ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.45 by root, Sat May 26 15:44:05 2007 UTC vs.
Revision 1.115 by root, Tue Apr 26 14:41:36 2011 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4//#define PREFER_MALLOC 26#include <compiler.h>
5 27
6#if __GNUC__ >= 3 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) __builtin_constant_p (c) 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8# define expect(expr,value) __builtin_expect ((expr),(value)) 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
9# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
10#else
11# define is_constant(c) 0
12# define expect(expr,value) (expr)
13# define prefetch(addr,rw,locality)
14#endif
15 31
16// put into ifs if you are very sure that the expression 32#include <pthread.h>
17// is mostly true or mosty false. note that these return
18// booleans, not the expression.
19#define expect_false(expr) expect ((expr) != 0, 0)
20#define expect_true(expr) expect ((expr) != 0, 1)
21 33
22#include <cstddef> 34#include <cstddef>
23#include <cmath> 35#include <cmath>
24#include <new> 36#include <new>
25#include <vector> 37#include <vector>
27#include <glib.h> 39#include <glib.h>
28 40
29#include <shstr.h> 41#include <shstr.h>
30#include <traits.h> 42#include <traits.h>
31 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
32// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
33#define auto(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
34 59
60#if cplusplus_does_not_suck
61// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62template<typename T, int N>
63static inline int array_length (const T (&arr)[N])
64{
65 return N;
66}
67#else
68#define array_length(name) (sizeof (name) / sizeof (name [0]))
69#endif
70
35// very ugly macro that basicaly declares and initialises a variable 71// very ugly macro that basically declares and initialises a variable
36// that is in scope for the next statement only 72// that is in scope for the next statement only
37// works only for stuff that can be assigned 0 and converts to false 73// works only for stuff that can be assigned 0 and converts to false
38// (note: works great for pointers) 74// (note: works great for pointers)
39// most ugly macro I ever wrote 75// most ugly macro I ever wrote
40#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 76#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
41 77
42// in range including end 78// in range including end
43#define IN_RANGE_INC(val,beg,end) \ 79#define IN_RANGE_INC(val,beg,end) \
44 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 80 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
45 81
46// in range excluding end 82// in range excluding end
47#define IN_RANGE_EXC(val,beg,end) \ 83#define IN_RANGE_EXC(val,beg,end) \
48 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 84 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
49 85
86void cleanup (const char *cause, bool make_core = false);
50void fork_abort (const char *msg); 87void fork_abort (const char *msg);
51 88
52// rationale for using (U) not (T) is to reduce signed/unsigned issues, 89// rationale for using (U) not (T) is to reduce signed/unsigned issues,
53// as a is often a constant while b is the variable. it is still a bug, though. 90// as a is often a constant while b is the variable. it is still a bug, though.
54template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 91template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
55template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 92template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
56template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 93template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
57 94
95template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98
58template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 99template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
59 100
101template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103
104// sign returns -1 or +1
105template<typename T>
106static inline T sign (T v) { return v < 0 ? -1 : +1; }
107// relies on 2c representation
108template<>
109inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110template<>
111inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112template<>
113inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114
115// sign0 returns -1, 0 or +1
116template<typename T>
117static inline T sign0 (T v) { return v ? sign (v) : 0; }
118
119//clashes with C++0x
120template<typename T, typename U>
121static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
122
123// div* only work correctly for div > 0
124// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125template<typename T> static inline T div (T val, T div)
126{
127 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128}
129
130template<> inline float div (float val, float div) { return val / div; }
131template<> inline double div (double val, double div) { return val / div; }
132
133// div, round-up
134template<typename T> static inline T div_ru (T val, T div)
135{
136 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
137}
138// div, round-down
139template<typename T> static inline T div_rd (T val, T div)
140{
141 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
142}
143
144// lerp* only work correctly for min_in < max_in
145// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
60template<typename T> 146template<typename T>
61static inline T 147static inline T
62lerp (T val, T min_in, T max_in, T min_out, T max_out) 148lerp (T val, T min_in, T max_in, T min_out, T max_out)
63{ 149{
64 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 150 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151}
152
153// lerp, round-down
154template<typename T>
155static inline T
156lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
157{
158 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
159}
160
161// lerp, round-up
162template<typename T>
163static inline T
164lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
165{
166 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
65} 167}
66 168
67// lots of stuff taken from FXT 169// lots of stuff taken from FXT
68 170
69/* Rotate right. This is used in various places for checksumming */ 171/* Rotate right. This is used in various places for checksumming */
107 int32_t d = b - a; 209 int32_t d = b - a;
108 d &= d >> 31; 210 d &= d >> 31;
109 return b - d; 211 return b - d;
110} 212}
111 213
112// this is much faster than crossfires original algorithm 214// this is much faster than crossfire's original algorithm
113// on modern cpus 215// on modern cpus
114inline int 216inline int
115isqrt (int n) 217isqrt (int n)
116{ 218{
117 return (int)sqrtf ((float)n); 219 return (int)sqrtf ((float)n);
220}
221
222// this is kind of like the ^^ operator, if it would exist, without sequence point.
223// more handy than it looks like, due to the implicit !! done on its arguments
224inline bool
225logical_xor (bool a, bool b)
226{
227 return a != b;
228}
229
230inline bool
231logical_implies (bool a, bool b)
232{
233 return a <= b;
118} 234}
119 235
120// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 236// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
121#if 0 237#if 0
122// and has a max. error of 6 in the range -100..+100. 238// and has a max. error of 6 in the range -100..+100.
136#else 252#else
137 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 253 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
138#endif 254#endif
139} 255}
140 256
257// can be substantially faster than floor, if your value range allows for it
258template<typename T>
259inline T
260fastfloor (T x)
261{
262 return std::floor (x);
263}
264
265inline float
266fastfloor (float x)
267{
268 return sint32(x) - (x < 0);
269}
270
271inline double
272fastfloor (double x)
273{
274 return sint64(x) - (x < 0);
275}
276
141/* 277/*
142 * absdir(int): Returns a number between 1 and 8, which represent 278 * absdir(int): Returns a number between 1 and 8, which represent
143 * the "absolute" direction of a number (it actually takes care of 279 * the "absolute" direction of a number (it actually takes care of
144 * "overflow" in previous calculations of a direction). 280 * "overflow" in previous calculations of a direction).
145 */ 281 */
147absdir (int d) 283absdir (int d)
148{ 284{
149 return ((d - 1) & 7) + 1; 285 return ((d - 1) & 7) + 1;
150} 286}
151 287
288// avoid ctz name because netbsd or freebsd spams it's namespace with it
289#if GCC_VERSION(3,4)
290static inline int least_significant_bit (uint32_t x)
291{
292 return __builtin_ctz (x);
293}
294#else
295int least_significant_bit (uint32_t x);
296#endif
297
298#define for_all_bits_sparse_32(mask, idxvar) \
299 for (uint32_t idxvar, mask_ = mask; \
300 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
301
302extern ssize_t slice_alloc; // statistics
303
304void *salloc_ (int n) throw (std::bad_alloc);
305void *salloc_ (int n, void *src) throw (std::bad_alloc);
306
307// strictly the same as g_slice_alloc, but never returns 0
308template<typename T>
309inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
310
311// also copies src into the new area, like "memdup"
312// if src is 0, clears the memory
313template<typename T>
314inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
315
316// clears the memory
317template<typename T>
318inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
319
320// for symmetry
321template<typename T>
322inline void sfree (T *ptr, int n = 1) throw ()
323{
324 if (expect_true (ptr))
325 {
326 slice_alloc -= n * sizeof (T);
327 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
328 g_slice_free1 (n * sizeof (T), (void *)ptr);
329 assert (slice_alloc >= 0);//D
330 }
331}
332
333// nulls the pointer
334template<typename T>
335inline void sfree0 (T *&ptr, int n = 1) throw ()
336{
337 sfree<T> (ptr, n);
338 ptr = 0;
339}
340
152// makes dynamically allocated objects zero-initialised 341// makes dynamically allocated objects zero-initialised
153struct zero_initialised 342struct zero_initialised
154{ 343{
155 void *operator new (size_t s, void *p) 344 void *operator new (size_t s, void *p)
156 { 345 {
158 return p; 347 return p;
159 } 348 }
160 349
161 void *operator new (size_t s) 350 void *operator new (size_t s)
162 { 351 {
163 return g_slice_alloc0 (s); 352 return salloc0<char> (s);
164 } 353 }
165 354
166 void *operator new[] (size_t s) 355 void *operator new[] (size_t s)
167 { 356 {
168 return g_slice_alloc0 (s); 357 return salloc0<char> (s);
169 } 358 }
170 359
171 void operator delete (void *p, size_t s) 360 void operator delete (void *p, size_t s)
172 { 361 {
173 g_slice_free1 (s, p); 362 sfree ((char *)p, s);
174 } 363 }
175 364
176 void operator delete[] (void *p, size_t s) 365 void operator delete[] (void *p, size_t s)
177 { 366 {
178 g_slice_free1 (s, p); 367 sfree ((char *)p, s);
179 } 368 }
180}; 369};
181 370
182void *salloc_ (int n) throw (std::bad_alloc); 371// makes dynamically allocated objects zero-initialised
183void *salloc_ (int n, void *src) throw (std::bad_alloc); 372struct slice_allocated
184
185// strictly the same as g_slice_alloc, but never returns 0
186template<typename T>
187inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
188
189// also copies src into the new area, like "memdup"
190// if src is 0, clears the memory
191template<typename T>
192inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
193
194// clears the memory
195template<typename T>
196inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
197
198// for symmetry
199template<typename T>
200inline void sfree (T *ptr, int n = 1) throw ()
201{ 373{
202#ifdef PREFER_MALLOC 374 void *operator new (size_t s, void *p)
203 free (ptr); 375 {
204#else 376 return p;
205 g_slice_free1 (n * sizeof (T), (void *)ptr); 377 }
206#endif 378
207} 379 void *operator new (size_t s)
380 {
381 return salloc<char> (s);
382 }
383
384 void *operator new[] (size_t s)
385 {
386 return salloc<char> (s);
387 }
388
389 void operator delete (void *p, size_t s)
390 {
391 sfree ((char *)p, s);
392 }
393
394 void operator delete[] (void *p, size_t s)
395 {
396 sfree ((char *)p, s);
397 }
398};
208 399
209// a STL-compatible allocator that uses g_slice 400// a STL-compatible allocator that uses g_slice
210// boy, this is verbose 401// boy, this is verbose
211template<typename Tp> 402template<typename Tp>
212struct slice_allocator 403struct slice_allocator
224 { 415 {
225 typedef slice_allocator<U> other; 416 typedef slice_allocator<U> other;
226 }; 417 };
227 418
228 slice_allocator () throw () { } 419 slice_allocator () throw () { }
229 slice_allocator (const slice_allocator &o) throw () { } 420 slice_allocator (const slice_allocator &) throw () { }
230 template<typename Tp2> 421 template<typename Tp2>
231 slice_allocator (const slice_allocator<Tp2> &) throw () { } 422 slice_allocator (const slice_allocator<Tp2> &) throw () { }
232 423
233 ~slice_allocator () { } 424 ~slice_allocator () { }
234 425
243 void deallocate (pointer p, size_type n) 434 void deallocate (pointer p, size_type n)
244 { 435 {
245 sfree<Tp> (p, n); 436 sfree<Tp> (p, n);
246 } 437 }
247 438
248 size_type max_size ()const throw () 439 size_type max_size () const throw ()
249 { 440 {
250 return size_t (-1) / sizeof (Tp); 441 return size_t (-1) / sizeof (Tp);
251 } 442 }
252 443
253 void construct (pointer p, const Tp &val) 444 void construct (pointer p, const Tp &val)
259 { 450 {
260 p->~Tp (); 451 p->~Tp ();
261 } 452 }
262}; 453};
263 454
264// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 455INTERFACE_CLASS (attachable)
265// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 456struct refcnt_base
266// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
267struct tausworthe_random_generator
268{ 457{
269 // generator 458 typedef int refcnt_t;
270 uint32_t state [4]; 459 mutable refcnt_t ACC (RW, refcnt);
271 460
272 void operator =(const tausworthe_random_generator &src) 461 MTH void refcnt_inc () const { ++refcnt; }
273 { 462 MTH void refcnt_dec () const { --refcnt; }
274 state [0] = src.state [0];
275 state [1] = src.state [1];
276 state [2] = src.state [2];
277 state [3] = src.state [3];
278 }
279 463
280 void seed (uint32_t seed); 464 refcnt_base () : refcnt (0) { }
281 uint32_t next ();
282
283 // uniform distribution
284 uint32_t operator ()(uint32_t num)
285 {
286 return is_constant (num)
287 ? (next () * (uint64_t)num) >> 32U
288 : get_range (num);
289 }
290
291 // return a number within (min .. max)
292 int operator () (int r_min, int r_max)
293 {
294 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
295 ? r_min + operator ()(r_max - r_min + 1)
296 : get_range (r_min, r_max);
297 }
298
299 double operator ()()
300 {
301 return this->next () / (double)0xFFFFFFFFU;
302 }
303
304protected:
305 uint32_t get_range (uint32_t r_max);
306 int get_range (int r_min, int r_max);
307}; 465};
308 466
309typedef tausworthe_random_generator rand_gen; 467// to avoid branches with more advanced compilers
310 468extern refcnt_base::refcnt_t refcnt_dummy;
311extern rand_gen rndm;
312 469
313template<class T> 470template<class T>
314struct refptr 471struct refptr
315{ 472{
473 // p if not null
474 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
475
476 void refcnt_dec ()
477 {
478 if (!is_constant (p))
479 --*refcnt_ref ();
480 else if (p)
481 --p->refcnt;
482 }
483
484 void refcnt_inc ()
485 {
486 if (!is_constant (p))
487 ++*refcnt_ref ();
488 else if (p)
489 ++p->refcnt;
490 }
491
316 T *p; 492 T *p;
317 493
318 refptr () : p(0) { } 494 refptr () : p(0) { }
319 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 495 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
320 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 496 refptr (T *p) : p(p) { refcnt_inc (); }
321 ~refptr () { if (p) p->refcnt_dec (); } 497 ~refptr () { refcnt_dec (); }
322 498
323 const refptr<T> &operator =(T *o) 499 const refptr<T> &operator =(T *o)
324 { 500 {
501 // if decrementing ever destroys we need to reverse the order here
325 if (p) p->refcnt_dec (); 502 refcnt_dec ();
326 p = o; 503 p = o;
327 if (p) p->refcnt_inc (); 504 refcnt_inc ();
328
329 return *this; 505 return *this;
330 } 506 }
331 507
332 const refptr<T> &operator =(const refptr<T> o) 508 const refptr<T> &operator =(const refptr<T> &o)
333 { 509 {
334 *this = o.p; 510 *this = o.p;
335 return *this; 511 return *this;
336 } 512 }
337 513
338 T &operator * () const { return *p; } 514 T &operator * () const { return *p; }
339 T *operator ->() const { return p; } 515 T *operator ->() const { return p; }
340 516
341 operator T *() const { return p; } 517 operator T *() const { return p; }
342}; 518};
343 519
344typedef refptr<maptile> maptile_ptr; 520typedef refptr<maptile> maptile_ptr;
345typedef refptr<object> object_ptr; 521typedef refptr<object> object_ptr;
346typedef refptr<archetype> arch_ptr; 522typedef refptr<archetype> arch_ptr;
347typedef refptr<client> client_ptr; 523typedef refptr<client> client_ptr;
348typedef refptr<player> player_ptr; 524typedef refptr<player> player_ptr;
525typedef refptr<region> region_ptr;
526
527#define STRHSH_NULL 2166136261
528
529static inline uint32_t
530strhsh (const char *s)
531{
532 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
533 // it is about twice as fast as the one-at-a-time one,
534 // with good distribution.
535 // FNV-1a is faster on many cpus because the multiplication
536 // runs concurrently with the looping logic.
537 // we modify the hash a bit to improve its distribution
538 uint32_t hash = STRHSH_NULL;
539
540 while (*s)
541 hash = (hash ^ *s++) * 16777619U;
542
543 return hash ^ (hash >> 16);
544}
545
546static inline uint32_t
547memhsh (const char *s, size_t len)
548{
549 uint32_t hash = STRHSH_NULL;
550
551 while (len--)
552 hash = (hash ^ *s++) * 16777619U;
553
554 return hash;
555}
349 556
350struct str_hash 557struct str_hash
351{ 558{
352 std::size_t operator ()(const char *s) const 559 std::size_t operator ()(const char *s) const
353 { 560 {
354 unsigned long hash = 0;
355
356 /* use the one-at-a-time hash function, which supposedly is
357 * better than the djb2-like one used by perl5.005, but
358 * certainly is better then the bug used here before.
359 * see http://burtleburtle.net/bob/hash/doobs.html
360 */
361 while (*s)
362 {
363 hash += *s++;
364 hash += hash << 10;
365 hash ^= hash >> 6;
366 }
367
368 hash += hash << 3;
369 hash ^= hash >> 11;
370 hash += hash << 15;
371
372 return hash; 561 return strhsh (s);
562 }
563
564 std::size_t operator ()(const shstr &s) const
565 {
566 return strhsh (s);
373 } 567 }
374}; 568};
375 569
376struct str_equal 570struct str_equal
377{ 571{
379 { 573 {
380 return !strcmp (a, b); 574 return !strcmp (a, b);
381 } 575 }
382}; 576};
383 577
578// Mostly the same as std::vector, but insert/erase can reorder
579// the elements, making append(=insert)/remove O(1) instead of O(n).
580//
581// NOTE: only some forms of erase are available
384template<class T> 582template<class T>
385struct unordered_vector : std::vector<T, slice_allocator<T> > 583struct unordered_vector : std::vector<T, slice_allocator<T> >
386{ 584{
387 typedef typename unordered_vector::iterator iterator; 585 typedef typename unordered_vector::iterator iterator;
388 586
398 { 596 {
399 erase ((unsigned int )(i - this->begin ())); 597 erase ((unsigned int )(i - this->begin ()));
400 } 598 }
401}; 599};
402 600
403template<class T, int T::* index> 601// This container blends advantages of linked lists
602// (efficiency) with vectors (random access) by
603// by using an unordered vector and storing the vector
604// index inside the object.
605//
606// + memory-efficient on most 64 bit archs
607// + O(1) insert/remove
608// + free unique (but varying) id for inserted objects
609// + cache-friendly iteration
610// - only works for pointers to structs
611//
612// NOTE: only some forms of erase/insert are available
613typedef int object_vector_index;
614
615template<class T, object_vector_index T::*indexmember>
404struct object_vector : std::vector<T *, slice_allocator<T *> > 616struct object_vector : std::vector<T *, slice_allocator<T *> >
405{ 617{
618 typedef typename object_vector::iterator iterator;
619
620 bool contains (const T *obj) const
621 {
622 return obj->*indexmember;
623 }
624
625 iterator find (const T *obj)
626 {
627 return obj->*indexmember
628 ? this->begin () + obj->*indexmember - 1
629 : this->end ();
630 }
631
632 void push_back (T *obj)
633 {
634 std::vector<T *, slice_allocator<T *> >::push_back (obj);
635 obj->*indexmember = this->size ();
636 }
637
406 void insert (T *obj) 638 void insert (T *obj)
407 { 639 {
408 assert (!(obj->*index));
409 push_back (obj); 640 push_back (obj);
410 obj->*index = this->size ();
411 } 641 }
412 642
413 void insert (T &obj) 643 void insert (T &obj)
414 { 644 {
415 insert (&obj); 645 insert (&obj);
416 } 646 }
417 647
418 void erase (T *obj) 648 void erase (T *obj)
419 { 649 {
420 assert (obj->*index);
421 unsigned int pos = obj->*index; 650 unsigned int pos = obj->*indexmember;
422 obj->*index = 0; 651 obj->*indexmember = 0;
423 652
424 if (pos < this->size ()) 653 if (pos < this->size ())
425 { 654 {
426 (*this)[pos - 1] = (*this)[this->size () - 1]; 655 (*this)[pos - 1] = (*this)[this->size () - 1];
427 (*this)[pos - 1]->*index = pos; 656 (*this)[pos - 1]->*indexmember = pos;
428 } 657 }
429 658
430 this->pop_back (); 659 this->pop_back ();
431 } 660 }
432 661
433 void erase (T &obj) 662 void erase (T &obj)
434 { 663 {
435 errase (&obj); 664 erase (&obj);
436 } 665 }
437}; 666};
667
668/////////////////////////////////////////////////////////////////////////////
669
670// something like a vector or stack, but without
671// out of bounds checking
672template<typename T>
673struct fixed_stack
674{
675 T *data;
676 int size;
677 int max;
678
679 fixed_stack ()
680 : size (0), data (0)
681 {
682 }
683
684 fixed_stack (int max)
685 : size (0), max (max)
686 {
687 data = salloc<T> (max);
688 }
689
690 void reset (int new_max)
691 {
692 sfree (data, max);
693 size = 0;
694 max = new_max;
695 data = salloc<T> (max);
696 }
697
698 void free ()
699 {
700 sfree (data, max);
701 data = 0;
702 }
703
704 ~fixed_stack ()
705 {
706 sfree (data, max);
707 }
708
709 T &operator[](int idx)
710 {
711 return data [idx];
712 }
713
714 void push (T v)
715 {
716 data [size++] = v;
717 }
718
719 T &pop ()
720 {
721 return data [--size];
722 }
723
724 T remove (int idx)
725 {
726 T v = data [idx];
727
728 data [idx] = data [--size];
729
730 return v;
731 }
732};
733
734/////////////////////////////////////////////////////////////////////////////
438 735
439// basically does what strncpy should do, but appends "..." to strings exceeding length 736// basically does what strncpy should do, but appends "..." to strings exceeding length
737// returns the number of bytes actually used (including \0)
440void assign (char *dst, const char *src, int maxlen); 738int assign (char *dst, const char *src, int maxsize);
441 739
442// type-safe version of assign 740// type-safe version of assign
443template<int N> 741template<int N>
444inline void assign (char (&dst)[N], const char *src) 742inline int assign (char (&dst)[N], const char *src)
445{ 743{
446 assign ((char *)&dst, src, N); 744 return assign ((char *)&dst, src, N);
447} 745}
448 746
449typedef double tstamp; 747typedef double tstamp;
450 748
451// return current time as timestampe 749// return current time as timestamp
452tstamp now (); 750tstamp now ();
453 751
454int similar_direction (int a, int b); 752int similar_direction (int a, int b);
455 753
456// like printf, but returns a std::string 754// like v?sprintf, but returns a "static" buffer
457const std::string format (const char *format, ...); 755char *vformat (const char *format, va_list ap);
756char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
458 757
758// safety-check player input which will become object->msg
759bool msg_is_safe (const char *msg);
760
761/////////////////////////////////////////////////////////////////////////////
762// threads, very very thin wrappers around pthreads
763
764struct thread
765{
766 pthread_t id;
767
768 void start (void *(*start_routine)(void *), void *arg = 0);
769
770 void cancel ()
771 {
772 pthread_cancel (id);
773 }
774
775 void *join ()
776 {
777 void *ret;
778
779 if (pthread_join (id, &ret))
780 cleanup ("pthread_join failed", 1);
781
782 return ret;
783 }
784};
785
786// note that mutexes are not classes
787typedef pthread_mutex_t smutex;
788
789#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
790 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
791#else
792 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
459#endif 793#endif
460 794
795#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
796#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
797#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
798
799typedef pthread_cond_t scond;
800
801#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
802#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
803#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
804#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
805
806#endif
807

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines