_equal
377{ 622{
379 { 624 {
380 return !strcmp (a, b); 625 return !strcmp (a, b);
381 } 626 }
382}; 627};
383 628
629// Mostly the same as std::vector, but insert/erase can reorder
630// the elements, making append(=insert)/remove O(1) instead of O(n).
631//
632// NOTE: only some forms of erase are available
384template<class T> 633template<class T>
385struct unordered_vector : std::vector<T, slice_allocator<T> > 634struct unordered_vector : std::vector<T, slice_allocator<T> >
386{ 635{
387 typedef typename unordered_vector::iterator iterator; 636 typedef typename unordered_vector::iterator iterator;
388 637
398 { 647 {
399 erase ((unsigned int )(i - this->begin ())); 648 erase ((unsigned int )(i - this->begin ()));
400 } 649 }
401}; 650};
402 651
403template<class T, int T::* index> 652// This container blends advantages of linked lists
653// (efficiency) with vectors (random access) by
654// by using an unordered vector and storing the vector
655// index inside the object.
656//
657// + memory-efficient on most 64 bit archs
658// + O(1) insert/remove
659// + free unique (but varying) id for inserted objects
660// + cache-friendly iteration
661// - only works for pointers to structs
662//
663// NOTE: only some forms of erase/insert are available
664typedef int object_vector_index;
665
666template<class T, object_vector_index T::*indexmember>
404struct object_vector : std::vector<T *, slice_allocator<T *> > 667struct object_vector : std::vector<T *, slice_allocator<T *> >
405{ 668{
669 typedef typename object_vector::iterator iterator;
670
671 bool contains (const T *obj) const
672 {
673 return obj->*indexmember;
674 }
675
676 iterator find (const T *obj)
677 {
678 return obj->*indexmember
679 ? this->begin () + obj->*indexmember - 1
680 : this->end ();
681 }
682
683 void push_back (T *obj)
684 {
685 std::vector<T *, slice_allocator<T *> >::push_back (obj);
686 obj->*indexmember = this->size ();
687 }
688
406 void insert (T *obj) 689 void insert (T *obj)
407 { 690 {
408 assert (!(obj->*index));
409 push_back (obj); 691 push_back (obj);
410 obj->*index = this->size ();
411 } 692 }
412 693
413 void insert (T &obj) 694 void insert (T &obj)
414 { 695 {
415 insert (&obj); 696 insert (&obj);
416 } 697 }
417 698
418 void erase (T *obj) 699 void erase (T *obj)
419 { 700 {
420 assert (obj->*index);
421 unsigned int pos = obj->*index; 701 unsigned int pos = obj->*indexmember;
422 obj->*index = 0; 702 obj->*indexmember = 0;
423 703
424 if (pos < this->size ()) 704 if (pos < this->size ())
425 { 705 {
426 (*this)[pos - 1] = (*this)[this->size () - 1]; 706 (*this)[pos - 1] = (*this)[this->size () - 1];
427 (*this)[pos - 1]->*index = pos; 707 (*this)[pos - 1]->*indexmember = pos;
428 } 708 }
429 709
430 this->pop_back (); 710 this->pop_back ();
431 } 711 }
432 712
433 void erase (T &obj) 713 void erase (T &obj)
434 { 714 {
435 errase (&obj); 715 erase (&obj);
436 } 716 }
437}; 717};
438 718
439// basically does what strncpy should do, but appends "..." to strings exceeding length 719// basically does what strncpy should do, but appends "..." to strings exceeding length
720// returns the number of bytes actually used (including \0)
440void assign (char *dst, const char *src, int maxlen); 721int assign (char *dst, const char *src, int maxsize);
441 722
442// type-safe version of assign 723// type-safe version of assign
443template<int N> 724template<int N>
444inline void assign (char (&dst)[N], const char *src) 725inline int assign (char (&dst)[N], const char *src)
445{ 726{
446 assign ((char *)&dst, src, N); 727 return assign ((char *)&dst, src, N);
447} 728}
448 729
449typedef double tstamp; 730typedef double tstamp;
450 731
451// return current time as timestampe 732// return current time as timestamp
452tstamp now (); 733tstamp now ();
453 734
454int similar_direction (int a, int b); 735int similar_direction (int a, int b);
455 736
456// like printf, but returns a std::string 737// like v?sprintf, but returns a "static" buffer
457const std::string format (const char *format, ...); 738char *vformat (const char *format, va_list ap);
739char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
458 740
741// safety-check player input which will become object->msg
742bool msg_is_safe (const char *msg);
743
744/////////////////////////////////////////////////////////////////////////////
745// threads, very very thin wrappers around pthreads
746
747struct thread
748{
749 pthread_t id;
750
751 void start (void *(*start_routine)(void *), void *arg = 0);
752
753 void cancel ()
754 {
755 pthread_cancel (id);
756 }
757
758 void *join ()
759 {
760 void *ret;
761
762 if (pthread_join (id, &ret))
763 cleanup ("pthread_join failed", 1);
764
765 return ret;
766 }
767};
768
769// note that mutexes are not classes
770typedef pthread_mutex_t smutex;
771
772#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
773 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
774#else
775 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
459#endif 776#endif
460 777
778#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
779#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
780#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
781
782typedef pthread_cond_t scond;
783
784#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
785#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
786#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
787#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
788
789#endif
790

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines