ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.88 by root, Tue May 5 04:51:56 2009 UTC vs.
Revision 1.133 by root, Sat Oct 8 21:54:05 2022 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 6 *
6 * Deliantra is free software: you can redistribute it and/or modify 7 * Deliantra is free software: you can redistribute it and/or modify it under
7 * it under the terms of the GNU General Public License as published by 8 * the terms of the Affero GNU General Public License as published by the
8 * the Free Software Foundation, either version 3 of the License, or 9 * Free Software Foundation, either version 3 of the License, or (at your
9 * (at your option) any later version. 10 * option) any later version.
10 * 11 *
11 * This program is distributed in the hope that it will be useful, 12 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 15 * GNU General Public License for more details.
15 * 16 *
16 * You should have received a copy of the GNU General Public License 17 * You should have received a copy of the Affero GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 * and the GNU General Public License along with this program. If not, see
19 * <http://www.gnu.org/licenses/>.
18 * 20 *
19 * The authors can be reached via e-mail to <support@deliantra.net> 21 * The authors can be reached via e-mail to <support@deliantra.net>
20 */ 22 */
21 23
22#ifndef UTIL_H__ 24#ifndef UTIL_H__
23#define UTIL_H__ 25#define UTIL_H__
24 26
25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0 27#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs 28#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator 29#define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
29#if __GNUC__ >= 3
30# define is_constant(c) __builtin_constant_p (c)
31# define expect(expr,value) __builtin_expect ((expr),(value))
32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33# define noinline __attribute__((__noinline__))
34#else
35# define is_constant(c) 0
36# define expect(expr,value) (expr)
37# define prefetch(addr,rw,locality)
38# define noinline
39#endif
40
41#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
42# define decltype(x) typeof(x)
43#endif
44
45// put into ifs if you are very sure that the expression
46// is mostly true or mosty false. note that these return
47// booleans, not the expression.
48#define expect_false(expr) expect ((expr) ? 1 : 0, 0)
49#define expect_true(expr) expect ((expr) ? 1 : 0, 1)
50 30
51#include <pthread.h> 31#include <pthread.h>
52 32
53#include <cstddef> 33#include <cstddef>
54#include <cmath> 34#include <cmath>
55#include <new> 35#include <new>
56#include <vector> 36#include <vector>
57 37
58#include <glib.h> 38#include <glib.h>
59 39
40#include <flat_hash_map.hpp>
41
60#include <shstr.h> 42#include <shstr.h>
61#include <traits.h> 43#include <traits.h>
44
45#include "ecb.h"
62 46
63#if DEBUG_SALLOC 47#if DEBUG_SALLOC
64# define g_slice_alloc0(s) debug_slice_alloc0(s) 48# define g_slice_alloc0(s) debug_slice_alloc0(s)
65# define g_slice_alloc(s) debug_slice_alloc(s) 49# define g_slice_alloc(s) debug_slice_alloc(s)
66# define g_slice_free1(s,p) debug_slice_free1(s,p) 50# define g_slice_free1(s,p) debug_slice_free1(s,p)
71# define g_slice_alloc0(s) calloc (1, (s)) 55# define g_slice_alloc0(s) calloc (1, (s))
72# define g_slice_alloc(s) malloc ((s)) 56# define g_slice_alloc(s) malloc ((s))
73# define g_slice_free1(s,p) free ((p)) 57# define g_slice_free1(s,p) free ((p))
74#endif 58#endif
75 59
76// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
77#define auto(var,expr) decltype(expr) var = (expr)
78
79// very ugly macro that basically declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
80// that is in scope for the next statement only 61// that is in scope for the next statement only
81// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
82// (note: works great for pointers) 63// (note: works great for pointers)
83// most ugly macro I ever wrote 64// most ugly macro I ever wrote
89 70
90// in range excluding end 71// in range excluding end
91#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
92 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
93 74
94void cleanup (const char *cause, bool make_core = false); 75ecb_cold void cleanup (const char *cause, bool make_core = false);
95void fork_abort (const char *msg); 76ecb_cold void fork_abort (const char *msg);
96 77
97// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
98// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
99template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
100template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
101template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
102 83
103template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); } 84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
104template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); } 85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
105template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); } 86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
112// sign returns -1 or +1 93// sign returns -1 or +1
113template<typename T> 94template<typename T>
114static inline T sign (T v) { return v < 0 ? -1 : +1; } 95static inline T sign (T v) { return v < 0 ? -1 : +1; }
115// relies on 2c representation 96// relies on 2c representation
116template<> 97template<>
117inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); } 98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99template<>
100inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
101template<>
102inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
118 103
119// sign0 returns -1, 0 or +1 104// sign0 returns -1, 0 or +1
120template<typename T> 105template<typename T>
121static inline T sign0 (T v) { return v ? sign (v) : 0; } 106static inline T sign0 (T v) { return v ? sign (v) : 0; }
107
108//clashes with C++0x
109template<typename T, typename U>
110static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
122 111
123// div* only work correctly for div > 0 112// div* only work correctly for div > 0
124// div, with correct rounding (< 0.5 downwards, >=0.5 upwards) 113// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125template<typename T> static inline T div (T val, T div) 114template<typename T> static inline T div (T val, T div)
126{ 115{
127 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div; 116 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128} 117}
118
119template<> inline float div (float val, float div) { return val / div; }
120template<> inline double div (double val, double div) { return val / div; }
121
129// div, round-up 122// div, round-up
130template<typename T> static inline T div_ru (T val, T div) 123template<typename T> static inline T div_ru (T val, T div)
131{ 124{
132 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div; 125 return ecb_expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
133} 126}
134// div, round-down 127// div, round-down
135template<typename T> static inline T div_rd (T val, T div) 128template<typename T> static inline T div_rd (T val, T div)
136{ 129{
137 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div; 130 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
138} 131}
139 132
140// lerp* only work correctly for min_in < max_in 133// lerp* only work correctly for min_in < max_in
141// Linear intERPolate, scales val from min_in..max_in to min_out..max_out 134// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
142template<typename T> 135template<typename T>
205 int32_t d = b - a; 198 int32_t d = b - a;
206 d &= d >> 31; 199 d &= d >> 31;
207 return b - d; 200 return b - d;
208} 201}
209 202
210// this is much faster than crossfires original algorithm 203// this is much faster than crossfire's original algorithm
211// on modern cpus 204// on modern cpus
212inline int 205inline int
213isqrt (int n) 206isqrt (int n)
214{ 207{
215 return (int)sqrtf ((float)n); 208 return (int)sqrtf ((float)n);
209}
210
211// this is kind of like the ^^ operator, if it would exist, without sequence point.
212// more handy than it looks like, due to the implicit !! done on its arguments
213inline bool
214logical_xor (bool a, bool b)
215{
216 return a != b;
217}
218
219inline bool
220logical_implies (bool a, bool b)
221{
222 return a <= b;
216} 223}
217 224
218// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 225// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
219#if 0 226#if 0
220// and has a max. error of 6 in the range -100..+100. 227// and has a max. error of 6 in the range -100..+100.
221#else 228#else
222// and has a max. error of 9 in the range -100..+100. 229// and has a max. error of 9 in the range -100..+100.
223#endif 230#endif
224inline int 231inline int
225idistance (int dx, int dy) 232idistance (int dx, int dy)
226{ 233{
227 unsigned int dx_ = abs (dx); 234 unsigned int dx_ = abs (dx);
228 unsigned int dy_ = abs (dy); 235 unsigned int dy_ = abs (dy);
229 236
230#if 0 237#if 0
231 return dx_ > dy_ 238 return dx_ > dy_
234#else 241#else
235 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 242 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
236#endif 243#endif
237} 244}
238 245
246// can be substantially faster than floor, if your value range allows for it
247template<typename T>
248inline T
249fastfloor (T x)
250{
251 return std::floor (x);
252}
253
254inline float
255fastfloor (float x)
256{
257 return sint32(x) - (x < 0);
258}
259
260inline double
261fastfloor (double x)
262{
263 return sint64(x) - (x < 0);
264}
265
239/* 266/*
240 * absdir(int): Returns a number between 1 and 8, which represent 267 * absdir(int): Returns a number between 1 and 8, which represent
241 * the "absolute" direction of a number (it actually takes care of 268 * the "absolute" direction of a number (it actually takes care of
242 * "overflow" in previous calculations of a direction). 269 * "overflow" in previous calculations of a direction).
243 */ 270 */
245absdir (int d) 272absdir (int d)
246{ 273{
247 return ((d - 1) & 7) + 1; 274 return ((d - 1) & 7) + 1;
248} 275}
249 276
277#define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
280
250extern ssize_t slice_alloc; // statistics 281extern ssize_t slice_alloc; // statistics
251 282
252void *salloc_ (int n) throw (std::bad_alloc); 283void *salloc_ (int n) noexcept;
253void *salloc_ (int n, void *src) throw (std::bad_alloc); 284void *salloc_ (int n, void *src) noexcept;
254 285
255// strictly the same as g_slice_alloc, but never returns 0 286// strictly the same as g_slice_alloc, but never returns 0
256template<typename T> 287template<typename T>
257inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); } 288inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
258 289
259// also copies src into the new area, like "memdup" 290// also copies src into the new area, like "memdup"
260// if src is 0, clears the memory 291// if src is 0, clears the memory
261template<typename T> 292template<typename T>
262inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); } 293inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
263 294
264// clears the memory 295// clears the memory
265template<typename T> 296template<typename T>
266inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); } 297inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
267 298
268// for symmetry 299// for symmetry
269template<typename T> 300template<typename T>
270inline void sfree (T *ptr, int n = 1) throw () 301inline void sfree (T *ptr, int n = 1) noexcept
271{ 302{
272 if (expect_true (ptr)) 303 if (ecb_expect_true (ptr))
273 { 304 {
274 slice_alloc -= n * sizeof (T); 305 slice_alloc -= n * sizeof (T);
275 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T)); 306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
276 g_slice_free1 (n * sizeof (T), (void *)ptr); 307 g_slice_free1 (n * sizeof (T), (void *)ptr);
277 assert (slice_alloc >= 0);//D
278 } 308 }
279} 309}
280 310
281// nulls the pointer 311// nulls the pointer
282template<typename T> 312template<typename T>
283inline void sfree0 (T *&ptr, int n = 1) throw () 313inline void sfree0 (T *&ptr, int n = 1) noexcept
284{ 314{
285 sfree<T> (ptr, n); 315 sfree<T> (ptr, n);
286 ptr = 0; 316 ptr = 0;
287} 317}
288 318
344 sfree ((char *)p, s); 374 sfree ((char *)p, s);
345 } 375 }
346}; 376};
347 377
348// a STL-compatible allocator that uses g_slice 378// a STL-compatible allocator that uses g_slice
349// boy, this is verbose 379// boy, this is much less verbose in newer C++ versions
350template<typename Tp> 380template<typename Tp>
351struct slice_allocator 381struct slice_allocator
352{ 382{
353 typedef size_t size_type; 383 using value_type = Tp;
354 typedef ptrdiff_t difference_type;
355 typedef Tp *pointer;
356 typedef const Tp *const_pointer;
357 typedef Tp &reference;
358 typedef const Tp &const_reference;
359 typedef Tp value_type;
360 384
361 template <class U> 385 slice_allocator () noexcept { }
362 struct rebind 386 template<class U> slice_allocator (const slice_allocator<U> &) noexcept {}
387
388 value_type *allocate (std::size_t n)
363 { 389 {
364 typedef slice_allocator<U> other; 390 return salloc<Tp> (n);
391 }
392
393 void deallocate (value_type *p, std::size_t n)
394 {
395 sfree<Tp> (p, n);
396 }
397};
398
399template<class T, class U>
400bool operator == (const slice_allocator<T> &, const slice_allocator<U> &) noexcept
401{
402 return true;
403}
404
405template<class T, class U>
406bool operator != (const slice_allocator<T> &x, const slice_allocator<U> &y) noexcept
407{
408 return !(x == y);
409}
410
411// basically a memory area, but refcounted
412struct refcnt_buf
413{
414 char *data;
415
416 refcnt_buf (size_t size = 0);
417 refcnt_buf (void *data, size_t size);
418
419 refcnt_buf (const refcnt_buf &src)
420 {
421 data = src.data;
422 inc ();
423 }
424
425 ~refcnt_buf ();
426
427 refcnt_buf &operator =(const refcnt_buf &src);
428
429 operator char *()
430 {
431 return data;
432 }
433
434 size_t size () const
435 {
436 return _size ();
437 }
438
439protected:
440 enum {
441 overhead = sizeof (uint32_t) * 2
365 }; 442 };
366 443
367 slice_allocator () throw () { } 444 uint32_t &_size () const
368 slice_allocator (const slice_allocator &) throw () { }
369 template<typename Tp2>
370 slice_allocator (const slice_allocator<Tp2> &) throw () { }
371
372 ~slice_allocator () { }
373
374 pointer address (reference x) const { return &x; }
375 const_pointer address (const_reference x) const { return &x; }
376
377 pointer allocate (size_type n, const_pointer = 0)
378 { 445 {
379 return salloc<Tp> (n); 446 return ((unsigned int *)data)[-2];
380 } 447 }
381 448
382 void deallocate (pointer p, size_type n) 449 uint32_t &_refcnt () const
383 { 450 {
384 sfree<Tp> (p, n); 451 return ((unsigned int *)data)[-1];
385 } 452 }
386 453
387 size_type max_size () const throw ()
388 {
389 return size_t (-1) / sizeof (Tp);
390 }
391
392 void construct (pointer p, const Tp &val)
393 {
394 ::new (p) Tp (val);
395 }
396
397 void destroy (pointer p)
398 {
399 p->~Tp ();
400 }
401};
402
403// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
404// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
405// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
406struct tausworthe_random_generator
407{
408 uint32_t state [4];
409
410 void operator =(const tausworthe_random_generator &src)
411 {
412 state [0] = src.state [0];
413 state [1] = src.state [1];
414 state [2] = src.state [2];
415 state [3] = src.state [3];
416 }
417
418 void seed (uint32_t seed);
419 uint32_t next ();
420};
421
422// Xorshift RNGs, George Marsaglia
423// http://www.jstatsoft.org/v08/i14/paper
424// this one is about 40% faster than the tausworthe one above (i.e. not much),
425// despite the inlining, and has the issue of only creating 2**32-1 numbers.
426// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
427struct xorshift_random_generator
428{
429 uint32_t x, y;
430
431 void operator =(const xorshift_random_generator &src)
432 {
433 x = src.x;
434 y = src.y;
435 }
436
437 void seed (uint32_t seed) 454 void _alloc (uint32_t size)
438 { 455 {
439 x = seed; 456 data = ((char *)salloc<char> (size + overhead)) + overhead;
440 y = seed * 69069U; 457 _size () = size;
458 _refcnt () = 1;
441 } 459 }
442 460
443 uint32_t next () 461 void _dealloc ();
444 {
445 uint32_t t = x ^ (x << 10);
446 x = y;
447 y = y ^ (y >> 13) ^ t ^ (t >> 10);
448 return y;
449 }
450};
451 462
452template<class generator> 463 void inc ()
453struct random_number_generator : generator
454{
455 // uniform distribution, 0 .. max (0, num - 1)
456 uint32_t operator ()(uint32_t num)
457 { 464 {
458 return !is_constant (num) ? get_range (num) // non-constant 465 ++_refcnt ();
459 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
460 : this->next () & (num - 1); // constant, power-of-two
461 } 466 }
462 467
463 // return a number within (min .. max) 468 void dec ()
464 int operator () (int r_min, int r_max)
465 { 469 {
466 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max 470 if (!--_refcnt ())
467 ? r_min + operator ()(r_max - r_min + 1) 471 _dealloc ();
468 : get_range (r_min, r_max);
469 } 472 }
470
471 double operator ()()
472 {
473 return this->next () / (double)0xFFFFFFFFU;
474 }
475
476protected:
477 uint32_t get_range (uint32_t r_max);
478 int get_range (int r_min, int r_max);
479}; 473};
480
481typedef random_number_generator<tausworthe_random_generator> rand_gen;
482
483extern rand_gen rndm, rmg_rndm;
484 474
485INTERFACE_CLASS (attachable) 475INTERFACE_CLASS (attachable)
486struct refcnt_base 476struct refcnt_base
487{ 477{
488 typedef int refcnt_t; 478 typedef int refcnt_t;
503 // p if not null 493 // p if not null
504 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; } 494 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
505 495
506 void refcnt_dec () 496 void refcnt_dec ()
507 { 497 {
508 if (!is_constant (p)) 498 if (!ecb_is_constant (p))
509 --*refcnt_ref (); 499 --*refcnt_ref ();
510 else if (p) 500 else if (p)
511 --p->refcnt; 501 --p->refcnt;
512 } 502 }
513 503
514 void refcnt_inc () 504 void refcnt_inc ()
515 { 505 {
516 if (!is_constant (p)) 506 if (!ecb_is_constant (p))
517 ++*refcnt_ref (); 507 ++*refcnt_ref ();
518 else if (p) 508 else if (p)
519 ++p->refcnt; 509 ++p->refcnt;
520 } 510 }
521 511
550typedef refptr<maptile> maptile_ptr; 540typedef refptr<maptile> maptile_ptr;
551typedef refptr<object> object_ptr; 541typedef refptr<object> object_ptr;
552typedef refptr<archetype> arch_ptr; 542typedef refptr<archetype> arch_ptr;
553typedef refptr<client> client_ptr; 543typedef refptr<client> client_ptr;
554typedef refptr<player> player_ptr; 544typedef refptr<player> player_ptr;
545typedef refptr<region> region_ptr;
546
547#define STRHSH_NULL 2166136261
548
549static inline uint32_t
550strhsh (const char *s)
551{
552 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
553 // it is about twice as fast as the one-at-a-time one,
554 // with good distribution.
555 // FNV-1a is faster on many cpus because the multiplication
556 // runs concurrently with the looping logic.
557 // we modify the hash a bit to improve its distribution
558 uint32_t hash = STRHSH_NULL;
559
560 while (*s)
561 hash = (hash ^ *s++) * 16777619U;
562
563 return hash ^ (hash >> 16);
564}
565
566static inline uint32_t
567memhsh (const char *s, size_t len)
568{
569 uint32_t hash = STRHSH_NULL;
570
571 while (len--)
572 hash = (hash ^ *s++) * 16777619U;
573
574 return hash;
575}
555 576
556struct str_hash 577struct str_hash
557{ 578{
558 std::size_t operator ()(const char *s) const 579 std::size_t operator ()(const char *s) const
559 { 580 {
560#if 0
561 uint32_t hash = 0;
562
563 /* use the one-at-a-time hash function, which supposedly is
564 * better than the djb2-like one used by perl5.005, but
565 * certainly is better then the bug used here before.
566 * see http://burtleburtle.net/bob/hash/doobs.html
567 */
568 while (*s)
569 {
570 hash += *s++;
571 hash += hash << 10;
572 hash ^= hash >> 6;
573 }
574
575 hash += hash << 3;
576 hash ^= hash >> 11;
577 hash += hash << 15;
578#else
579 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
580 // it is about twice as fast as the one-at-a-time one,
581 // with good distribution.
582 // FNV-1a is faster on many cpus because the multiplication
583 // runs concurrent with the looping logic.
584 uint32_t hash = 2166136261;
585
586 while (*s)
587 hash = (hash ^ *s++) * 16777619;
588#endif
589
590 return hash; 581 return strhsh (s);
591 } 582 }
583
584 std::size_t operator ()(const shstr &s) const
585 {
586 return strhsh (s);
587 }
588
589 typedef ska::power_of_two_hash_policy hash_policy;
592}; 590};
593 591
594struct str_equal 592struct str_equal
595{ 593{
596 bool operator ()(const char *a, const char *b) const 594 bool operator ()(const char *a, const char *b) const
622 } 620 }
623}; 621};
624 622
625// This container blends advantages of linked lists 623// This container blends advantages of linked lists
626// (efficiency) with vectors (random access) by 624// (efficiency) with vectors (random access) by
627// by using an unordered vector and storing the vector 625// using an unordered vector and storing the vector
628// index inside the object. 626// index inside the object.
629// 627//
630// + memory-efficient on most 64 bit archs 628// + memory-efficient on most 64 bit archs
631// + O(1) insert/remove 629// + O(1) insert/remove
632// + free unique (but varying) id for inserted objects 630// + free unique (but varying) id for inserted objects
669 insert (&obj); 667 insert (&obj);
670 } 668 }
671 669
672 void erase (T *obj) 670 void erase (T *obj)
673 { 671 {
674 unsigned int pos = obj->*indexmember; 672 object_vector_index pos = obj->*indexmember;
675 obj->*indexmember = 0; 673 obj->*indexmember = 0;
676 674
677 if (pos < this->size ()) 675 if (pos < this->size ())
678 { 676 {
679 (*this)[pos - 1] = (*this)[this->size () - 1]; 677 (*this)[pos - 1] = (*this)[this->size () - 1];
687 { 685 {
688 erase (&obj); 686 erase (&obj);
689 } 687 }
690}; 688};
691 689
690/////////////////////////////////////////////////////////////////////////////
691
692// something like a vector or stack, but without
693// out of bounds checking
694template<typename T>
695struct fixed_stack
696{
697 T *data;
698 int size;
699 int max;
700
701 fixed_stack ()
702 : size (0), data (0)
703 {
704 }
705
706 fixed_stack (int max)
707 : size (0), max (max)
708 {
709 data = salloc<T> (max);
710 }
711
712 void reset (int new_max)
713 {
714 sfree (data, max);
715 size = 0;
716 max = new_max;
717 data = salloc<T> (max);
718 }
719
720 void free ()
721 {
722 sfree (data, max);
723 data = 0;
724 }
725
726 ~fixed_stack ()
727 {
728 sfree (data, max);
729 }
730
731 T &operator[](int idx)
732 {
733 return data [idx];
734 }
735
736 void push (T v)
737 {
738 data [size++] = v;
739 }
740
741 T &pop ()
742 {
743 return data [--size];
744 }
745
746 T remove (int idx)
747 {
748 T v = data [idx];
749
750 data [idx] = data [--size];
751
752 return v;
753 }
754};
755
756/////////////////////////////////////////////////////////////////////////////
757
692// basically does what strncpy should do, but appends "..." to strings exceeding length 758// basically does what strncpy should do, but appends "..." to strings exceeding length
693// returns the number of bytes actually used (including \0) 759// returns the number of bytes actually used (including \0)
694int assign (char *dst, const char *src, int maxsize); 760int assign (char *dst, const char *src, int maxsize);
695 761
696// type-safe version of assign 762// type-safe version of assign
705// return current time as timestamp 771// return current time as timestamp
706tstamp now (); 772tstamp now ();
707 773
708int similar_direction (int a, int b); 774int similar_direction (int a, int b);
709 775
710// like sprintf, but returns a "static" buffer 776// like v?sprintf, but returns a "static" buffer
711const char *format (const char *format, ...); 777char *vformat (const char *format, va_list ap);
778char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
779
780// safety-check player input which will become object->msg
781bool msg_is_safe (const char *msg);
712 782
713///////////////////////////////////////////////////////////////////////////// 783/////////////////////////////////////////////////////////////////////////////
714// threads, very very thin wrappers around pthreads 784// threads, very very thin wrappers around pthreads
715 785
716struct thread 786struct thread

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines