ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.37 by root, Thu Feb 15 15:43:36 2007 UTC vs.
Revision 1.113 by root, Fri Apr 22 02:03:11 2011 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4//#define PREFER_MALLOC 26#include <compiler.h>
5 27
6#if __GNUC__ >= 3 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) __builtin_constant_p (c) 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8#else 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
9# define is_constant(c) 0 31
10#endif 32#include <pthread.h>
11 33
12#include <cstddef> 34#include <cstddef>
13#include <cmath> 35#include <cmath>
14#include <new> 36#include <new>
15#include <vector> 37#include <vector>
17#include <glib.h> 39#include <glib.h>
18 40
19#include <shstr.h> 41#include <shstr.h>
20#include <traits.h> 42#include <traits.h>
21 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
22// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
23#define AUTODECL(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
24 59
60#if cplusplus_does_not_suck
61// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62template<typename T, int N>
63static inline int array_length (const T (&arr)[N])
64{
65 return N;
66}
67#else
68#define array_length(name) (sizeof (name) / sizeof (name [0]))
69#endif
70
25// very ugly macro that basicaly declares and initialises a variable 71// very ugly macro that basically declares and initialises a variable
26// that is in scope for the next statement only 72// that is in scope for the next statement only
27// works only for stuff that can be assigned 0 and converts to false 73// works only for stuff that can be assigned 0 and converts to false
28// (note: works great for pointers) 74// (note: works great for pointers)
29// most ugly macro I ever wrote 75// most ugly macro I ever wrote
30#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 76#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31 77
32// in range including end 78// in range including end
33#define IN_RANGE_INC(val,beg,end) \ 79#define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 80 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35 81
36// in range excluding end 82// in range excluding end
37#define IN_RANGE_EXC(val,beg,end) \ 83#define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 84 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39 85
86void cleanup (const char *cause, bool make_core = false);
40void fork_abort (const char *msg); 87void fork_abort (const char *msg);
41 88
42// rationale for using (U) not (T) is to reduce signed/unsigned issues, 89// rationale for using (U) not (T) is to reduce signed/unsigned issues,
43// as a is often a constant while b is the variable. it is still a bug, though. 90// as a is often a constant while b is the variable. it is still a bug, though.
44template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 91template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
45template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 92template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
46template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 93template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47 94
95template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98
48template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 99template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
49 100
101template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103
104// sign returns -1 or +1
105template<typename T>
106static inline T sign (T v) { return v < 0 ? -1 : +1; }
107// relies on 2c representation
108template<>
109inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110template<>
111inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112template<>
113inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114
115// sign0 returns -1, 0 or +1
116template<typename T>
117static inline T sign0 (T v) { return v ? sign (v) : 0; }
118
119//clashes with C++0x
120template<typename T, typename U>
121static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
122
123// div* only work correctly for div > 0
124// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125template<typename T> static inline T div (T val, T div)
126{
127 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128}
129
130template<> inline float div (float val, float div) { return val / div; }
131template<> inline double div (double val, double div) { return val / div; }
132
133// div, round-up
134template<typename T> static inline T div_ru (T val, T div)
135{
136 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
137}
138// div, round-down
139template<typename T> static inline T div_rd (T val, T div)
140{
141 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
142}
143
144// lerp* only work correctly for min_in < max_in
145// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
146template<typename T>
147static inline T
148lerp (T val, T min_in, T max_in, T min_out, T max_out)
149{
150 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151}
152
153// lerp, round-down
154template<typename T>
155static inline T
156lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
157{
158 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
159}
160
161// lerp, round-up
162template<typename T>
163static inline T
164lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
165{
166 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
167}
168
50// lots of stuff taken from FXT 169// lots of stuff taken from FXT
51 170
52/* Rotate right. This is used in various places for checksumming */ 171/* Rotate right. This is used in various places for checksumming */
53//TODO: this sucks, use a better checksum algo 172//TODO: that sucks, use a better checksum algo
54static inline uint32_t 173static inline uint32_t
55rotate_right (uint32_t c) 174rotate_right (uint32_t c, uint32_t count = 1)
56{ 175{
57 return (c << 31) | (c >> 1); 176 return (c << (32 - count)) | (c >> count);
177}
178
179static inline uint32_t
180rotate_left (uint32_t c, uint32_t count = 1)
181{
182 return (c >> (32 - count)) | (c << count);
58} 183}
59 184
60// Return abs(a-b) 185// Return abs(a-b)
61// Both a and b must not have the most significant bit set 186// Both a and b must not have the most significant bit set
62static inline uint32_t 187static inline uint32_t
84 int32_t d = b - a; 209 int32_t d = b - a;
85 d &= d >> 31; 210 d &= d >> 31;
86 return b - d; 211 return b - d;
87} 212}
88 213
89// this is much faster than crossfires original algorithm 214// this is much faster than crossfire's original algorithm
90// on modern cpus 215// on modern cpus
91inline int 216inline int
92isqrt (int n) 217isqrt (int n)
93{ 218{
94 return (int)sqrtf ((float)n); 219 return (int)sqrtf ((float)n);
220}
221
222// this is kind of like the ^^ operator, if it would exist, without sequence point.
223// more handy than it looks like, due to the implicit !! done on its arguments
224inline bool
225logical_xor (bool a, bool b)
226{
227 return a != b;
228}
229
230inline bool
231logical_implies (bool a, bool b)
232{
233 return a <= b;
95} 234}
96 235
97// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 236// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
98#if 0 237#if 0
99// and has a max. error of 6 in the range -100..+100. 238// and has a max. error of 6 in the range -100..+100.
124absdir (int d) 263absdir (int d)
125{ 264{
126 return ((d - 1) & 7) + 1; 265 return ((d - 1) & 7) + 1;
127} 266}
128 267
268// avoid ctz name because netbsd or freebsd spams it's namespace with it
269#if GCC_VERSION(3,4)
270static inline int least_significant_bit (uint32_t x)
271{
272 return __builtin_ctz (x);
273}
274#else
275int least_significant_bit (uint32_t x);
276#endif
277
278#define for_all_bits_sparse_32(mask, idxvar) \
279 for (uint32_t idxvar, mask_ = mask; \
280 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
281
282extern ssize_t slice_alloc; // statistics
283
284void *salloc_ (int n) throw (std::bad_alloc);
285void *salloc_ (int n, void *src) throw (std::bad_alloc);
286
287// strictly the same as g_slice_alloc, but never returns 0
288template<typename T>
289inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
290
291// also copies src into the new area, like "memdup"
292// if src is 0, clears the memory
293template<typename T>
294inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
295
296// clears the memory
297template<typename T>
298inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
299
300// for symmetry
301template<typename T>
302inline void sfree (T *ptr, int n = 1) throw ()
303{
304 if (expect_true (ptr))
305 {
306 slice_alloc -= n * sizeof (T);
307 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
308 g_slice_free1 (n * sizeof (T), (void *)ptr);
309 assert (slice_alloc >= 0);//D
310 }
311}
312
313// nulls the pointer
314template<typename T>
315inline void sfree0 (T *&ptr, int n = 1) throw ()
316{
317 sfree<T> (ptr, n);
318 ptr = 0;
319}
320
129// makes dynamically allocated objects zero-initialised 321// makes dynamically allocated objects zero-initialised
130struct zero_initialised 322struct zero_initialised
131{ 323{
132 void *operator new (size_t s, void *p) 324 void *operator new (size_t s, void *p)
133 { 325 {
135 return p; 327 return p;
136 } 328 }
137 329
138 void *operator new (size_t s) 330 void *operator new (size_t s)
139 { 331 {
140 return g_slice_alloc0 (s); 332 return salloc0<char> (s);
141 } 333 }
142 334
143 void *operator new[] (size_t s) 335 void *operator new[] (size_t s)
144 { 336 {
145 return g_slice_alloc0 (s); 337 return salloc0<char> (s);
146 } 338 }
147 339
148 void operator delete (void *p, size_t s) 340 void operator delete (void *p, size_t s)
149 { 341 {
150 g_slice_free1 (s, p); 342 sfree ((char *)p, s);
151 } 343 }
152 344
153 void operator delete[] (void *p, size_t s) 345 void operator delete[] (void *p, size_t s)
154 { 346 {
155 g_slice_free1 (s, p); 347 sfree ((char *)p, s);
156 } 348 }
157}; 349};
158 350
159void *salloc_ (int n) throw (std::bad_alloc); 351// makes dynamically allocated objects zero-initialised
160void *salloc_ (int n, void *src) throw (std::bad_alloc); 352struct slice_allocated
161
162// strictly the same as g_slice_alloc, but never returns 0
163template<typename T>
164inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
165
166// also copies src into the new area, like "memdup"
167// if src is 0, clears the memory
168template<typename T>
169inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
170
171// clears the memory
172template<typename T>
173inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
174
175// for symmetry
176template<typename T>
177inline void sfree (T *ptr, int n = 1) throw ()
178{ 353{
179#ifdef PREFER_MALLOC 354 void *operator new (size_t s, void *p)
180 free (ptr); 355 {
181#else 356 return p;
182 g_slice_free1 (n * sizeof (T), (void *)ptr); 357 }
183#endif 358
184} 359 void *operator new (size_t s)
360 {
361 return salloc<char> (s);
362 }
363
364 void *operator new[] (size_t s)
365 {
366 return salloc<char> (s);
367 }
368
369 void operator delete (void *p, size_t s)
370 {
371 sfree ((char *)p, s);
372 }
373
374 void operator delete[] (void *p, size_t s)
375 {
376 sfree ((char *)p, s);
377 }
378};
185 379
186// a STL-compatible allocator that uses g_slice 380// a STL-compatible allocator that uses g_slice
187// boy, this is verbose 381// boy, this is verbose
188template<typename Tp> 382template<typename Tp>
189struct slice_allocator 383struct slice_allocator
201 { 395 {
202 typedef slice_allocator<U> other; 396 typedef slice_allocator<U> other;
203 }; 397 };
204 398
205 slice_allocator () throw () { } 399 slice_allocator () throw () { }
206 slice_allocator (const slice_allocator &o) throw () { } 400 slice_allocator (const slice_allocator &) throw () { }
207 template<typename Tp2> 401 template<typename Tp2>
208 slice_allocator (const slice_allocator<Tp2> &) throw () { } 402 slice_allocator (const slice_allocator<Tp2> &) throw () { }
209 403
210 ~slice_allocator () { } 404 ~slice_allocator () { }
211 405
220 void deallocate (pointer p, size_type n) 414 void deallocate (pointer p, size_type n)
221 { 415 {
222 sfree<Tp> (p, n); 416 sfree<Tp> (p, n);
223 } 417 }
224 418
225 size_type max_size ()const throw () 419 size_type max_size () const throw ()
226 { 420 {
227 return size_t (-1) / sizeof (Tp); 421 return size_t (-1) / sizeof (Tp);
228 } 422 }
229 423
230 void construct (pointer p, const Tp &val) 424 void construct (pointer p, const Tp &val)
236 { 430 {
237 p->~Tp (); 431 p->~Tp ();
238 } 432 }
239}; 433};
240 434
241// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 435INTERFACE_CLASS (attachable)
242// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 436struct refcnt_base
243// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
244struct tausworthe_random_generator
245{ 437{
246 // generator 438 typedef int refcnt_t;
247 uint32_t state [4]; 439 mutable refcnt_t ACC (RW, refcnt);
248 440
249 void operator =(const tausworthe_random_generator &src) 441 MTH void refcnt_inc () const { ++refcnt; }
250 { 442 MTH void refcnt_dec () const { --refcnt; }
251 state [0] = src.state [0];
252 state [1] = src.state [1];
253 state [2] = src.state [2];
254 state [3] = src.state [3];
255 }
256 443
257 void seed (uint32_t seed); 444 refcnt_base () : refcnt (0) { }
258 uint32_t next ();
259
260 // uniform distribution
261 uint32_t operator ()(uint32_t r_max)
262 {
263 return is_constant (r_max)
264 ? this->next () % r_max
265 : get_range (r_max);
266 }
267
268 // return a number within (min .. max)
269 int operator () (int r_min, int r_max)
270 {
271 return is_constant (r_min) && is_constant (r_max)
272 ? r_min + (*this) (max (r_max - r_min + 1, 1))
273 : get_range (r_min, r_max);
274 }
275
276 double operator ()()
277 {
278 return this->next () / (double)0xFFFFFFFFU;
279 }
280
281protected:
282 uint32_t get_range (uint32_t r_max);
283 int get_range (int r_min, int r_max);
284}; 445};
285 446
286typedef tausworthe_random_generator rand_gen; 447// to avoid branches with more advanced compilers
287 448extern refcnt_base::refcnt_t refcnt_dummy;
288extern rand_gen rndm;
289 449
290template<class T> 450template<class T>
291struct refptr 451struct refptr
292{ 452{
453 // p if not null
454 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
455
456 void refcnt_dec ()
457 {
458 if (!is_constant (p))
459 --*refcnt_ref ();
460 else if (p)
461 --p->refcnt;
462 }
463
464 void refcnt_inc ()
465 {
466 if (!is_constant (p))
467 ++*refcnt_ref ();
468 else if (p)
469 ++p->refcnt;
470 }
471
293 T *p; 472 T *p;
294 473
295 refptr () : p(0) { } 474 refptr () : p(0) { }
296 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 475 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
297 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 476 refptr (T *p) : p(p) { refcnt_inc (); }
298 ~refptr () { if (p) p->refcnt_dec (); } 477 ~refptr () { refcnt_dec (); }
299 478
300 const refptr<T> &operator =(T *o) 479 const refptr<T> &operator =(T *o)
301 { 480 {
481 // if decrementing ever destroys we need to reverse the order here
302 if (p) p->refcnt_dec (); 482 refcnt_dec ();
303 p = o; 483 p = o;
304 if (p) p->refcnt_inc (); 484 refcnt_inc ();
305
306 return *this; 485 return *this;
307 } 486 }
308 487
309 const refptr<T> &operator =(const refptr<T> o) 488 const refptr<T> &operator =(const refptr<T> &o)
310 { 489 {
311 *this = o.p; 490 *this = o.p;
312 return *this; 491 return *this;
313 } 492 }
314 493
315 T &operator * () const { return *p; } 494 T &operator * () const { return *p; }
316 T *operator ->() const { return p; } 495 T *operator ->() const { return p; }
317 496
318 operator T *() const { return p; } 497 operator T *() const { return p; }
319}; 498};
320 499
321typedef refptr<maptile> maptile_ptr; 500typedef refptr<maptile> maptile_ptr;
322typedef refptr<object> object_ptr; 501typedef refptr<object> object_ptr;
323typedef refptr<archetype> arch_ptr; 502typedef refptr<archetype> arch_ptr;
324typedef refptr<client> client_ptr; 503typedef refptr<client> client_ptr;
325typedef refptr<player> player_ptr; 504typedef refptr<player> player_ptr;
505typedef refptr<region> region_ptr;
506
507#define STRHSH_NULL 2166136261
508
509static inline uint32_t
510strhsh (const char *s)
511{
512 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
513 // it is about twice as fast as the one-at-a-time one,
514 // with good distribution.
515 // FNV-1a is faster on many cpus because the multiplication
516 // runs concurrently with the looping logic.
517 // we modify the hash a bit to improve its distribution
518 uint32_t hash = STRHSH_NULL;
519
520 while (*s)
521 hash = (hash ^ *s++) * 16777619U;
522
523 return hash ^ (hash >> 16);
524}
525
526static inline uint32_t
527memhsh (const char *s, size_t len)
528{
529 uint32_t hash = STRHSH_NULL;
530
531 while (len--)
532 hash = (hash ^ *s++) * 16777619U;
533
534 return hash;
535}
326 536
327struct str_hash 537struct str_hash
328{ 538{
329 std::size_t operator ()(const char *s) const 539 std::size_t operator ()(const char *s) const
330 { 540 {
331 unsigned long hash = 0;
332
333 /* use the one-at-a-time hash function, which supposedly is
334 * better than the djb2-like one used by perl5.005, but
335 * certainly is better then the bug used here before.
336 * see http://burtleburtle.net/bob/hash/doobs.html
337 */
338 while (*s)
339 {
340 hash += *s++;
341 hash += hash << 10;
342 hash ^= hash >> 6;
343 }
344
345 hash += hash << 3;
346 hash ^= hash >> 11;
347 hash += hash << 15;
348
349 return hash; 541 return strhsh (s);
542 }
543
544 std::size_t operator ()(const shstr &s) const
545 {
546 return strhsh (s);
350 } 547 }
351}; 548};
352 549
353struct str_equal 550struct str_equal
354{ 551{
356 { 553 {
357 return !strcmp (a, b); 554 return !strcmp (a, b);
358 } 555 }
359}; 556};
360 557
558// Mostly the same as std::vector, but insert/erase can reorder
559// the elements, making append(=insert)/remove O(1) instead of O(n).
560//
561// NOTE: only some forms of erase are available
361template<class T> 562template<class T>
362struct unordered_vector : std::vector<T, slice_allocator<T> > 563struct unordered_vector : std::vector<T, slice_allocator<T> >
363{ 564{
364 typedef typename unordered_vector::iterator iterator; 565 typedef typename unordered_vector::iterator iterator;
365 566
375 { 576 {
376 erase ((unsigned int )(i - this->begin ())); 577 erase ((unsigned int )(i - this->begin ()));
377 } 578 }
378}; 579};
379 580
380template<class T, int T::* index> 581// This container blends advantages of linked lists
582// (efficiency) with vectors (random access) by
583// by using an unordered vector and storing the vector
584// index inside the object.
585//
586// + memory-efficient on most 64 bit archs
587// + O(1) insert/remove
588// + free unique (but varying) id for inserted objects
589// + cache-friendly iteration
590// - only works for pointers to structs
591//
592// NOTE: only some forms of erase/insert are available
593typedef int object_vector_index;
594
595template<class T, object_vector_index T::*indexmember>
381struct object_vector : std::vector<T *, slice_allocator<T *> > 596struct object_vector : std::vector<T *, slice_allocator<T *> >
382{ 597{
598 typedef typename object_vector::iterator iterator;
599
600 bool contains (const T *obj) const
601 {
602 return obj->*indexmember;
603 }
604
605 iterator find (const T *obj)
606 {
607 return obj->*indexmember
608 ? this->begin () + obj->*indexmember - 1
609 : this->end ();
610 }
611
612 void push_back (T *obj)
613 {
614 std::vector<T *, slice_allocator<T *> >::push_back (obj);
615 obj->*indexmember = this->size ();
616 }
617
383 void insert (T *obj) 618 void insert (T *obj)
384 { 619 {
385 assert (!(obj->*index));
386 push_back (obj); 620 push_back (obj);
387 obj->*index = this->size ();
388 } 621 }
389 622
390 void insert (T &obj) 623 void insert (T &obj)
391 { 624 {
392 insert (&obj); 625 insert (&obj);
393 } 626 }
394 627
395 void erase (T *obj) 628 void erase (T *obj)
396 { 629 {
397 assert (obj->*index);
398 int pos = obj->*index; 630 unsigned int pos = obj->*indexmember;
399 obj->*index = 0; 631 obj->*indexmember = 0;
400 632
401 if (pos < this->size ()) 633 if (pos < this->size ())
402 { 634 {
403 (*this)[pos - 1] = (*this)[this->size () - 1]; 635 (*this)[pos - 1] = (*this)[this->size () - 1];
404 (*this)[pos - 1]->*index = pos; 636 (*this)[pos - 1]->*indexmember = pos;
405 } 637 }
406 638
407 this->pop_back (); 639 this->pop_back ();
408 } 640 }
409 641
410 void erase (T &obj) 642 void erase (T &obj)
411 { 643 {
412 errase (&obj); 644 erase (&obj);
413 } 645 }
414}; 646};
647
648/////////////////////////////////////////////////////////////////////////////
649
650// something like a vector or stack, but without
651// out of bounds checking
652template<typename T>
653struct fixed_stack
654{
655 T *data;
656 int size;
657 int max;
658
659 fixed_stack ()
660 : size (0), data (0)
661 {
662 }
663
664 fixed_stack (int max)
665 : size (0), max (max)
666 {
667 data = salloc<T> (max);
668 }
669
670 void reset (int new_max)
671 {
672 sfree (data, max);
673 size = 0;
674 max = new_max;
675 data = salloc<T> (max);
676 }
677
678 void free ()
679 {
680 sfree (data, max);
681 data = 0;
682 }
683
684 ~fixed_stack ()
685 {
686 sfree (data, max);
687 }
688
689 T &operator[](int idx)
690 {
691 return data [idx];
692 }
693
694 void push (T v)
695 {
696 data [size++] = v;
697 }
698
699 T &pop ()
700 {
701 return data [--size];
702 }
703
704 T remove (int idx)
705 {
706 T v = data [idx];
707
708 data [idx] = data [--size];
709
710 return v;
711 }
712};
713
714/////////////////////////////////////////////////////////////////////////////
415 715
416// basically does what strncpy should do, but appends "..." to strings exceeding length 716// basically does what strncpy should do, but appends "..." to strings exceeding length
717// returns the number of bytes actually used (including \0)
417void assign (char *dst, const char *src, int maxlen); 718int assign (char *dst, const char *src, int maxsize);
418 719
419// type-safe version of assign 720// type-safe version of assign
420template<int N> 721template<int N>
421inline void assign (char (&dst)[N], const char *src) 722inline int assign (char (&dst)[N], const char *src)
422{ 723{
423 assign ((char *)&dst, src, N); 724 return assign ((char *)&dst, src, N);
424} 725}
425 726
426typedef double tstamp; 727typedef double tstamp;
427 728
428// return current time as timestampe 729// return current time as timestamp
429tstamp now (); 730tstamp now ();
430 731
431int similar_direction (int a, int b); 732int similar_direction (int a, int b);
432 733
734// like v?sprintf, but returns a "static" buffer
735char *vformat (const char *format, va_list ap);
736char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
737
738// safety-check player input which will become object->msg
739bool msg_is_safe (const char *msg);
740
741/////////////////////////////////////////////////////////////////////////////
742// threads, very very thin wrappers around pthreads
743
744struct thread
745{
746 pthread_t id;
747
748 void start (void *(*start_routine)(void *), void *arg = 0);
749
750 void cancel ()
751 {
752 pthread_cancel (id);
753 }
754
755 void *join ()
756 {
757 void *ret;
758
759 if (pthread_join (id, &ret))
760 cleanup ("pthread_join failed", 1);
761
762 return ret;
763 }
764};
765
766// note that mutexes are not classes
767typedef pthread_mutex_t smutex;
768
769#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
770 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
771#else
772 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
433#endif 773#endif
434 774
775#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
776#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
777#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
778
779typedef pthread_cond_t scond;
780
781#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
782#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
783#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
784#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
785
786#endif
787

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines