ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.61 by root, Fri Jan 25 18:09:23 2008 UTC vs.
Revision 1.127 by root, Sat Nov 17 23:40:02 2018 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 6 *
6 * Deliantra is free software: you can redistribute it and/or modify 7 * Deliantra is free software: you can redistribute it and/or modify it under
7 * it under the terms of the GNU General Public License as published by 8 * the terms of the Affero GNU General Public License as published by the
8 * the Free Software Foundation, either version 3 of the License, or 9 * Free Software Foundation, either version 3 of the License, or (at your
9 * (at your option) any later version. 10 * option) any later version.
10 * 11 *
11 * This program is distributed in the hope that it will be useful, 12 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 15 * GNU General Public License for more details.
15 * 16 *
16 * You should have received a copy of the GNU General Public License 17 * You should have received a copy of the Affero GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 * and the GNU General Public License along with this program. If not, see
19 * <http://www.gnu.org/licenses/>.
18 * 20 *
19 * The authors can be reached via e-mail to <support@deliantra.net> 21 * The authors can be reached via e-mail to <support@deliantra.net>
20 */ 22 */
21 23
22#ifndef UTIL_H__ 24#ifndef UTIL_H__
23#define UTIL_H__ 25#define UTIL_H__
24 26
25//#define PREFER_MALLOC 27#include <compiler.h>
26//#define DEBUG_SALLOC
27 28
28#if __GNUC__ >= 3 29#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29# define is_constant(c) __builtin_constant_p (c) 30#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30# define expect(expr,value) __builtin_expect ((expr),(value)) 31#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
32#else
33# define is_constant(c) 0
34# define expect(expr,value) (expr)
35# define prefetch(addr,rw,locality)
36#endif
37 32
38#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4) 33#include <pthread.h>
39# define decltype(x) typeof(x)
40#endif
41
42// put into ifs if you are very sure that the expression
43// is mostly true or mosty false. note that these return
44// booleans, not the expression.
45#define expect_false(expr) expect ((expr) != 0, 0)
46#define expect_true(expr) expect ((expr) != 0, 1)
47 34
48#include <cstddef> 35#include <cstddef>
49#include <cmath> 36#include <cmath>
50#include <new> 37#include <new>
51#include <vector> 38#include <vector>
53#include <glib.h> 40#include <glib.h>
54 41
55#include <shstr.h> 42#include <shstr.h>
56#include <traits.h> 43#include <traits.h>
57 44
58#ifdef DEBUG_SALLOC 45#if DEBUG_SALLOC
59# define g_slice_alloc0(s) debug_slice_alloc0(s) 46# define g_slice_alloc0(s) debug_slice_alloc0(s)
60# define g_slice_alloc(s) debug_slice_alloc(s) 47# define g_slice_alloc(s) debug_slice_alloc(s)
61# define g_slice_free1(s,p) debug_slice_free1(s,p) 48# define g_slice_free1(s,p) debug_slice_free1(s,p)
62void *g_slice_alloc (unsigned long size); 49void *g_slice_alloc (unsigned long size);
63void *g_slice_alloc0 (unsigned long size); 50void *g_slice_alloc0 (unsigned long size);
64void g_slice_free1 (unsigned long size, void *ptr); 51void g_slice_free1 (unsigned long size, void *ptr);
52#elif PREFER_MALLOC
53# define g_slice_alloc0(s) calloc (1, (s))
54# define g_slice_alloc(s) malloc ((s))
55# define g_slice_free1(s,p) free ((p))
65#endif 56#endif
66 57
67// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever) 58// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
68#define auto(var,expr) decltype(expr) var = (expr) 59#define auto(var,expr) decltype(expr) var = (expr)
69 60
61#if cplusplus_does_not_suck /* still sucks in codesize with gcc 6, although local types work now */
62// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
63template<typename T, int N>
64static inline int array_length (const T (&arr)[N])
65{
66 return N;
67}
68#else
69#define array_length(name) (sizeof (name) / sizeof (name [0]))
70#endif
71
70// very ugly macro that basicaly declares and initialises a variable 72// very ugly macro that basically declares and initialises a variable
71// that is in scope for the next statement only 73// that is in scope for the next statement only
72// works only for stuff that can be assigned 0 and converts to false 74// works only for stuff that can be assigned 0 and converts to false
73// (note: works great for pointers) 75// (note: works great for pointers)
74// most ugly macro I ever wrote 76// most ugly macro I ever wrote
75#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 77#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
80 82
81// in range excluding end 83// in range excluding end
82#define IN_RANGE_EXC(val,beg,end) \ 84#define IN_RANGE_EXC(val,beg,end) \
83 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 85 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
84 86
87ecb_cold void cleanup (const char *cause, bool make_core = false);
85void fork_abort (const char *msg); 88ecb_cold void fork_abort (const char *msg);
86 89
87// rationale for using (U) not (T) is to reduce signed/unsigned issues, 90// rationale for using (U) not (T) is to reduce signed/unsigned issues,
88// as a is often a constant while b is the variable. it is still a bug, though. 91// as a is often a constant while b is the variable. it is still a bug, though.
89template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 92template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
90template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 93template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
91template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 94template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
92 95
96template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
97template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
98template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
99
93template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 100template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
94 101
102template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
103template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
104
105// sign returns -1 or +1
106template<typename T>
107static inline T sign (T v) { return v < 0 ? -1 : +1; }
108// relies on 2c representation
109template<>
110inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
111template<>
112inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
113template<>
114inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
115
116// sign0 returns -1, 0 or +1
117template<typename T>
118static inline T sign0 (T v) { return v ? sign (v) : 0; }
119
120//clashes with C++0x
121template<typename T, typename U>
122static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
123
124// div* only work correctly for div > 0
125// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
126template<typename T> static inline T div (T val, T div)
127{
128 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
129}
130
131template<> inline float div (float val, float div) { return val / div; }
132template<> inline double div (double val, double div) { return val / div; }
133
134// div, round-up
135template<typename T> static inline T div_ru (T val, T div)
136{
137 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
138}
139// div, round-down
140template<typename T> static inline T div_rd (T val, T div)
141{
142 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
143}
144
145// lerp* only work correctly for min_in < max_in
146// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
95template<typename T> 147template<typename T>
96static inline T 148static inline T
97lerp (T val, T min_in, T max_in, T min_out, T max_out) 149lerp (T val, T min_in, T max_in, T min_out, T max_out)
98{ 150{
99 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 151 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
152}
153
154// lerp, round-down
155template<typename T>
156static inline T
157lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
158{
159 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
160}
161
162// lerp, round-up
163template<typename T>
164static inline T
165lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
166{
167 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
100} 168}
101 169
102// lots of stuff taken from FXT 170// lots of stuff taken from FXT
103 171
104/* Rotate right. This is used in various places for checksumming */ 172/* Rotate right. This is used in various places for checksumming */
142 int32_t d = b - a; 210 int32_t d = b - a;
143 d &= d >> 31; 211 d &= d >> 31;
144 return b - d; 212 return b - d;
145} 213}
146 214
147// this is much faster than crossfires original algorithm 215// this is much faster than crossfire's original algorithm
148// on modern cpus 216// on modern cpus
149inline int 217inline int
150isqrt (int n) 218isqrt (int n)
151{ 219{
152 return (int)sqrtf ((float)n); 220 return (int)sqrtf ((float)n);
221}
222
223// this is kind of like the ^^ operator, if it would exist, without sequence point.
224// more handy than it looks like, due to the implicit !! done on its arguments
225inline bool
226logical_xor (bool a, bool b)
227{
228 return a != b;
229}
230
231inline bool
232logical_implies (bool a, bool b)
233{
234 return a <= b;
153} 235}
154 236
155// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 237// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
156#if 0 238#if 0
157// and has a max. error of 6 in the range -100..+100. 239// and has a max. error of 6 in the range -100..+100.
158#else 240#else
159// and has a max. error of 9 in the range -100..+100. 241// and has a max. error of 9 in the range -100..+100.
160#endif 242#endif
161inline int 243inline int
162idistance (int dx, int dy) 244idistance (int dx, int dy)
163{ 245{
164 unsigned int dx_ = abs (dx); 246 unsigned int dx_ = abs (dx);
165 unsigned int dy_ = abs (dy); 247 unsigned int dy_ = abs (dy);
166 248
167#if 0 249#if 0
168 return dx_ > dy_ 250 return dx_ > dy_
171#else 253#else
172 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 254 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
173#endif 255#endif
174} 256}
175 257
258// can be substantially faster than floor, if your value range allows for it
259template<typename T>
260inline T
261fastfloor (T x)
262{
263 return std::floor (x);
264}
265
266inline float
267fastfloor (float x)
268{
269 return sint32(x) - (x < 0);
270}
271
272inline double
273fastfloor (double x)
274{
275 return sint64(x) - (x < 0);
276}
277
176/* 278/*
177 * absdir(int): Returns a number between 1 and 8, which represent 279 * absdir(int): Returns a number between 1 and 8, which represent
178 * the "absolute" direction of a number (it actually takes care of 280 * the "absolute" direction of a number (it actually takes care of
179 * "overflow" in previous calculations of a direction). 281 * "overflow" in previous calculations of a direction).
180 */ 282 */
182absdir (int d) 284absdir (int d)
183{ 285{
184 return ((d - 1) & 7) + 1; 286 return ((d - 1) & 7) + 1;
185} 287}
186 288
289#define for_all_bits_sparse_32(mask, idxvar) \
290 for (uint32_t idxvar, mask_ = mask; \
291 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
292
187extern size_t slice_alloc; // statistics 293extern ssize_t slice_alloc; // statistics
294
295void *salloc_ (int n);
296void *salloc_ (int n, void *src);
297
298// strictly the same as g_slice_alloc, but never returns 0
299template<typename T>
300inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
301
302// also copies src into the new area, like "memdup"
303// if src is 0, clears the memory
304template<typename T>
305inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
306
307// clears the memory
308template<typename T>
309inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
310
311// for symmetry
312template<typename T>
313inline void sfree (T *ptr, int n = 1) noexcept
314{
315 if (expect_true (ptr))
316 {
317 slice_alloc -= n * sizeof (T);
318 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
319 g_slice_free1 (n * sizeof (T), (void *)ptr);
320 }
321}
322
323// nulls the pointer
324template<typename T>
325inline void sfree0 (T *&ptr, int n = 1) noexcept
326{
327 sfree<T> (ptr, n);
328 ptr = 0;
329}
188 330
189// makes dynamically allocated objects zero-initialised 331// makes dynamically allocated objects zero-initialised
190struct zero_initialised 332struct zero_initialised
191{ 333{
192 void *operator new (size_t s, void *p) 334 void *operator new (size_t s, void *p)
195 return p; 337 return p;
196 } 338 }
197 339
198 void *operator new (size_t s) 340 void *operator new (size_t s)
199 { 341 {
200 slice_alloc += s;
201 return g_slice_alloc0 (s); 342 return salloc0<char> (s);
202 } 343 }
203 344
204 void *operator new[] (size_t s) 345 void *operator new[] (size_t s)
205 { 346 {
206 slice_alloc += s;
207 return g_slice_alloc0 (s); 347 return salloc0<char> (s);
208 } 348 }
209 349
210 void operator delete (void *p, size_t s) 350 void operator delete (void *p, size_t s)
211 { 351 {
212 slice_alloc -= s; 352 sfree ((char *)p, s);
213 g_slice_free1 (s, p);
214 } 353 }
215 354
216 void operator delete[] (void *p, size_t s) 355 void operator delete[] (void *p, size_t s)
217 { 356 {
218 slice_alloc -= s; 357 sfree ((char *)p, s);
219 g_slice_free1 (s, p);
220 } 358 }
221}; 359};
222 360
223void *salloc_ (int n) throw (std::bad_alloc); 361// makes dynamically allocated objects zero-initialised
224void *salloc_ (int n, void *src) throw (std::bad_alloc); 362struct slice_allocated
225
226// strictly the same as g_slice_alloc, but never returns 0
227template<typename T>
228inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
229
230// also copies src into the new area, like "memdup"
231// if src is 0, clears the memory
232template<typename T>
233inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
234
235// clears the memory
236template<typename T>
237inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
238
239// for symmetry
240template<typename T>
241inline void sfree (T *ptr, int n = 1) throw ()
242{ 363{
243#ifdef PREFER_MALLOC 364 void *operator new (size_t s, void *p)
244 free (ptr); 365 {
245#else 366 return p;
246 slice_alloc -= n * sizeof (T); 367 }
247 g_slice_free1 (n * sizeof (T), (void *)ptr); 368
248#endif 369 void *operator new (size_t s)
249} 370 {
371 return salloc<char> (s);
372 }
373
374 void *operator new[] (size_t s)
375 {
376 return salloc<char> (s);
377 }
378
379 void operator delete (void *p, size_t s)
380 {
381 sfree ((char *)p, s);
382 }
383
384 void operator delete[] (void *p, size_t s)
385 {
386 sfree ((char *)p, s);
387 }
388};
250 389
251// a STL-compatible allocator that uses g_slice 390// a STL-compatible allocator that uses g_slice
252// boy, this is verbose 391// boy, this is verbose
253template<typename Tp> 392template<typename Tp>
254struct slice_allocator 393struct slice_allocator
259 typedef const Tp *const_pointer; 398 typedef const Tp *const_pointer;
260 typedef Tp &reference; 399 typedef Tp &reference;
261 typedef const Tp &const_reference; 400 typedef const Tp &const_reference;
262 typedef Tp value_type; 401 typedef Tp value_type;
263 402
264 template <class U> 403 template <class U>
265 struct rebind 404 struct rebind
266 { 405 {
267 typedef slice_allocator<U> other; 406 typedef slice_allocator<U> other;
268 }; 407 };
269 408
270 slice_allocator () throw () { } 409 slice_allocator () noexcept { }
271 slice_allocator (const slice_allocator &o) throw () { } 410 slice_allocator (const slice_allocator &) noexcept { }
272 template<typename Tp2> 411 template<typename Tp2>
273 slice_allocator (const slice_allocator<Tp2> &) throw () { } 412 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
274 413
275 ~slice_allocator () { } 414 ~slice_allocator () { }
276 415
277 pointer address (reference x) const { return &x; } 416 pointer address (reference x) const { return &x; }
278 const_pointer address (const_reference x) const { return &x; } 417 const_pointer address (const_reference x) const { return &x; }
285 void deallocate (pointer p, size_type n) 424 void deallocate (pointer p, size_type n)
286 { 425 {
287 sfree<Tp> (p, n); 426 sfree<Tp> (p, n);
288 } 427 }
289 428
290 size_type max_size ()const throw () 429 size_type max_size () const noexcept
291 { 430 {
292 return size_t (-1) / sizeof (Tp); 431 return size_t (-1) / sizeof (Tp);
293 } 432 }
294 433
295 void construct (pointer p, const Tp &val) 434 void construct (pointer p, const Tp &val)
301 { 440 {
302 p->~Tp (); 441 p->~Tp ();
303 } 442 }
304}; 443};
305 444
306// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 445// basically a memory area, but refcounted
307// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 446struct refcnt_buf
308// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
309struct tausworthe_random_generator
310{ 447{
311 // generator 448 char *data;
312 uint32_t state [4];
313 449
314 void operator =(const tausworthe_random_generator &src) 450 refcnt_buf (size_t size = 0);
315 { 451 refcnt_buf (void *data, size_t size);
316 state [0] = src.state [0];
317 state [1] = src.state [1];
318 state [2] = src.state [2];
319 state [3] = src.state [3];
320 }
321 452
322 void seed (uint32_t seed); 453 refcnt_buf (const refcnt_buf &src)
323 uint32_t next ();
324
325 // uniform distribution
326 uint32_t operator ()(uint32_t num)
327 { 454 {
328 return is_constant (num) 455 data = src.data;
329 ? (next () * (uint64_t)num) >> 32U 456 inc ();
330 : get_range (num);
331 } 457 }
332 458
333 // return a number within (min .. max) 459 ~refcnt_buf ();
334 int operator () (int r_min, int r_max)
335 {
336 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
337 ? r_min + operator ()(r_max - r_min + 1)
338 : get_range (r_min, r_max);
339 }
340 460
341 double operator ()() 461 refcnt_buf &operator =(const refcnt_buf &src);
462
463 operator char *()
342 { 464 {
343 return this->next () / (double)0xFFFFFFFFU; 465 return data;
466 }
467
468 size_t size () const
469 {
470 return _size ();
344 } 471 }
345 472
346protected: 473protected:
347 uint32_t get_range (uint32_t r_max); 474 enum {
348 int get_range (int r_min, int r_max); 475 overhead = sizeof (uint32_t) * 2
349}; 476 };
350 477
351typedef tausworthe_random_generator rand_gen; 478 uint32_t &_size () const
479 {
480 return ((unsigned int *)data)[-2];
481 }
352 482
353extern rand_gen rndm; 483 uint32_t &_refcnt () const
484 {
485 return ((unsigned int *)data)[-1];
486 }
487
488 void _alloc (uint32_t size)
489 {
490 data = ((char *)salloc<char> (size + overhead)) + overhead;
491 _size () = size;
492 _refcnt () = 1;
493 }
494
495 void _dealloc ();
496
497 void inc ()
498 {
499 ++_refcnt ();
500 }
501
502 void dec ()
503 {
504 if (!--_refcnt ())
505 _dealloc ();
506 }
507};
354 508
355INTERFACE_CLASS (attachable) 509INTERFACE_CLASS (attachable)
356struct refcnt_base 510struct refcnt_base
357{ 511{
358 typedef int refcnt_t; 512 typedef int refcnt_t;
373 // p if not null 527 // p if not null
374 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; } 528 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
375 529
376 void refcnt_dec () 530 void refcnt_dec ()
377 { 531 {
378 if (!is_constant (p)) 532 if (!ecb_is_constant (p))
379 --*refcnt_ref (); 533 --*refcnt_ref ();
380 else if (p) 534 else if (p)
381 --p->refcnt; 535 --p->refcnt;
382 } 536 }
383 537
384 void refcnt_inc () 538 void refcnt_inc ()
385 { 539 {
386 if (!is_constant (p)) 540 if (!ecb_is_constant (p))
387 ++*refcnt_ref (); 541 ++*refcnt_ref ();
388 else if (p) 542 else if (p)
389 ++p->refcnt; 543 ++p->refcnt;
390 } 544 }
391 545
420typedef refptr<maptile> maptile_ptr; 574typedef refptr<maptile> maptile_ptr;
421typedef refptr<object> object_ptr; 575typedef refptr<object> object_ptr;
422typedef refptr<archetype> arch_ptr; 576typedef refptr<archetype> arch_ptr;
423typedef refptr<client> client_ptr; 577typedef refptr<client> client_ptr;
424typedef refptr<player> player_ptr; 578typedef refptr<player> player_ptr;
579typedef refptr<region> region_ptr;
580
581#define STRHSH_NULL 2166136261
582
583static inline uint32_t
584strhsh (const char *s)
585{
586 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
587 // it is about twice as fast as the one-at-a-time one,
588 // with good distribution.
589 // FNV-1a is faster on many cpus because the multiplication
590 // runs concurrently with the looping logic.
591 // we modify the hash a bit to improve its distribution
592 uint32_t hash = STRHSH_NULL;
593
594 while (*s)
595 hash = (hash ^ *s++) * 16777619U;
596
597 return hash ^ (hash >> 16);
598}
599
600static inline uint32_t
601memhsh (const char *s, size_t len)
602{
603 uint32_t hash = STRHSH_NULL;
604
605 while (len--)
606 hash = (hash ^ *s++) * 16777619U;
607
608 return hash;
609}
425 610
426struct str_hash 611struct str_hash
427{ 612{
428 std::size_t operator ()(const char *s) const 613 std::size_t operator ()(const char *s) const
429 { 614 {
430 unsigned long hash = 0;
431
432 /* use the one-at-a-time hash function, which supposedly is
433 * better than the djb2-like one used by perl5.005, but
434 * certainly is better then the bug used here before.
435 * see http://burtleburtle.net/bob/hash/doobs.html
436 */
437 while (*s)
438 {
439 hash += *s++;
440 hash += hash << 10;
441 hash ^= hash >> 6;
442 }
443
444 hash += hash << 3;
445 hash ^= hash >> 11;
446 hash += hash << 15;
447
448 return hash; 615 return strhsh (s);
616 }
617
618 std::size_t operator ()(const shstr &s) const
619 {
620 return strhsh (s);
449 } 621 }
450}; 622};
451 623
452struct str_equal 624struct str_equal
453{ 625{
480 } 652 }
481}; 653};
482 654
483// This container blends advantages of linked lists 655// This container blends advantages of linked lists
484// (efficiency) with vectors (random access) by 656// (efficiency) with vectors (random access) by
485// by using an unordered vector and storing the vector 657// using an unordered vector and storing the vector
486// index inside the object. 658// index inside the object.
487// 659//
488// + memory-efficient on most 64 bit archs 660// + memory-efficient on most 64 bit archs
489// + O(1) insert/remove 661// + O(1) insert/remove
490// + free unique (but varying) id for inserted objects 662// + free unique (but varying) id for inserted objects
527 insert (&obj); 699 insert (&obj);
528 } 700 }
529 701
530 void erase (T *obj) 702 void erase (T *obj)
531 { 703 {
532 unsigned int pos = obj->*indexmember; 704 object_vector_index pos = obj->*indexmember;
533 obj->*indexmember = 0; 705 obj->*indexmember = 0;
534 706
535 if (pos < this->size ()) 707 if (pos < this->size ())
536 { 708 {
537 (*this)[pos - 1] = (*this)[this->size () - 1]; 709 (*this)[pos - 1] = (*this)[this->size () - 1];
545 { 717 {
546 erase (&obj); 718 erase (&obj);
547 } 719 }
548}; 720};
549 721
722/////////////////////////////////////////////////////////////////////////////
723
724// something like a vector or stack, but without
725// out of bounds checking
726template<typename T>
727struct fixed_stack
728{
729 T *data;
730 int size;
731 int max;
732
733 fixed_stack ()
734 : size (0), data (0)
735 {
736 }
737
738 fixed_stack (int max)
739 : size (0), max (max)
740 {
741 data = salloc<T> (max);
742 }
743
744 void reset (int new_max)
745 {
746 sfree (data, max);
747 size = 0;
748 max = new_max;
749 data = salloc<T> (max);
750 }
751
752 void free ()
753 {
754 sfree (data, max);
755 data = 0;
756 }
757
758 ~fixed_stack ()
759 {
760 sfree (data, max);
761 }
762
763 T &operator[](int idx)
764 {
765 return data [idx];
766 }
767
768 void push (T v)
769 {
770 data [size++] = v;
771 }
772
773 T &pop ()
774 {
775 return data [--size];
776 }
777
778 T remove (int idx)
779 {
780 T v = data [idx];
781
782 data [idx] = data [--size];
783
784 return v;
785 }
786};
787
788/////////////////////////////////////////////////////////////////////////////
789
550// basically does what strncpy should do, but appends "..." to strings exceeding length 790// basically does what strncpy should do, but appends "..." to strings exceeding length
791// returns the number of bytes actually used (including \0)
551void assign (char *dst, const char *src, int maxlen); 792int assign (char *dst, const char *src, int maxsize);
552 793
553// type-safe version of assign 794// type-safe version of assign
554template<int N> 795template<int N>
555inline void assign (char (&dst)[N], const char *src) 796inline int assign (char (&dst)[N], const char *src)
556{ 797{
557 assign ((char *)&dst, src, N); 798 return assign ((char *)&dst, src, N);
558} 799}
559 800
560typedef double tstamp; 801typedef double tstamp;
561 802
562// return current time as timestamp 803// return current time as timestamp
563tstamp now (); 804tstamp now ();
564 805
565int similar_direction (int a, int b); 806int similar_direction (int a, int b);
566 807
567// like sprintf, but returns a "static" buffer 808// like v?sprintf, but returns a "static" buffer
568const char *format (const char *format, ...); 809char *vformat (const char *format, va_list ap);
810char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
569 811
812// safety-check player input which will become object->msg
813bool msg_is_safe (const char *msg);
814
815/////////////////////////////////////////////////////////////////////////////
816// threads, very very thin wrappers around pthreads
817
818struct thread
819{
820 pthread_t id;
821
822 void start (void *(*start_routine)(void *), void *arg = 0);
823
824 void cancel ()
825 {
826 pthread_cancel (id);
827 }
828
829 void *join ()
830 {
831 void *ret;
832
833 if (pthread_join (id, &ret))
834 cleanup ("pthread_join failed", 1);
835
836 return ret;
837 }
838};
839
840// note that mutexes are not classes
841typedef pthread_mutex_t smutex;
842
843#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
844 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
845#else
846 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
570#endif 847#endif
571 848
849#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
850#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
851#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
852
853typedef pthread_cond_t scond;
854
855#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
856#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
857#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
858#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
859
860#endif
861

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines