ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.46 by root, Mon May 28 21:15:56 2007 UTC vs.
Revision 1.92 by root, Tue Oct 20 05:57:08 2009 UTC

1/* 1/*
2 * This file is part of Crossfire TRT, the Multiplayer Online Role Playing Game. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Crossfire TRT team 4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 5 *
6 * Crossfire TRT is free software; you can redistribute it and/or modify it 6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * under the terms of the GNU General Public License as published by the Free 7 * the terms of the Affero GNU General Public License as published by the
8 * Software Foundation; either version 2 of the License, or (at your option) 8 * Free Software Foundation, either version 3 of the License, or (at your
9 * any later version. 9 * option) any later version.
10 * 10 *
11 * This program is distributed in the hope that it will be useful, but 11 * This program is distributed in the hope that it will be useful,
12 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * for more details. 14 * GNU General Public License for more details.
15 * 15 *
16 * You should have received a copy of the GNU General Public License along 16 * You should have received a copy of the Affero GNU General Public License
17 * with Crossfire TRT; if not, write to the Free Software Foundation, Inc. 51 17 * and the GNU General Public License along with this program. If not, see
18 * Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 18 * <http://www.gnu.org/licenses/>.
19 * 19 *
20 * The authors can be reached via e-mail to <crossfire@schmorp.de> 20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */ 21 */
22 22
23#ifndef UTIL_H__ 23#ifndef UTIL_H__
24#define UTIL_H__ 24#define UTIL_H__
25 25
26//#define PREFER_MALLOC 26#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
27#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
28#define PREFER_MALLOC 0 // use malloc and not the slice allocator
27 29
28#if __GNUC__ >= 3 30#if __GNUC__ >= 3
29# define is_constant(c) __builtin_constant_p (c) 31# define is_constant(c) __builtin_constant_p (c)
30# define expect(expr,value) __builtin_expect ((expr),(value)) 32# define expect(expr,value) __builtin_expect ((expr),(value))
31# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) 33# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
34# define noinline __attribute__((__noinline__))
32#else 35#else
33# define is_constant(c) 0 36# define is_constant(c) 0
34# define expect(expr,value) (expr) 37# define expect(expr,value) (expr)
35# define prefetch(addr,rw,locality) 38# define prefetch(addr,rw,locality)
39# define noinline
40#endif
41
42#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
43# define decltype(x) typeof(x)
36#endif 44#endif
37 45
38// put into ifs if you are very sure that the expression 46// put into ifs if you are very sure that the expression
39// is mostly true or mosty false. note that these return 47// is mostly true or mosty false. note that these return
40// booleans, not the expression. 48// booleans, not the expression.
41#define expect_false(expr) expect ((expr) != 0, 0) 49#define expect_false(expr) expect ((expr) ? 1 : 0, 0)
42#define expect_true(expr) expect ((expr) != 0, 1) 50#define expect_true(expr) expect ((expr) ? 1 : 0, 1)
51
52#include <pthread.h>
43 53
44#include <cstddef> 54#include <cstddef>
45#include <cmath> 55#include <cmath>
46#include <new> 56#include <new>
47#include <vector> 57#include <vector>
49#include <glib.h> 59#include <glib.h>
50 60
51#include <shstr.h> 61#include <shstr.h>
52#include <traits.h> 62#include <traits.h>
53 63
64#if DEBUG_SALLOC
65# define g_slice_alloc0(s) debug_slice_alloc0(s)
66# define g_slice_alloc(s) debug_slice_alloc(s)
67# define g_slice_free1(s,p) debug_slice_free1(s,p)
68void *g_slice_alloc (unsigned long size);
69void *g_slice_alloc0 (unsigned long size);
70void g_slice_free1 (unsigned long size, void *ptr);
71#elif PREFER_MALLOC
72# define g_slice_alloc0(s) calloc (1, (s))
73# define g_slice_alloc(s) malloc ((s))
74# define g_slice_free1(s,p) free ((p))
75#endif
76
54// use a gcc extension for auto declarations until ISO C++ sanctifies them 77// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
55#define auto(var,expr) typeof(expr) var = (expr) 78#define auto(var,expr) decltype(expr) var = (expr)
56 79
57// very ugly macro that basicaly declares and initialises a variable 80// very ugly macro that basically declares and initialises a variable
58// that is in scope for the next statement only 81// that is in scope for the next statement only
59// works only for stuff that can be assigned 0 and converts to false 82// works only for stuff that can be assigned 0 and converts to false
60// (note: works great for pointers) 83// (note: works great for pointers)
61// most ugly macro I ever wrote 84// most ugly macro I ever wrote
62#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 85#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
63 86
64// in range including end 87// in range including end
65#define IN_RANGE_INC(val,beg,end) \ 88#define IN_RANGE_INC(val,beg,end) \
66 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 89 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
67 90
68// in range excluding end 91// in range excluding end
69#define IN_RANGE_EXC(val,beg,end) \ 92#define IN_RANGE_EXC(val,beg,end) \
70 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 93 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
71 94
95void cleanup (const char *cause, bool make_core = false);
72void fork_abort (const char *msg); 96void fork_abort (const char *msg);
73 97
74// rationale for using (U) not (T) is to reduce signed/unsigned issues, 98// rationale for using (U) not (T) is to reduce signed/unsigned issues,
75// as a is often a constant while b is the variable. it is still a bug, though. 99// as a is often a constant while b is the variable. it is still a bug, though.
76template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 100template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
77template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 101template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
78template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 102template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
79 103
104template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
105template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
106template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
107
80template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 108template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
81 109
110template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
111template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
112
113// sign returns -1 or +1
114template<typename T>
115static inline T sign (T v) { return v < 0 ? -1 : +1; }
116// relies on 2c representation
117template<>
118inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
119
120// sign0 returns -1, 0 or +1
121template<typename T>
122static inline T sign0 (T v) { return v ? sign (v) : 0; }
123
124// div* only work correctly for div > 0
125// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
126template<typename T> static inline T div (T val, T div)
127{
128 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
129}
130// div, round-up
131template<typename T> static inline T div_ru (T val, T div)
132{
133 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
134}
135// div, round-down
136template<typename T> static inline T div_rd (T val, T div)
137{
138 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
139}
140
141// lerp* only work correctly for min_in < max_in
142// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
82template<typename T> 143template<typename T>
83static inline T 144static inline T
84lerp (T val, T min_in, T max_in, T min_out, T max_out) 145lerp (T val, T min_in, T max_in, T min_out, T max_out)
85{ 146{
86 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 147 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148}
149
150// lerp, round-down
151template<typename T>
152static inline T
153lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
154{
155 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156}
157
158// lerp, round-up
159template<typename T>
160static inline T
161lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
162{
163 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
87} 164}
88 165
89// lots of stuff taken from FXT 166// lots of stuff taken from FXT
90 167
91/* Rotate right. This is used in various places for checksumming */ 168/* Rotate right. This is used in various places for checksumming */
135// on modern cpus 212// on modern cpus
136inline int 213inline int
137isqrt (int n) 214isqrt (int n)
138{ 215{
139 return (int)sqrtf ((float)n); 216 return (int)sqrtf ((float)n);
217}
218
219// this is kind of like the ^^ operator, if it would exist, without sequence point.
220// more handy than it looks like, due to the implicit !! done on its arguments
221inline bool
222logical_xor (bool a, bool b)
223{
224 return a != b;
225}
226
227inline bool
228logical_implies (bool a, bool b)
229{
230 return a <= b;
140} 231}
141 232
142// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 233// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
143#if 0 234#if 0
144// and has a max. error of 6 in the range -100..+100. 235// and has a max. error of 6 in the range -100..+100.
169absdir (int d) 260absdir (int d)
170{ 261{
171 return ((d - 1) & 7) + 1; 262 return ((d - 1) & 7) + 1;
172} 263}
173 264
265extern ssize_t slice_alloc; // statistics
266
267void *salloc_ (int n) throw (std::bad_alloc);
268void *salloc_ (int n, void *src) throw (std::bad_alloc);
269
270// strictly the same as g_slice_alloc, but never returns 0
271template<typename T>
272inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
273
274// also copies src into the new area, like "memdup"
275// if src is 0, clears the memory
276template<typename T>
277inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
278
279// clears the memory
280template<typename T>
281inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
282
283// for symmetry
284template<typename T>
285inline void sfree (T *ptr, int n = 1) throw ()
286{
287 if (expect_true (ptr))
288 {
289 slice_alloc -= n * sizeof (T);
290 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
291 g_slice_free1 (n * sizeof (T), (void *)ptr);
292 assert (slice_alloc >= 0);//D
293 }
294}
295
296// nulls the pointer
297template<typename T>
298inline void sfree0 (T *&ptr, int n = 1) throw ()
299{
300 sfree<T> (ptr, n);
301 ptr = 0;
302}
303
174// makes dynamically allocated objects zero-initialised 304// makes dynamically allocated objects zero-initialised
175struct zero_initialised 305struct zero_initialised
176{ 306{
177 void *operator new (size_t s, void *p) 307 void *operator new (size_t s, void *p)
178 { 308 {
180 return p; 310 return p;
181 } 311 }
182 312
183 void *operator new (size_t s) 313 void *operator new (size_t s)
184 { 314 {
185 return g_slice_alloc0 (s); 315 return salloc0<char> (s);
186 } 316 }
187 317
188 void *operator new[] (size_t s) 318 void *operator new[] (size_t s)
189 { 319 {
190 return g_slice_alloc0 (s); 320 return salloc0<char> (s);
191 } 321 }
192 322
193 void operator delete (void *p, size_t s) 323 void operator delete (void *p, size_t s)
194 { 324 {
195 g_slice_free1 (s, p); 325 sfree ((char *)p, s);
196 } 326 }
197 327
198 void operator delete[] (void *p, size_t s) 328 void operator delete[] (void *p, size_t s)
199 { 329 {
200 g_slice_free1 (s, p); 330 sfree ((char *)p, s);
201 } 331 }
202}; 332};
203 333
204void *salloc_ (int n) throw (std::bad_alloc); 334// makes dynamically allocated objects zero-initialised
205void *salloc_ (int n, void *src) throw (std::bad_alloc); 335struct slice_allocated
206
207// strictly the same as g_slice_alloc, but never returns 0
208template<typename T>
209inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
210
211// also copies src into the new area, like "memdup"
212// if src is 0, clears the memory
213template<typename T>
214inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
215
216// clears the memory
217template<typename T>
218inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
219
220// for symmetry
221template<typename T>
222inline void sfree (T *ptr, int n = 1) throw ()
223{ 336{
224#ifdef PREFER_MALLOC 337 void *operator new (size_t s, void *p)
225 free (ptr); 338 {
226#else 339 return p;
227 g_slice_free1 (n * sizeof (T), (void *)ptr); 340 }
228#endif 341
229} 342 void *operator new (size_t s)
343 {
344 return salloc<char> (s);
345 }
346
347 void *operator new[] (size_t s)
348 {
349 return salloc<char> (s);
350 }
351
352 void operator delete (void *p, size_t s)
353 {
354 sfree ((char *)p, s);
355 }
356
357 void operator delete[] (void *p, size_t s)
358 {
359 sfree ((char *)p, s);
360 }
361};
230 362
231// a STL-compatible allocator that uses g_slice 363// a STL-compatible allocator that uses g_slice
232// boy, this is verbose 364// boy, this is verbose
233template<typename Tp> 365template<typename Tp>
234struct slice_allocator 366struct slice_allocator
246 { 378 {
247 typedef slice_allocator<U> other; 379 typedef slice_allocator<U> other;
248 }; 380 };
249 381
250 slice_allocator () throw () { } 382 slice_allocator () throw () { }
251 slice_allocator (const slice_allocator &o) throw () { } 383 slice_allocator (const slice_allocator &) throw () { }
252 template<typename Tp2> 384 template<typename Tp2>
253 slice_allocator (const slice_allocator<Tp2> &) throw () { } 385 slice_allocator (const slice_allocator<Tp2> &) throw () { }
254 386
255 ~slice_allocator () { } 387 ~slice_allocator () { }
256 388
265 void deallocate (pointer p, size_type n) 397 void deallocate (pointer p, size_type n)
266 { 398 {
267 sfree<Tp> (p, n); 399 sfree<Tp> (p, n);
268 } 400 }
269 401
270 size_type max_size ()const throw () 402 size_type max_size () const throw ()
271 { 403 {
272 return size_t (-1) / sizeof (Tp); 404 return size_t (-1) / sizeof (Tp);
273 } 405 }
274 406
275 void construct (pointer p, const Tp &val) 407 void construct (pointer p, const Tp &val)
286// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 418// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
287// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 419// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
288// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 420// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
289struct tausworthe_random_generator 421struct tausworthe_random_generator
290{ 422{
291 // generator
292 uint32_t state [4]; 423 uint32_t state [4];
293 424
294 void operator =(const tausworthe_random_generator &src) 425 void operator =(const tausworthe_random_generator &src)
295 { 426 {
296 state [0] = src.state [0]; 427 state [0] = src.state [0];
299 state [3] = src.state [3]; 430 state [3] = src.state [3];
300 } 431 }
301 432
302 void seed (uint32_t seed); 433 void seed (uint32_t seed);
303 uint32_t next (); 434 uint32_t next ();
435};
304 436
305 // uniform distribution 437// Xorshift RNGs, George Marsaglia
438// http://www.jstatsoft.org/v08/i14/paper
439// this one is about 40% faster than the tausworthe one above (i.e. not much),
440// despite the inlining, and has the issue of only creating 2**32-1 numbers.
441// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
442struct xorshift_random_generator
443{
444 uint32_t x, y;
445
446 void operator =(const xorshift_random_generator &src)
447 {
448 x = src.x;
449 y = src.y;
450 }
451
452 void seed (uint32_t seed)
453 {
454 x = seed;
455 y = seed * 69069U;
456 }
457
458 uint32_t next ()
459 {
460 uint32_t t = x ^ (x << 10);
461 x = y;
462 y = y ^ (y >> 13) ^ t ^ (t >> 10);
463 return y;
464 }
465};
466
467template<class generator>
468struct random_number_generator : generator
469{
470 // uniform distribution, 0 .. max (0, num - 1)
306 uint32_t operator ()(uint32_t num) 471 uint32_t operator ()(uint32_t num)
307 { 472 {
308 return is_constant (num) 473 return !is_constant (num) ? get_range (num) // non-constant
309 ? (next () * (uint64_t)num) >> 32U 474 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
310 : get_range (num); 475 : this->next () & (num - 1); // constant, power-of-two
311 } 476 }
312 477
313 // return a number within (min .. max) 478 // return a number within (min .. max)
314 int operator () (int r_min, int r_max) 479 int operator () (int r_min, int r_max)
315 { 480 {
326protected: 491protected:
327 uint32_t get_range (uint32_t r_max); 492 uint32_t get_range (uint32_t r_max);
328 int get_range (int r_min, int r_max); 493 int get_range (int r_min, int r_max);
329}; 494};
330 495
331typedef tausworthe_random_generator rand_gen; 496typedef random_number_generator<tausworthe_random_generator> rand_gen;
332 497
333extern rand_gen rndm; 498extern rand_gen rndm, rmg_rndm;
499
500INTERFACE_CLASS (attachable)
501struct refcnt_base
502{
503 typedef int refcnt_t;
504 mutable refcnt_t ACC (RW, refcnt);
505
506 MTH void refcnt_inc () const { ++refcnt; }
507 MTH void refcnt_dec () const { --refcnt; }
508
509 refcnt_base () : refcnt (0) { }
510};
511
512// to avoid branches with more advanced compilers
513extern refcnt_base::refcnt_t refcnt_dummy;
334 514
335template<class T> 515template<class T>
336struct refptr 516struct refptr
337{ 517{
518 // p if not null
519 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
520
521 void refcnt_dec ()
522 {
523 if (!is_constant (p))
524 --*refcnt_ref ();
525 else if (p)
526 --p->refcnt;
527 }
528
529 void refcnt_inc ()
530 {
531 if (!is_constant (p))
532 ++*refcnt_ref ();
533 else if (p)
534 ++p->refcnt;
535 }
536
338 T *p; 537 T *p;
339 538
340 refptr () : p(0) { } 539 refptr () : p(0) { }
341 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 540 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
342 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 541 refptr (T *p) : p(p) { refcnt_inc (); }
343 ~refptr () { if (p) p->refcnt_dec (); } 542 ~refptr () { refcnt_dec (); }
344 543
345 const refptr<T> &operator =(T *o) 544 const refptr<T> &operator =(T *o)
346 { 545 {
546 // if decrementing ever destroys we need to reverse the order here
347 if (p) p->refcnt_dec (); 547 refcnt_dec ();
348 p = o; 548 p = o;
349 if (p) p->refcnt_inc (); 549 refcnt_inc ();
350
351 return *this; 550 return *this;
352 } 551 }
353 552
354 const refptr<T> &operator =(const refptr<T> o) 553 const refptr<T> &operator =(const refptr<T> &o)
355 { 554 {
356 *this = o.p; 555 *this = o.p;
357 return *this; 556 return *this;
358 } 557 }
359 558
360 T &operator * () const { return *p; } 559 T &operator * () const { return *p; }
361 T *operator ->() const { return p; } 560 T *operator ->() const { return p; }
362 561
363 operator T *() const { return p; } 562 operator T *() const { return p; }
364}; 563};
365 564
366typedef refptr<maptile> maptile_ptr; 565typedef refptr<maptile> maptile_ptr;
371 570
372struct str_hash 571struct str_hash
373{ 572{
374 std::size_t operator ()(const char *s) const 573 std::size_t operator ()(const char *s) const
375 { 574 {
376 unsigned long hash = 0; 575#if 0
576 uint32_t hash = 0;
377 577
378 /* use the one-at-a-time hash function, which supposedly is 578 /* use the one-at-a-time hash function, which supposedly is
379 * better than the djb2-like one used by perl5.005, but 579 * better than the djb2-like one used by perl5.005, but
380 * certainly is better then the bug used here before. 580 * certainly is better then the bug used here before.
381 * see http://burtleburtle.net/bob/hash/doobs.html 581 * see http://burtleburtle.net/bob/hash/doobs.html
388 } 588 }
389 589
390 hash += hash << 3; 590 hash += hash << 3;
391 hash ^= hash >> 11; 591 hash ^= hash >> 11;
392 hash += hash << 15; 592 hash += hash << 15;
593#else
594 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
595 // it is about twice as fast as the one-at-a-time one,
596 // with good distribution.
597 // FNV-1a is faster on many cpus because the multiplication
598 // runs concurrent with the looping logic.
599 uint32_t hash = 2166136261;
600
601 while (*s)
602 hash = (hash ^ *s++) * 16777619;
603#endif
393 604
394 return hash; 605 return hash;
395 } 606 }
396}; 607};
397 608
401 { 612 {
402 return !strcmp (a, b); 613 return !strcmp (a, b);
403 } 614 }
404}; 615};
405 616
617// Mostly the same as std::vector, but insert/erase can reorder
618// the elements, making append(=insert)/remove O(1) instead of O(n).
619//
620// NOTE: only some forms of erase are available
406template<class T> 621template<class T>
407struct unordered_vector : std::vector<T, slice_allocator<T> > 622struct unordered_vector : std::vector<T, slice_allocator<T> >
408{ 623{
409 typedef typename unordered_vector::iterator iterator; 624 typedef typename unordered_vector::iterator iterator;
410 625
420 { 635 {
421 erase ((unsigned int )(i - this->begin ())); 636 erase ((unsigned int )(i - this->begin ()));
422 } 637 }
423}; 638};
424 639
425template<class T, int T::* index> 640// This container blends advantages of linked lists
641// (efficiency) with vectors (random access) by
642// by using an unordered vector and storing the vector
643// index inside the object.
644//
645// + memory-efficient on most 64 bit archs
646// + O(1) insert/remove
647// + free unique (but varying) id for inserted objects
648// + cache-friendly iteration
649// - only works for pointers to structs
650//
651// NOTE: only some forms of erase/insert are available
652typedef int object_vector_index;
653
654template<class T, object_vector_index T::*indexmember>
426struct object_vector : std::vector<T *, slice_allocator<T *> > 655struct object_vector : std::vector<T *, slice_allocator<T *> >
427{ 656{
657 typedef typename object_vector::iterator iterator;
658
659 bool contains (const T *obj) const
660 {
661 return obj->*indexmember;
662 }
663
664 iterator find (const T *obj)
665 {
666 return obj->*indexmember
667 ? this->begin () + obj->*indexmember - 1
668 : this->end ();
669 }
670
671 void push_back (T *obj)
672 {
673 std::vector<T *, slice_allocator<T *> >::push_back (obj);
674 obj->*indexmember = this->size ();
675 }
676
428 void insert (T *obj) 677 void insert (T *obj)
429 { 678 {
430 assert (!(obj->*index));
431 push_back (obj); 679 push_back (obj);
432 obj->*index = this->size ();
433 } 680 }
434 681
435 void insert (T &obj) 682 void insert (T &obj)
436 { 683 {
437 insert (&obj); 684 insert (&obj);
438 } 685 }
439 686
440 void erase (T *obj) 687 void erase (T *obj)
441 { 688 {
442 assert (obj->*index);
443 unsigned int pos = obj->*index; 689 unsigned int pos = obj->*indexmember;
444 obj->*index = 0; 690 obj->*indexmember = 0;
445 691
446 if (pos < this->size ()) 692 if (pos < this->size ())
447 { 693 {
448 (*this)[pos - 1] = (*this)[this->size () - 1]; 694 (*this)[pos - 1] = (*this)[this->size () - 1];
449 (*this)[pos - 1]->*index = pos; 695 (*this)[pos - 1]->*indexmember = pos;
450 } 696 }
451 697
452 this->pop_back (); 698 this->pop_back ();
453 } 699 }
454 700
455 void erase (T &obj) 701 void erase (T &obj)
456 { 702 {
457 errase (&obj); 703 erase (&obj);
458 } 704 }
459}; 705};
460 706
461// basically does what strncpy should do, but appends "..." to strings exceeding length 707// basically does what strncpy should do, but appends "..." to strings exceeding length
708// returns the number of bytes actually used (including \0)
462void assign (char *dst, const char *src, int maxlen); 709int assign (char *dst, const char *src, int maxsize);
463 710
464// type-safe version of assign 711// type-safe version of assign
465template<int N> 712template<int N>
466inline void assign (char (&dst)[N], const char *src) 713inline int assign (char (&dst)[N], const char *src)
467{ 714{
468 assign ((char *)&dst, src, N); 715 return assign ((char *)&dst, src, N);
469} 716}
470 717
471typedef double tstamp; 718typedef double tstamp;
472 719
473// return current time as timestampe 720// return current time as timestamp
474tstamp now (); 721tstamp now ();
475 722
476int similar_direction (int a, int b); 723int similar_direction (int a, int b);
477 724
478// like printf, but returns a std::string 725// like v?sprintf, but returns a "static" buffer
726char *vformat (const char *format, va_list ap);
479const std::string format (const char *format, ...); 727char *format (const char *format, ...);
480 728
729// safety-check player input which will become object->msg
730bool msg_is_safe (const char *msg);
731
732/////////////////////////////////////////////////////////////////////////////
733// threads, very very thin wrappers around pthreads
734
735struct thread
736{
737 pthread_t id;
738
739 void start (void *(*start_routine)(void *), void *arg = 0);
740
741 void cancel ()
742 {
743 pthread_cancel (id);
744 }
745
746 void *join ()
747 {
748 void *ret;
749
750 if (pthread_join (id, &ret))
751 cleanup ("pthread_join failed", 1);
752
753 return ret;
754 }
755};
756
757// note that mutexes are not classes
758typedef pthread_mutex_t smutex;
759
760#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
761 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
762#else
763 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
481#endif 764#endif
482 765
766#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
767#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
768#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
769
770typedef pthread_cond_t scond;
771
772#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
773#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
774#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
775#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
776
777#endif
778

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines