ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.46 by root, Mon May 28 21:15:56 2007 UTC vs.
Revision 1.85 by root, Thu Jan 1 20:49:48 2009 UTC

1/* 1/*
2 * This file is part of Crossfire TRT, the Multiplayer Online Role Playing Game. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Crossfire TRT team 4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 5 *
6 * Crossfire TRT is free software; you can redistribute it and/or modify it 6 * Deliantra is free software: you can redistribute it and/or modify
7 * under the terms of the GNU General Public License as published by the Free 7 * it under the terms of the GNU General Public License as published by
8 * Software Foundation; either version 2 of the License, or (at your option) 8 * the Free Software Foundation, either version 3 of the License, or
9 * any later version. 9 * (at your option) any later version.
10 * 10 *
11 * This program is distributed in the hope that it will be useful, but 11 * This program is distributed in the hope that it will be useful,
12 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * for more details. 14 * GNU General Public License for more details.
15 * 15 *
16 * You should have received a copy of the GNU General Public License along 16 * You should have received a copy of the GNU General Public License
17 * with Crossfire TRT; if not, write to the Free Software Foundation, Inc. 51 17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 * Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 * 18 *
20 * The authors can be reached via e-mail to <crossfire@schmorp.de> 19 * The authors can be reached via e-mail to <support@deliantra.net>
21 */ 20 */
22 21
23#ifndef UTIL_H__ 22#ifndef UTIL_H__
24#define UTIL_H__ 23#define UTIL_H__
25 24
26//#define PREFER_MALLOC 25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator
27 28
28#if __GNUC__ >= 3 29#if __GNUC__ >= 3
29# define is_constant(c) __builtin_constant_p (c) 30# define is_constant(c) __builtin_constant_p (c)
30# define expect(expr,value) __builtin_expect ((expr),(value)) 31# define expect(expr,value) __builtin_expect ((expr),(value))
31# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) 32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33# define noinline __attribute__((__noinline__))
32#else 34#else
33# define is_constant(c) 0 35# define is_constant(c) 0
34# define expect(expr,value) (expr) 36# define expect(expr,value) (expr)
35# define prefetch(addr,rw,locality) 37# define prefetch(addr,rw,locality)
38# define noinline
39#endif
40
41#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
42# define decltype(x) typeof(x)
36#endif 43#endif
37 44
38// put into ifs if you are very sure that the expression 45// put into ifs if you are very sure that the expression
39// is mostly true or mosty false. note that these return 46// is mostly true or mosty false. note that these return
40// booleans, not the expression. 47// booleans, not the expression.
41#define expect_false(expr) expect ((expr) != 0, 0) 48#define expect_false(expr) expect ((expr) ? 1 : 0, 0)
42#define expect_true(expr) expect ((expr) != 0, 1) 49#define expect_true(expr) expect ((expr) ? 1 : 0, 1)
50
51#include <pthread.h>
43 52
44#include <cstddef> 53#include <cstddef>
45#include <cmath> 54#include <cmath>
46#include <new> 55#include <new>
47#include <vector> 56#include <vector>
49#include <glib.h> 58#include <glib.h>
50 59
51#include <shstr.h> 60#include <shstr.h>
52#include <traits.h> 61#include <traits.h>
53 62
63#if DEBUG_SALLOC
64# define g_slice_alloc0(s) debug_slice_alloc0(s)
65# define g_slice_alloc(s) debug_slice_alloc(s)
66# define g_slice_free1(s,p) debug_slice_free1(s,p)
67void *g_slice_alloc (unsigned long size);
68void *g_slice_alloc0 (unsigned long size);
69void g_slice_free1 (unsigned long size, void *ptr);
70#elif PREFER_MALLOC
71# define g_slice_alloc0(s) calloc (1, (s))
72# define g_slice_alloc(s) malloc ((s))
73# define g_slice_free1(s,p) free ((p))
74#endif
75
54// use a gcc extension for auto declarations until ISO C++ sanctifies them 76// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
55#define auto(var,expr) typeof(expr) var = (expr) 77#define auto(var,expr) decltype(expr) var = (expr)
56 78
57// very ugly macro that basicaly declares and initialises a variable 79// very ugly macro that basically declares and initialises a variable
58// that is in scope for the next statement only 80// that is in scope for the next statement only
59// works only for stuff that can be assigned 0 and converts to false 81// works only for stuff that can be assigned 0 and converts to false
60// (note: works great for pointers) 82// (note: works great for pointers)
61// most ugly macro I ever wrote 83// most ugly macro I ever wrote
62#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 84#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
63 85
64// in range including end 86// in range including end
65#define IN_RANGE_INC(val,beg,end) \ 87#define IN_RANGE_INC(val,beg,end) \
66 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 88 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
67 89
68// in range excluding end 90// in range excluding end
69#define IN_RANGE_EXC(val,beg,end) \ 91#define IN_RANGE_EXC(val,beg,end) \
70 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 92 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
71 93
94void cleanup (const char *cause, bool make_core = false);
72void fork_abort (const char *msg); 95void fork_abort (const char *msg);
73 96
74// rationale for using (U) not (T) is to reduce signed/unsigned issues, 97// rationale for using (U) not (T) is to reduce signed/unsigned issues,
75// as a is often a constant while b is the variable. it is still a bug, though. 98// as a is often a constant while b is the variable. it is still a bug, though.
76template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 99template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
77template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 100template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
78template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 101template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
79 102
103template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
104template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
105template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
106
80template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 107template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
108
109template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
110template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
111
112// sign returns -1 or +1
113template<typename T>
114static inline T sign (T v) { return v < 0 ? -1 : +1; }
115// relies on 2c representation
116template<>
117inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
118
119// sign0 returns -1, 0 or +1
120template<typename T>
121static inline T sign0 (T v) { return v ? sign (v) : 0; }
122
123// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
124template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
125// div, round-up
126template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
127// div, round-down
128template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
81 129
82template<typename T> 130template<typename T>
83static inline T 131static inline T
84lerp (T val, T min_in, T max_in, T min_out, T max_out) 132lerp (T val, T min_in, T max_in, T min_out, T max_out)
85{ 133{
86 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 134 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
135}
136
137// lerp, round-down
138template<typename T>
139static inline T
140lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
141{
142 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
143}
144
145// lerp, round-up
146template<typename T>
147static inline T
148lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
149{
150 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
87} 151}
88 152
89// lots of stuff taken from FXT 153// lots of stuff taken from FXT
90 154
91/* Rotate right. This is used in various places for checksumming */ 155/* Rotate right. This is used in various places for checksumming */
169absdir (int d) 233absdir (int d)
170{ 234{
171 return ((d - 1) & 7) + 1; 235 return ((d - 1) & 7) + 1;
172} 236}
173 237
238extern ssize_t slice_alloc; // statistics
239
240void *salloc_ (int n) throw (std::bad_alloc);
241void *salloc_ (int n, void *src) throw (std::bad_alloc);
242
243// strictly the same as g_slice_alloc, but never returns 0
244template<typename T>
245inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
246
247// also copies src into the new area, like "memdup"
248// if src is 0, clears the memory
249template<typename T>
250inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
251
252// clears the memory
253template<typename T>
254inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
255
256// for symmetry
257template<typename T>
258inline void sfree (T *ptr, int n = 1) throw ()
259{
260 if (expect_true (ptr))
261 {
262 slice_alloc -= n * sizeof (T);
263 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
264 g_slice_free1 (n * sizeof (T), (void *)ptr);
265 assert (slice_alloc >= 0);//D
266 }
267}
268
269// nulls the pointer
270template<typename T>
271inline void sfree0 (T *&ptr, int n = 1) throw ()
272{
273 sfree<T> (ptr, n);
274 ptr = 0;
275}
276
174// makes dynamically allocated objects zero-initialised 277// makes dynamically allocated objects zero-initialised
175struct zero_initialised 278struct zero_initialised
176{ 279{
177 void *operator new (size_t s, void *p) 280 void *operator new (size_t s, void *p)
178 { 281 {
180 return p; 283 return p;
181 } 284 }
182 285
183 void *operator new (size_t s) 286 void *operator new (size_t s)
184 { 287 {
185 return g_slice_alloc0 (s); 288 return salloc0<char> (s);
186 } 289 }
187 290
188 void *operator new[] (size_t s) 291 void *operator new[] (size_t s)
189 { 292 {
190 return g_slice_alloc0 (s); 293 return salloc0<char> (s);
191 } 294 }
192 295
193 void operator delete (void *p, size_t s) 296 void operator delete (void *p, size_t s)
194 { 297 {
195 g_slice_free1 (s, p); 298 sfree ((char *)p, s);
196 } 299 }
197 300
198 void operator delete[] (void *p, size_t s) 301 void operator delete[] (void *p, size_t s)
199 { 302 {
200 g_slice_free1 (s, p); 303 sfree ((char *)p, s);
201 } 304 }
202}; 305};
203 306
204void *salloc_ (int n) throw (std::bad_alloc); 307// makes dynamically allocated objects zero-initialised
205void *salloc_ (int n, void *src) throw (std::bad_alloc); 308struct slice_allocated
206
207// strictly the same as g_slice_alloc, but never returns 0
208template<typename T>
209inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
210
211// also copies src into the new area, like "memdup"
212// if src is 0, clears the memory
213template<typename T>
214inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
215
216// clears the memory
217template<typename T>
218inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
219
220// for symmetry
221template<typename T>
222inline void sfree (T *ptr, int n = 1) throw ()
223{ 309{
224#ifdef PREFER_MALLOC 310 void *operator new (size_t s, void *p)
225 free (ptr); 311 {
226#else 312 return p;
227 g_slice_free1 (n * sizeof (T), (void *)ptr); 313 }
228#endif 314
229} 315 void *operator new (size_t s)
316 {
317 return salloc<char> (s);
318 }
319
320 void *operator new[] (size_t s)
321 {
322 return salloc<char> (s);
323 }
324
325 void operator delete (void *p, size_t s)
326 {
327 sfree ((char *)p, s);
328 }
329
330 void operator delete[] (void *p, size_t s)
331 {
332 sfree ((char *)p, s);
333 }
334};
230 335
231// a STL-compatible allocator that uses g_slice 336// a STL-compatible allocator that uses g_slice
232// boy, this is verbose 337// boy, this is verbose
233template<typename Tp> 338template<typename Tp>
234struct slice_allocator 339struct slice_allocator
246 { 351 {
247 typedef slice_allocator<U> other; 352 typedef slice_allocator<U> other;
248 }; 353 };
249 354
250 slice_allocator () throw () { } 355 slice_allocator () throw () { }
251 slice_allocator (const slice_allocator &o) throw () { } 356 slice_allocator (const slice_allocator &) throw () { }
252 template<typename Tp2> 357 template<typename Tp2>
253 slice_allocator (const slice_allocator<Tp2> &) throw () { } 358 slice_allocator (const slice_allocator<Tp2> &) throw () { }
254 359
255 ~slice_allocator () { } 360 ~slice_allocator () { }
256 361
265 void deallocate (pointer p, size_type n) 370 void deallocate (pointer p, size_type n)
266 { 371 {
267 sfree<Tp> (p, n); 372 sfree<Tp> (p, n);
268 } 373 }
269 374
270 size_type max_size ()const throw () 375 size_type max_size () const throw ()
271 { 376 {
272 return size_t (-1) / sizeof (Tp); 377 return size_t (-1) / sizeof (Tp);
273 } 378 }
274 379
275 void construct (pointer p, const Tp &val) 380 void construct (pointer p, const Tp &val)
286// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 391// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
287// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 392// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
288// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 393// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
289struct tausworthe_random_generator 394struct tausworthe_random_generator
290{ 395{
291 // generator
292 uint32_t state [4]; 396 uint32_t state [4];
293 397
294 void operator =(const tausworthe_random_generator &src) 398 void operator =(const tausworthe_random_generator &src)
295 { 399 {
296 state [0] = src.state [0]; 400 state [0] = src.state [0];
299 state [3] = src.state [3]; 403 state [3] = src.state [3];
300 } 404 }
301 405
302 void seed (uint32_t seed); 406 void seed (uint32_t seed);
303 uint32_t next (); 407 uint32_t next ();
408};
304 409
305 // uniform distribution 410// Xorshift RNGs, George Marsaglia
411// http://www.jstatsoft.org/v08/i14/paper
412// this one is about 40% faster than the tausworthe one above (i.e. not much),
413// despite the inlining, and has the issue of only creating 2**32-1 numbers.
414struct xorshift_random_generator
415{
416 uint32_t x, y;
417
418 void operator =(const xorshift_random_generator &src)
419 {
420 x = src.x;
421 y = src.y;
422 }
423
424 void seed (uint32_t seed)
425 {
426 x = seed;
427 y = seed * 69069U;
428 }
429
430 uint32_t next ()
431 {
432 uint32_t t = x ^ (x << 10);
433 x = y;
434 y = y ^ (y >> 13) ^ t ^ (t >> 10);
435 return y;
436 }
437};
438
439template<class generator>
440struct random_number_generator : generator
441{
442 // uniform distribution, 0 .. max (0, num - 1)
306 uint32_t operator ()(uint32_t num) 443 uint32_t operator ()(uint32_t num)
307 { 444 {
308 return is_constant (num) 445 return !is_constant (num) ? get_range (num) // non-constant
309 ? (next () * (uint64_t)num) >> 32U 446 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
310 : get_range (num); 447 : this->next () & (num - 1); // constant, power-of-two
311 } 448 }
312 449
313 // return a number within (min .. max) 450 // return a number within (min .. max)
314 int operator () (int r_min, int r_max) 451 int operator () (int r_min, int r_max)
315 { 452 {
326protected: 463protected:
327 uint32_t get_range (uint32_t r_max); 464 uint32_t get_range (uint32_t r_max);
328 int get_range (int r_min, int r_max); 465 int get_range (int r_min, int r_max);
329}; 466};
330 467
331typedef tausworthe_random_generator rand_gen; 468typedef random_number_generator<tausworthe_random_generator> rand_gen;
332 469
333extern rand_gen rndm; 470extern rand_gen rndm, rmg_rndm;
471
472INTERFACE_CLASS (attachable)
473struct refcnt_base
474{
475 typedef int refcnt_t;
476 mutable refcnt_t ACC (RW, refcnt);
477
478 MTH void refcnt_inc () const { ++refcnt; }
479 MTH void refcnt_dec () const { --refcnt; }
480
481 refcnt_base () : refcnt (0) { }
482};
483
484// to avoid branches with more advanced compilers
485extern refcnt_base::refcnt_t refcnt_dummy;
334 486
335template<class T> 487template<class T>
336struct refptr 488struct refptr
337{ 489{
490 // p if not null
491 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
492
493 void refcnt_dec ()
494 {
495 if (!is_constant (p))
496 --*refcnt_ref ();
497 else if (p)
498 --p->refcnt;
499 }
500
501 void refcnt_inc ()
502 {
503 if (!is_constant (p))
504 ++*refcnt_ref ();
505 else if (p)
506 ++p->refcnt;
507 }
508
338 T *p; 509 T *p;
339 510
340 refptr () : p(0) { } 511 refptr () : p(0) { }
341 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 512 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
342 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 513 refptr (T *p) : p(p) { refcnt_inc (); }
343 ~refptr () { if (p) p->refcnt_dec (); } 514 ~refptr () { refcnt_dec (); }
344 515
345 const refptr<T> &operator =(T *o) 516 const refptr<T> &operator =(T *o)
346 { 517 {
518 // if decrementing ever destroys we need to reverse the order here
347 if (p) p->refcnt_dec (); 519 refcnt_dec ();
348 p = o; 520 p = o;
349 if (p) p->refcnt_inc (); 521 refcnt_inc ();
350
351 return *this; 522 return *this;
352 } 523 }
353 524
354 const refptr<T> &operator =(const refptr<T> o) 525 const refptr<T> &operator =(const refptr<T> &o)
355 { 526 {
356 *this = o.p; 527 *this = o.p;
357 return *this; 528 return *this;
358 } 529 }
359 530
360 T &operator * () const { return *p; } 531 T &operator * () const { return *p; }
361 T *operator ->() const { return p; } 532 T *operator ->() const { return p; }
362 533
363 operator T *() const { return p; } 534 operator T *() const { return p; }
364}; 535};
365 536
366typedef refptr<maptile> maptile_ptr; 537typedef refptr<maptile> maptile_ptr;
371 542
372struct str_hash 543struct str_hash
373{ 544{
374 std::size_t operator ()(const char *s) const 545 std::size_t operator ()(const char *s) const
375 { 546 {
376 unsigned long hash = 0; 547#if 0
548 uint32_t hash = 0;
377 549
378 /* use the one-at-a-time hash function, which supposedly is 550 /* use the one-at-a-time hash function, which supposedly is
379 * better than the djb2-like one used by perl5.005, but 551 * better than the djb2-like one used by perl5.005, but
380 * certainly is better then the bug used here before. 552 * certainly is better then the bug used here before.
381 * see http://burtleburtle.net/bob/hash/doobs.html 553 * see http://burtleburtle.net/bob/hash/doobs.html
388 } 560 }
389 561
390 hash += hash << 3; 562 hash += hash << 3;
391 hash ^= hash >> 11; 563 hash ^= hash >> 11;
392 hash += hash << 15; 564 hash += hash << 15;
565#else
566 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
567 // it is about twice as fast as the one-at-a-time one,
568 // with good distribution.
569 // FNV-1a is faster on many cpus because the multiplication
570 // runs concurrent with the looping logic.
571 uint32_t hash = 2166136261;
572
573 while (*s)
574 hash = (hash ^ *s++) * 16777619;
575#endif
393 576
394 return hash; 577 return hash;
395 } 578 }
396}; 579};
397 580
401 { 584 {
402 return !strcmp (a, b); 585 return !strcmp (a, b);
403 } 586 }
404}; 587};
405 588
589// Mostly the same as std::vector, but insert/erase can reorder
590// the elements, making append(=insert)/remove O(1) instead of O(n).
591//
592// NOTE: only some forms of erase are available
406template<class T> 593template<class T>
407struct unordered_vector : std::vector<T, slice_allocator<T> > 594struct unordered_vector : std::vector<T, slice_allocator<T> >
408{ 595{
409 typedef typename unordered_vector::iterator iterator; 596 typedef typename unordered_vector::iterator iterator;
410 597
420 { 607 {
421 erase ((unsigned int )(i - this->begin ())); 608 erase ((unsigned int )(i - this->begin ()));
422 } 609 }
423}; 610};
424 611
425template<class T, int T::* index> 612// This container blends advantages of linked lists
613// (efficiency) with vectors (random access) by
614// by using an unordered vector and storing the vector
615// index inside the object.
616//
617// + memory-efficient on most 64 bit archs
618// + O(1) insert/remove
619// + free unique (but varying) id for inserted objects
620// + cache-friendly iteration
621// - only works for pointers to structs
622//
623// NOTE: only some forms of erase/insert are available
624typedef int object_vector_index;
625
626template<class T, object_vector_index T::*indexmember>
426struct object_vector : std::vector<T *, slice_allocator<T *> > 627struct object_vector : std::vector<T *, slice_allocator<T *> >
427{ 628{
629 typedef typename object_vector::iterator iterator;
630
631 bool contains (const T *obj) const
632 {
633 return obj->*indexmember;
634 }
635
636 iterator find (const T *obj)
637 {
638 return obj->*indexmember
639 ? this->begin () + obj->*indexmember - 1
640 : this->end ();
641 }
642
643 void push_back (T *obj)
644 {
645 std::vector<T *, slice_allocator<T *> >::push_back (obj);
646 obj->*indexmember = this->size ();
647 }
648
428 void insert (T *obj) 649 void insert (T *obj)
429 { 650 {
430 assert (!(obj->*index));
431 push_back (obj); 651 push_back (obj);
432 obj->*index = this->size ();
433 } 652 }
434 653
435 void insert (T &obj) 654 void insert (T &obj)
436 { 655 {
437 insert (&obj); 656 insert (&obj);
438 } 657 }
439 658
440 void erase (T *obj) 659 void erase (T *obj)
441 { 660 {
442 assert (obj->*index);
443 unsigned int pos = obj->*index; 661 unsigned int pos = obj->*indexmember;
444 obj->*index = 0; 662 obj->*indexmember = 0;
445 663
446 if (pos < this->size ()) 664 if (pos < this->size ())
447 { 665 {
448 (*this)[pos - 1] = (*this)[this->size () - 1]; 666 (*this)[pos - 1] = (*this)[this->size () - 1];
449 (*this)[pos - 1]->*index = pos; 667 (*this)[pos - 1]->*indexmember = pos;
450 } 668 }
451 669
452 this->pop_back (); 670 this->pop_back ();
453 } 671 }
454 672
455 void erase (T &obj) 673 void erase (T &obj)
456 { 674 {
457 errase (&obj); 675 erase (&obj);
458 } 676 }
459}; 677};
460 678
461// basically does what strncpy should do, but appends "..." to strings exceeding length 679// basically does what strncpy should do, but appends "..." to strings exceeding length
462void assign (char *dst, const char *src, int maxlen); 680void assign (char *dst, const char *src, int maxlen);
468 assign ((char *)&dst, src, N); 686 assign ((char *)&dst, src, N);
469} 687}
470 688
471typedef double tstamp; 689typedef double tstamp;
472 690
473// return current time as timestampe 691// return current time as timestamp
474tstamp now (); 692tstamp now ();
475 693
476int similar_direction (int a, int b); 694int similar_direction (int a, int b);
477 695
478// like printf, but returns a std::string 696// like sprintf, but returns a "static" buffer
479const std::string format (const char *format, ...); 697const char *format (const char *format, ...);
480 698
699/////////////////////////////////////////////////////////////////////////////
700// threads, very very thin wrappers around pthreads
701
702struct thread
703{
704 pthread_t id;
705
706 void start (void *(*start_routine)(void *), void *arg = 0);
707
708 void cancel ()
709 {
710 pthread_cancel (id);
711 }
712
713 void *join ()
714 {
715 void *ret;
716
717 if (pthread_join (id, &ret))
718 cleanup ("pthread_join failed", 1);
719
720 return ret;
721 }
722};
723
724// note that mutexes are not classes
725typedef pthread_mutex_t smutex;
726
727#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
728 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
729#else
730 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
481#endif 731#endif
482 732
733#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
734#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
735#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
736
737typedef pthread_cond_t scond;
738
739#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
740#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
741#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
742#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
743
744#endif
745

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines