ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.46 by root, Mon May 28 21:15:56 2007 UTC vs.
Revision 1.111 by root, Tue Jul 6 20:00:46 2010 UTC

1/* 1/*
2 * This file is part of Crossfire TRT, the Multiplayer Online Role Playing Game. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Crossfire TRT team 4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 5 *
6 * Crossfire TRT is free software; you can redistribute it and/or modify it 6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * under the terms of the GNU General Public License as published by the Free 7 * the terms of the Affero GNU General Public License as published by the
8 * Software Foundation; either version 2 of the License, or (at your option) 8 * Free Software Foundation, either version 3 of the License, or (at your
9 * any later version. 9 * option) any later version.
10 * 10 *
11 * This program is distributed in the hope that it will be useful, but 11 * This program is distributed in the hope that it will be useful,
12 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * for more details. 14 * GNU General Public License for more details.
15 * 15 *
16 * You should have received a copy of the GNU General Public License along 16 * You should have received a copy of the Affero GNU General Public License
17 * with Crossfire TRT; if not, write to the Free Software Foundation, Inc. 51 17 * and the GNU General Public License along with this program. If not, see
18 * Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 18 * <http://www.gnu.org/licenses/>.
19 * 19 *
20 * The authors can be reached via e-mail to <crossfire@schmorp.de> 20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */ 21 */
22 22
23#ifndef UTIL_H__ 23#ifndef UTIL_H__
24#define UTIL_H__ 24#define UTIL_H__
25 25
26//#define PREFER_MALLOC 26#include <compiler.h>
27 27
28#if __GNUC__ >= 3 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29# define is_constant(c) __builtin_constant_p (c) 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30# define expect(expr,value) __builtin_expect ((expr),(value)) 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
32#else
33# define is_constant(c) 0
34# define expect(expr,value) (expr)
35# define prefetch(addr,rw,locality)
36#endif
37 31
38// put into ifs if you are very sure that the expression 32#include <pthread.h>
39// is mostly true or mosty false. note that these return
40// booleans, not the expression.
41#define expect_false(expr) expect ((expr) != 0, 0)
42#define expect_true(expr) expect ((expr) != 0, 1)
43 33
44#include <cstddef> 34#include <cstddef>
45#include <cmath> 35#include <cmath>
46#include <new> 36#include <new>
47#include <vector> 37#include <vector>
49#include <glib.h> 39#include <glib.h>
50 40
51#include <shstr.h> 41#include <shstr.h>
52#include <traits.h> 42#include <traits.h>
53 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
54// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
55#define auto(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
56 59
60#if cplusplus_does_not_suck
61// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62template<typename T, int N>
63static inline int array_length (const T (&arr)[N])
64{
65 return N;
66}
67#else
68#define array_length(name) (sizeof (name) / sizeof (name [0]))
69#endif
70
57// very ugly macro that basicaly declares and initialises a variable 71// very ugly macro that basically declares and initialises a variable
58// that is in scope for the next statement only 72// that is in scope for the next statement only
59// works only for stuff that can be assigned 0 and converts to false 73// works only for stuff that can be assigned 0 and converts to false
60// (note: works great for pointers) 74// (note: works great for pointers)
61// most ugly macro I ever wrote 75// most ugly macro I ever wrote
62#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 76#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
63 77
64// in range including end 78// in range including end
65#define IN_RANGE_INC(val,beg,end) \ 79#define IN_RANGE_INC(val,beg,end) \
66 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 80 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
67 81
68// in range excluding end 82// in range excluding end
69#define IN_RANGE_EXC(val,beg,end) \ 83#define IN_RANGE_EXC(val,beg,end) \
70 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 84 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
71 85
86void cleanup (const char *cause, bool make_core = false);
72void fork_abort (const char *msg); 87void fork_abort (const char *msg);
73 88
74// rationale for using (U) not (T) is to reduce signed/unsigned issues, 89// rationale for using (U) not (T) is to reduce signed/unsigned issues,
75// as a is often a constant while b is the variable. it is still a bug, though. 90// as a is often a constant while b is the variable. it is still a bug, though.
76template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 91template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
77template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 92template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
78template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 93template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
79 94
95template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98
80template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 99template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
81 100
101template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103
104// sign returns -1 or +1
105template<typename T>
106static inline T sign (T v) { return v < 0 ? -1 : +1; }
107// relies on 2c representation
108template<>
109inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110template<>
111inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112template<>
113inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114
115// sign0 returns -1, 0 or +1
116template<typename T>
117static inline T sign0 (T v) { return v ? sign (v) : 0; }
118
119template<typename T, typename U>
120static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
121
122// div* only work correctly for div > 0
123// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
124template<typename T> static inline T div (T val, T div)
125{
126 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
127}
128
129template<> inline float div (float val, float div) { return val / div; }
130template<> inline double div (double val, double div) { return val / div; }
131
132// div, round-up
133template<typename T> static inline T div_ru (T val, T div)
134{
135 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
136}
137// div, round-down
138template<typename T> static inline T div_rd (T val, T div)
139{
140 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
141}
142
143// lerp* only work correctly for min_in < max_in
144// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
82template<typename T> 145template<typename T>
83static inline T 146static inline T
84lerp (T val, T min_in, T max_in, T min_out, T max_out) 147lerp (T val, T min_in, T max_in, T min_out, T max_out)
85{ 148{
86 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 149 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
150}
151
152// lerp, round-down
153template<typename T>
154static inline T
155lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
156{
157 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
158}
159
160// lerp, round-up
161template<typename T>
162static inline T
163lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
164{
165 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
87} 166}
88 167
89// lots of stuff taken from FXT 168// lots of stuff taken from FXT
90 169
91/* Rotate right. This is used in various places for checksumming */ 170/* Rotate right. This is used in various places for checksumming */
129 int32_t d = b - a; 208 int32_t d = b - a;
130 d &= d >> 31; 209 d &= d >> 31;
131 return b - d; 210 return b - d;
132} 211}
133 212
134// this is much faster than crossfires original algorithm 213// this is much faster than crossfire's original algorithm
135// on modern cpus 214// on modern cpus
136inline int 215inline int
137isqrt (int n) 216isqrt (int n)
138{ 217{
139 return (int)sqrtf ((float)n); 218 return (int)sqrtf ((float)n);
219}
220
221// this is kind of like the ^^ operator, if it would exist, without sequence point.
222// more handy than it looks like, due to the implicit !! done on its arguments
223inline bool
224logical_xor (bool a, bool b)
225{
226 return a != b;
227}
228
229inline bool
230logical_implies (bool a, bool b)
231{
232 return a <= b;
140} 233}
141 234
142// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 235// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
143#if 0 236#if 0
144// and has a max. error of 6 in the range -100..+100. 237// and has a max. error of 6 in the range -100..+100.
169absdir (int d) 262absdir (int d)
170{ 263{
171 return ((d - 1) & 7) + 1; 264 return ((d - 1) & 7) + 1;
172} 265}
173 266
267// avoid ctz name because netbsd or freebsd spams it's namespace with it
268#if GCC_VERSION(3,4)
269static inline int least_significant_bit (uint32_t x)
270{
271 return __builtin_ctz (x);
272}
273#else
274int least_significant_bit (uint32_t x);
275#endif
276
277#define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
280
281extern ssize_t slice_alloc; // statistics
282
283void *salloc_ (int n) throw (std::bad_alloc);
284void *salloc_ (int n, void *src) throw (std::bad_alloc);
285
286// strictly the same as g_slice_alloc, but never returns 0
287template<typename T>
288inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
289
290// also copies src into the new area, like "memdup"
291// if src is 0, clears the memory
292template<typename T>
293inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
294
295// clears the memory
296template<typename T>
297inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
298
299// for symmetry
300template<typename T>
301inline void sfree (T *ptr, int n = 1) throw ()
302{
303 if (expect_true (ptr))
304 {
305 slice_alloc -= n * sizeof (T);
306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
307 g_slice_free1 (n * sizeof (T), (void *)ptr);
308 assert (slice_alloc >= 0);//D
309 }
310}
311
312// nulls the pointer
313template<typename T>
314inline void sfree0 (T *&ptr, int n = 1) throw ()
315{
316 sfree<T> (ptr, n);
317 ptr = 0;
318}
319
174// makes dynamically allocated objects zero-initialised 320// makes dynamically allocated objects zero-initialised
175struct zero_initialised 321struct zero_initialised
176{ 322{
177 void *operator new (size_t s, void *p) 323 void *operator new (size_t s, void *p)
178 { 324 {
180 return p; 326 return p;
181 } 327 }
182 328
183 void *operator new (size_t s) 329 void *operator new (size_t s)
184 { 330 {
185 return g_slice_alloc0 (s); 331 return salloc0<char> (s);
186 } 332 }
187 333
188 void *operator new[] (size_t s) 334 void *operator new[] (size_t s)
189 { 335 {
190 return g_slice_alloc0 (s); 336 return salloc0<char> (s);
191 } 337 }
192 338
193 void operator delete (void *p, size_t s) 339 void operator delete (void *p, size_t s)
194 { 340 {
195 g_slice_free1 (s, p); 341 sfree ((char *)p, s);
196 } 342 }
197 343
198 void operator delete[] (void *p, size_t s) 344 void operator delete[] (void *p, size_t s)
199 { 345 {
200 g_slice_free1 (s, p); 346 sfree ((char *)p, s);
201 } 347 }
202}; 348};
203 349
204void *salloc_ (int n) throw (std::bad_alloc); 350// makes dynamically allocated objects zero-initialised
205void *salloc_ (int n, void *src) throw (std::bad_alloc); 351struct slice_allocated
206
207// strictly the same as g_slice_alloc, but never returns 0
208template<typename T>
209inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
210
211// also copies src into the new area, like "memdup"
212// if src is 0, clears the memory
213template<typename T>
214inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
215
216// clears the memory
217template<typename T>
218inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
219
220// for symmetry
221template<typename T>
222inline void sfree (T *ptr, int n = 1) throw ()
223{ 352{
224#ifdef PREFER_MALLOC 353 void *operator new (size_t s, void *p)
225 free (ptr); 354 {
226#else 355 return p;
227 g_slice_free1 (n * sizeof (T), (void *)ptr); 356 }
228#endif 357
229} 358 void *operator new (size_t s)
359 {
360 return salloc<char> (s);
361 }
362
363 void *operator new[] (size_t s)
364 {
365 return salloc<char> (s);
366 }
367
368 void operator delete (void *p, size_t s)
369 {
370 sfree ((char *)p, s);
371 }
372
373 void operator delete[] (void *p, size_t s)
374 {
375 sfree ((char *)p, s);
376 }
377};
230 378
231// a STL-compatible allocator that uses g_slice 379// a STL-compatible allocator that uses g_slice
232// boy, this is verbose 380// boy, this is verbose
233template<typename Tp> 381template<typename Tp>
234struct slice_allocator 382struct slice_allocator
246 { 394 {
247 typedef slice_allocator<U> other; 395 typedef slice_allocator<U> other;
248 }; 396 };
249 397
250 slice_allocator () throw () { } 398 slice_allocator () throw () { }
251 slice_allocator (const slice_allocator &o) throw () { } 399 slice_allocator (const slice_allocator &) throw () { }
252 template<typename Tp2> 400 template<typename Tp2>
253 slice_allocator (const slice_allocator<Tp2> &) throw () { } 401 slice_allocator (const slice_allocator<Tp2> &) throw () { }
254 402
255 ~slice_allocator () { } 403 ~slice_allocator () { }
256 404
265 void deallocate (pointer p, size_type n) 413 void deallocate (pointer p, size_type n)
266 { 414 {
267 sfree<Tp> (p, n); 415 sfree<Tp> (p, n);
268 } 416 }
269 417
270 size_type max_size ()const throw () 418 size_type max_size () const throw ()
271 { 419 {
272 return size_t (-1) / sizeof (Tp); 420 return size_t (-1) / sizeof (Tp);
273 } 421 }
274 422
275 void construct (pointer p, const Tp &val) 423 void construct (pointer p, const Tp &val)
281 { 429 {
282 p->~Tp (); 430 p->~Tp ();
283 } 431 }
284}; 432};
285 433
286// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 434INTERFACE_CLASS (attachable)
287// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 435struct refcnt_base
288// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
289struct tausworthe_random_generator
290{ 436{
291 // generator 437 typedef int refcnt_t;
292 uint32_t state [4]; 438 mutable refcnt_t ACC (RW, refcnt);
293 439
294 void operator =(const tausworthe_random_generator &src) 440 MTH void refcnt_inc () const { ++refcnt; }
295 { 441 MTH void refcnt_dec () const { --refcnt; }
296 state [0] = src.state [0];
297 state [1] = src.state [1];
298 state [2] = src.state [2];
299 state [3] = src.state [3];
300 }
301 442
302 void seed (uint32_t seed); 443 refcnt_base () : refcnt (0) { }
303 uint32_t next ();
304
305 // uniform distribution
306 uint32_t operator ()(uint32_t num)
307 {
308 return is_constant (num)
309 ? (next () * (uint64_t)num) >> 32U
310 : get_range (num);
311 }
312
313 // return a number within (min .. max)
314 int operator () (int r_min, int r_max)
315 {
316 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
317 ? r_min + operator ()(r_max - r_min + 1)
318 : get_range (r_min, r_max);
319 }
320
321 double operator ()()
322 {
323 return this->next () / (double)0xFFFFFFFFU;
324 }
325
326protected:
327 uint32_t get_range (uint32_t r_max);
328 int get_range (int r_min, int r_max);
329}; 444};
330 445
331typedef tausworthe_random_generator rand_gen; 446// to avoid branches with more advanced compilers
332 447extern refcnt_base::refcnt_t refcnt_dummy;
333extern rand_gen rndm;
334 448
335template<class T> 449template<class T>
336struct refptr 450struct refptr
337{ 451{
452 // p if not null
453 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
454
455 void refcnt_dec ()
456 {
457 if (!is_constant (p))
458 --*refcnt_ref ();
459 else if (p)
460 --p->refcnt;
461 }
462
463 void refcnt_inc ()
464 {
465 if (!is_constant (p))
466 ++*refcnt_ref ();
467 else if (p)
468 ++p->refcnt;
469 }
470
338 T *p; 471 T *p;
339 472
340 refptr () : p(0) { } 473 refptr () : p(0) { }
341 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 474 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
342 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 475 refptr (T *p) : p(p) { refcnt_inc (); }
343 ~refptr () { if (p) p->refcnt_dec (); } 476 ~refptr () { refcnt_dec (); }
344 477
345 const refptr<T> &operator =(T *o) 478 const refptr<T> &operator =(T *o)
346 { 479 {
480 // if decrementing ever destroys we need to reverse the order here
347 if (p) p->refcnt_dec (); 481 refcnt_dec ();
348 p = o; 482 p = o;
349 if (p) p->refcnt_inc (); 483 refcnt_inc ();
350
351 return *this; 484 return *this;
352 } 485 }
353 486
354 const refptr<T> &operator =(const refptr<T> o) 487 const refptr<T> &operator =(const refptr<T> &o)
355 { 488 {
356 *this = o.p; 489 *this = o.p;
357 return *this; 490 return *this;
358 } 491 }
359 492
360 T &operator * () const { return *p; } 493 T &operator * () const { return *p; }
361 T *operator ->() const { return p; } 494 T *operator ->() const { return p; }
362 495
363 operator T *() const { return p; } 496 operator T *() const { return p; }
364}; 497};
365 498
366typedef refptr<maptile> maptile_ptr; 499typedef refptr<maptile> maptile_ptr;
367typedef refptr<object> object_ptr; 500typedef refptr<object> object_ptr;
368typedef refptr<archetype> arch_ptr; 501typedef refptr<archetype> arch_ptr;
369typedef refptr<client> client_ptr; 502typedef refptr<client> client_ptr;
370typedef refptr<player> player_ptr; 503typedef refptr<player> player_ptr;
504typedef refptr<region> region_ptr;
505
506#define STRHSH_NULL 2166136261
507
508static inline uint32_t
509strhsh (const char *s)
510{
511 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
512 // it is about twice as fast as the one-at-a-time one,
513 // with good distribution.
514 // FNV-1a is faster on many cpus because the multiplication
515 // runs concurrently with the looping logic.
516 uint32_t hash = STRHSH_NULL;
517
518 while (*s)
519 hash = (hash ^ *s++) * 16777619U;
520
521 return hash;
522}
523
524static inline uint32_t
525memhsh (const char *s, size_t len)
526{
527 uint32_t hash = STRHSH_NULL;
528
529 while (len--)
530 hash = (hash ^ *s++) * 16777619U;
531
532 return hash;
533}
371 534
372struct str_hash 535struct str_hash
373{ 536{
374 std::size_t operator ()(const char *s) const 537 std::size_t operator ()(const char *s) const
375 { 538 {
376 unsigned long hash = 0;
377
378 /* use the one-at-a-time hash function, which supposedly is
379 * better than the djb2-like one used by perl5.005, but
380 * certainly is better then the bug used here before.
381 * see http://burtleburtle.net/bob/hash/doobs.html
382 */
383 while (*s)
384 {
385 hash += *s++;
386 hash += hash << 10;
387 hash ^= hash >> 6;
388 }
389
390 hash += hash << 3;
391 hash ^= hash >> 11;
392 hash += hash << 15;
393
394 return hash; 539 return strhsh (s);
540 }
541
542 std::size_t operator ()(const shstr &s) const
543 {
544 return strhsh (s);
395 } 545 }
396}; 546};
397 547
398struct str_equal 548struct str_equal
399{ 549{
401 { 551 {
402 return !strcmp (a, b); 552 return !strcmp (a, b);
403 } 553 }
404}; 554};
405 555
556// Mostly the same as std::vector, but insert/erase can reorder
557// the elements, making append(=insert)/remove O(1) instead of O(n).
558//
559// NOTE: only some forms of erase are available
406template<class T> 560template<class T>
407struct unordered_vector : std::vector<T, slice_allocator<T> > 561struct unordered_vector : std::vector<T, slice_allocator<T> >
408{ 562{
409 typedef typename unordered_vector::iterator iterator; 563 typedef typename unordered_vector::iterator iterator;
410 564
420 { 574 {
421 erase ((unsigned int )(i - this->begin ())); 575 erase ((unsigned int )(i - this->begin ()));
422 } 576 }
423}; 577};
424 578
425template<class T, int T::* index> 579// This container blends advantages of linked lists
580// (efficiency) with vectors (random access) by
581// by using an unordered vector and storing the vector
582// index inside the object.
583//
584// + memory-efficient on most 64 bit archs
585// + O(1) insert/remove
586// + free unique (but varying) id for inserted objects
587// + cache-friendly iteration
588// - only works for pointers to structs
589//
590// NOTE: only some forms of erase/insert are available
591typedef int object_vector_index;
592
593template<class T, object_vector_index T::*indexmember>
426struct object_vector : std::vector<T *, slice_allocator<T *> > 594struct object_vector : std::vector<T *, slice_allocator<T *> >
427{ 595{
596 typedef typename object_vector::iterator iterator;
597
598 bool contains (const T *obj) const
599 {
600 return obj->*indexmember;
601 }
602
603 iterator find (const T *obj)
604 {
605 return obj->*indexmember
606 ? this->begin () + obj->*indexmember - 1
607 : this->end ();
608 }
609
610 void push_back (T *obj)
611 {
612 std::vector<T *, slice_allocator<T *> >::push_back (obj);
613 obj->*indexmember = this->size ();
614 }
615
428 void insert (T *obj) 616 void insert (T *obj)
429 { 617 {
430 assert (!(obj->*index));
431 push_back (obj); 618 push_back (obj);
432 obj->*index = this->size ();
433 } 619 }
434 620
435 void insert (T &obj) 621 void insert (T &obj)
436 { 622 {
437 insert (&obj); 623 insert (&obj);
438 } 624 }
439 625
440 void erase (T *obj) 626 void erase (T *obj)
441 { 627 {
442 assert (obj->*index);
443 unsigned int pos = obj->*index; 628 unsigned int pos = obj->*indexmember;
444 obj->*index = 0; 629 obj->*indexmember = 0;
445 630
446 if (pos < this->size ()) 631 if (pos < this->size ())
447 { 632 {
448 (*this)[pos - 1] = (*this)[this->size () - 1]; 633 (*this)[pos - 1] = (*this)[this->size () - 1];
449 (*this)[pos - 1]->*index = pos; 634 (*this)[pos - 1]->*indexmember = pos;
450 } 635 }
451 636
452 this->pop_back (); 637 this->pop_back ();
453 } 638 }
454 639
455 void erase (T &obj) 640 void erase (T &obj)
456 { 641 {
457 errase (&obj); 642 erase (&obj);
458 } 643 }
459}; 644};
645
646/////////////////////////////////////////////////////////////////////////////
647
648// something like a vector or stack, but without
649// out of bounds checking
650template<typename T>
651struct fixed_stack
652{
653 T *data;
654 int size;
655 int max;
656
657 fixed_stack ()
658 : size (0), data (0)
659 {
660 }
661
662 fixed_stack (int max)
663 : size (0), max (max)
664 {
665 data = salloc<T> (max);
666 }
667
668 void reset (int new_max)
669 {
670 sfree (data, max);
671 size = 0;
672 max = new_max;
673 data = salloc<T> (max);
674 }
675
676 void free ()
677 {
678 sfree (data, max);
679 data = 0;
680 }
681
682 ~fixed_stack ()
683 {
684 sfree (data, max);
685 }
686
687 T &operator[](int idx)
688 {
689 return data [idx];
690 }
691
692 void push (T v)
693 {
694 data [size++] = v;
695 }
696
697 T &pop ()
698 {
699 return data [--size];
700 }
701
702 T remove (int idx)
703 {
704 T v = data [idx];
705
706 data [idx] = data [--size];
707
708 return v;
709 }
710};
711
712/////////////////////////////////////////////////////////////////////////////
460 713
461// basically does what strncpy should do, but appends "..." to strings exceeding length 714// basically does what strncpy should do, but appends "..." to strings exceeding length
715// returns the number of bytes actually used (including \0)
462void assign (char *dst, const char *src, int maxlen); 716int assign (char *dst, const char *src, int maxsize);
463 717
464// type-safe version of assign 718// type-safe version of assign
465template<int N> 719template<int N>
466inline void assign (char (&dst)[N], const char *src) 720inline int assign (char (&dst)[N], const char *src)
467{ 721{
468 assign ((char *)&dst, src, N); 722 return assign ((char *)&dst, src, N);
469} 723}
470 724
471typedef double tstamp; 725typedef double tstamp;
472 726
473// return current time as timestampe 727// return current time as timestamp
474tstamp now (); 728tstamp now ();
475 729
476int similar_direction (int a, int b); 730int similar_direction (int a, int b);
477 731
478// like printf, but returns a std::string 732// like v?sprintf, but returns a "static" buffer
479const std::string format (const char *format, ...); 733char *vformat (const char *format, va_list ap);
734char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
480 735
736// safety-check player input which will become object->msg
737bool msg_is_safe (const char *msg);
738
739/////////////////////////////////////////////////////////////////////////////
740// threads, very very thin wrappers around pthreads
741
742struct thread
743{
744 pthread_t id;
745
746 void start (void *(*start_routine)(void *), void *arg = 0);
747
748 void cancel ()
749 {
750 pthread_cancel (id);
751 }
752
753 void *join ()
754 {
755 void *ret;
756
757 if (pthread_join (id, &ret))
758 cleanup ("pthread_join failed", 1);
759
760 return ret;
761 }
762};
763
764// note that mutexes are not classes
765typedef pthread_mutex_t smutex;
766
767#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
768 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
769#else
770 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
481#endif 771#endif
482 772
773#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
774#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
775#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
776
777typedef pthread_cond_t scond;
778
779#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
780#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
781#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
782#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
783
784#endif
785

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines