ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.64 by root, Mon Mar 24 20:39:34 2008 UTC vs.
Revision 1.131 by root, Wed Dec 5 21:18:37 2018 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 6 *
6 * Deliantra is free software: you can redistribute it and/or modify 7 * Deliantra is free software: you can redistribute it and/or modify it under
7 * it under the terms of the GNU General Public License as published by 8 * the terms of the Affero GNU General Public License as published by the
8 * the Free Software Foundation, either version 3 of the License, or 9 * Free Software Foundation, either version 3 of the License, or (at your
9 * (at your option) any later version. 10 * option) any later version.
10 * 11 *
11 * This program is distributed in the hope that it will be useful, 12 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 15 * GNU General Public License for more details.
15 * 16 *
16 * You should have received a copy of the GNU General Public License 17 * You should have received a copy of the Affero GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 * and the GNU General Public License along with this program. If not, see
19 * <http://www.gnu.org/licenses/>.
18 * 20 *
19 * The authors can be reached via e-mail to <support@deliantra.net> 21 * The authors can be reached via e-mail to <support@deliantra.net>
20 */ 22 */
21 23
22#ifndef UTIL_H__ 24#ifndef UTIL_H__
23#define UTIL_H__ 25#define UTIL_H__
24 26
25//#define PREFER_MALLOC 27#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 28#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
29#define PREFER_MALLOC 0 // use malloc and not the slice allocator
27 30
28#if __GNUC__ >= 3 31#include <pthread.h>
29# define is_constant(c) __builtin_constant_p (c)
30# define expect(expr,value) __builtin_expect ((expr),(value))
31# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
32#else
33# define is_constant(c) 0
34# define expect(expr,value) (expr)
35# define prefetch(addr,rw,locality)
36#endif
37
38#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
39# define decltype(x) typeof(x)
40#endif
41
42// put into ifs if you are very sure that the expression
43// is mostly true or mosty false. note that these return
44// booleans, not the expression.
45#define expect_false(expr) expect ((expr) != 0, 0)
46#define expect_true(expr) expect ((expr) != 0, 1)
47 32
48#include <cstddef> 33#include <cstddef>
49#include <cmath> 34#include <cmath>
50#include <new> 35#include <new>
51#include <vector> 36#include <vector>
52 37
53#include <glib.h> 38#include <glib.h>
54 39
40#include <flat_hash_map.hpp>
41
55#include <shstr.h> 42#include <shstr.h>
56#include <traits.h> 43#include <traits.h>
57 44
45#include "ecb.h"
46
58#ifdef DEBUG_SALLOC 47#if DEBUG_SALLOC
59# define g_slice_alloc0(s) debug_slice_alloc0(s) 48# define g_slice_alloc0(s) debug_slice_alloc0(s)
60# define g_slice_alloc(s) debug_slice_alloc(s) 49# define g_slice_alloc(s) debug_slice_alloc(s)
61# define g_slice_free1(s,p) debug_slice_free1(s,p) 50# define g_slice_free1(s,p) debug_slice_free1(s,p)
62void *g_slice_alloc (unsigned long size); 51void *g_slice_alloc (unsigned long size);
63void *g_slice_alloc0 (unsigned long size); 52void *g_slice_alloc0 (unsigned long size);
64void g_slice_free1 (unsigned long size, void *ptr); 53void g_slice_free1 (unsigned long size, void *ptr);
54#elif PREFER_MALLOC
55# define g_slice_alloc0(s) calloc (1, (s))
56# define g_slice_alloc(s) malloc ((s))
57# define g_slice_free1(s,p) free ((p))
65#endif 58#endif
66 59
67// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
68#define auto(var,expr) decltype(expr) var = (expr)
69
70// very ugly macro that basicaly declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
71// that is in scope for the next statement only 61// that is in scope for the next statement only
72// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
73// (note: works great for pointers) 63// (note: works great for pointers)
74// most ugly macro I ever wrote 64// most ugly macro I ever wrote
75#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
80 70
81// in range excluding end 71// in range excluding end
82#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
83 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
84 74
75ecb_cold void cleanup (const char *cause, bool make_core = false);
85void fork_abort (const char *msg); 76ecb_cold void fork_abort (const char *msg);
86 77
87// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
88// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
89template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
90template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
91template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
92 87
93template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 88template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
94 89
95template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); } 90template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
96template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); } 91template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
97 92
93// sign returns -1 or +1
94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation
97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99template<>
100inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
101template<>
102inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
103
104// sign0 returns -1, 0 or +1
105template<typename T>
106static inline T sign0 (T v) { return v ? sign (v) : 0; }
107
108//clashes with C++0x
109template<typename T, typename U>
110static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
111
112// div* only work correctly for div > 0
113// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
114template<typename T> static inline T div (T val, T div)
115{
116 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
117}
118
119template<> inline float div (float val, float div) { return val / div; }
120template<> inline double div (double val, double div) { return val / div; }
121
122// div, round-up
123template<typename T> static inline T div_ru (T val, T div)
124{
125 return ecb_expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
126}
127// div, round-down
128template<typename T> static inline T div_rd (T val, T div)
129{
130 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
131}
132
133// lerp* only work correctly for min_in < max_in
134// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
98template<typename T> 135template<typename T>
99static inline T 136static inline T
100lerp (T val, T min_in, T max_in, T min_out, T max_out) 137lerp (T val, T min_in, T max_in, T min_out, T max_out)
101{ 138{
102 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 139 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
140}
141
142// lerp, round-down
143template<typename T>
144static inline T
145lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
146{
147 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148}
149
150// lerp, round-up
151template<typename T>
152static inline T
153lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
154{
155 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
103} 156}
104 157
105// lots of stuff taken from FXT 158// lots of stuff taken from FXT
106 159
107/* Rotate right. This is used in various places for checksumming */ 160/* Rotate right. This is used in various places for checksumming */
145 int32_t d = b - a; 198 int32_t d = b - a;
146 d &= d >> 31; 199 d &= d >> 31;
147 return b - d; 200 return b - d;
148} 201}
149 202
150// this is much faster than crossfires original algorithm 203// this is much faster than crossfire's original algorithm
151// on modern cpus 204// on modern cpus
152inline int 205inline int
153isqrt (int n) 206isqrt (int n)
154{ 207{
155 return (int)sqrtf ((float)n); 208 return (int)sqrtf ((float)n);
209}
210
211// this is kind of like the ^^ operator, if it would exist, without sequence point.
212// more handy than it looks like, due to the implicit !! done on its arguments
213inline bool
214logical_xor (bool a, bool b)
215{
216 return a != b;
217}
218
219inline bool
220logical_implies (bool a, bool b)
221{
222 return a <= b;
156} 223}
157 224
158// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 225// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
159#if 0 226#if 0
160// and has a max. error of 6 in the range -100..+100. 227// and has a max. error of 6 in the range -100..+100.
161#else 228#else
162// and has a max. error of 9 in the range -100..+100. 229// and has a max. error of 9 in the range -100..+100.
163#endif 230#endif
164inline int 231inline int
165idistance (int dx, int dy) 232idistance (int dx, int dy)
166{ 233{
167 unsigned int dx_ = abs (dx); 234 unsigned int dx_ = abs (dx);
168 unsigned int dy_ = abs (dy); 235 unsigned int dy_ = abs (dy);
169 236
170#if 0 237#if 0
171 return dx_ > dy_ 238 return dx_ > dy_
174#else 241#else
175 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 242 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
176#endif 243#endif
177} 244}
178 245
246// can be substantially faster than floor, if your value range allows for it
247template<typename T>
248inline T
249fastfloor (T x)
250{
251 return std::floor (x);
252}
253
254inline float
255fastfloor (float x)
256{
257 return sint32(x) - (x < 0);
258}
259
260inline double
261fastfloor (double x)
262{
263 return sint64(x) - (x < 0);
264}
265
179/* 266/*
180 * absdir(int): Returns a number between 1 and 8, which represent 267 * absdir(int): Returns a number between 1 and 8, which represent
181 * the "absolute" direction of a number (it actually takes care of 268 * the "absolute" direction of a number (it actually takes care of
182 * "overflow" in previous calculations of a direction). 269 * "overflow" in previous calculations of a direction).
183 */ 270 */
185absdir (int d) 272absdir (int d)
186{ 273{
187 return ((d - 1) & 7) + 1; 274 return ((d - 1) & 7) + 1;
188} 275}
189 276
277#define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
280
190extern size_t slice_alloc; // statistics 281extern ssize_t slice_alloc; // statistics
282
283void *salloc_ (int n);
284void *salloc_ (int n, void *src);
285
286// strictly the same as g_slice_alloc, but never returns 0
287template<typename T>
288inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
289
290// also copies src into the new area, like "memdup"
291// if src is 0, clears the memory
292template<typename T>
293inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
294
295// clears the memory
296template<typename T>
297inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
298
299// for symmetry
300template<typename T>
301inline void sfree (T *ptr, int n = 1) noexcept
302{
303 if (ecb_expect_true (ptr))
304 {
305 slice_alloc -= n * sizeof (T);
306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
307 g_slice_free1 (n * sizeof (T), (void *)ptr);
308 }
309}
310
311// nulls the pointer
312template<typename T>
313inline void sfree0 (T *&ptr, int n = 1) noexcept
314{
315 sfree<T> (ptr, n);
316 ptr = 0;
317}
191 318
192// makes dynamically allocated objects zero-initialised 319// makes dynamically allocated objects zero-initialised
193struct zero_initialised 320struct zero_initialised
194{ 321{
195 void *operator new (size_t s, void *p) 322 void *operator new (size_t s, void *p)
198 return p; 325 return p;
199 } 326 }
200 327
201 void *operator new (size_t s) 328 void *operator new (size_t s)
202 { 329 {
203 slice_alloc += s;
204 return g_slice_alloc0 (s); 330 return salloc0<char> (s);
205 } 331 }
206 332
207 void *operator new[] (size_t s) 333 void *operator new[] (size_t s)
208 { 334 {
209 slice_alloc += s;
210 return g_slice_alloc0 (s); 335 return salloc0<char> (s);
211 } 336 }
212 337
213 void operator delete (void *p, size_t s) 338 void operator delete (void *p, size_t s)
214 { 339 {
215 slice_alloc -= s; 340 sfree ((char *)p, s);
216 g_slice_free1 (s, p);
217 } 341 }
218 342
219 void operator delete[] (void *p, size_t s) 343 void operator delete[] (void *p, size_t s)
220 { 344 {
221 slice_alloc -= s; 345 sfree ((char *)p, s);
222 g_slice_free1 (s, p);
223 } 346 }
224}; 347};
225 348
226void *salloc_ (int n) throw (std::bad_alloc); 349// makes dynamically allocated objects zero-initialised
227void *salloc_ (int n, void *src) throw (std::bad_alloc); 350struct slice_allocated
228
229// strictly the same as g_slice_alloc, but never returns 0
230template<typename T>
231inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
232
233// also copies src into the new area, like "memdup"
234// if src is 0, clears the memory
235template<typename T>
236inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
237
238// clears the memory
239template<typename T>
240inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
241
242// for symmetry
243template<typename T>
244inline void sfree (T *ptr, int n = 1) throw ()
245{ 351{
246#ifdef PREFER_MALLOC 352 void *operator new (size_t s, void *p)
247 free (ptr); 353 {
248#else 354 return p;
249 slice_alloc -= n * sizeof (T); 355 }
250 g_slice_free1 (n * sizeof (T), (void *)ptr); 356
251#endif 357 void *operator new (size_t s)
252} 358 {
359 return salloc<char> (s);
360 }
361
362 void *operator new[] (size_t s)
363 {
364 return salloc<char> (s);
365 }
366
367 void operator delete (void *p, size_t s)
368 {
369 sfree ((char *)p, s);
370 }
371
372 void operator delete[] (void *p, size_t s)
373 {
374 sfree ((char *)p, s);
375 }
376};
253 377
254// a STL-compatible allocator that uses g_slice 378// a STL-compatible allocator that uses g_slice
255// boy, this is verbose 379// boy, this is verbose
256template<typename Tp> 380template<typename Tp>
257struct slice_allocator 381struct slice_allocator
262 typedef const Tp *const_pointer; 386 typedef const Tp *const_pointer;
263 typedef Tp &reference; 387 typedef Tp &reference;
264 typedef const Tp &const_reference; 388 typedef const Tp &const_reference;
265 typedef Tp value_type; 389 typedef Tp value_type;
266 390
267 template <class U> 391 template <class U>
268 struct rebind 392 struct rebind
269 { 393 {
270 typedef slice_allocator<U> other; 394 typedef slice_allocator<U> other;
271 }; 395 };
272 396
273 slice_allocator () throw () { } 397 slice_allocator () noexcept { }
274 slice_allocator (const slice_allocator &) throw () { } 398 slice_allocator (const slice_allocator &) noexcept { }
275 template<typename Tp2> 399 template<typename Tp2>
276 slice_allocator (const slice_allocator<Tp2> &) throw () { } 400 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
277 401
278 ~slice_allocator () { } 402 ~slice_allocator () { }
279 403
280 pointer address (reference x) const { return &x; } 404 pointer address (reference x) const { return &x; }
281 const_pointer address (const_reference x) const { return &x; } 405 const_pointer address (const_reference x) const { return &x; }
288 void deallocate (pointer p, size_type n) 412 void deallocate (pointer p, size_type n)
289 { 413 {
290 sfree<Tp> (p, n); 414 sfree<Tp> (p, n);
291 } 415 }
292 416
293 size_type max_size () const throw () 417 size_type max_size () const noexcept
294 { 418 {
295 return size_t (-1) / sizeof (Tp); 419 return size_t (-1) / sizeof (Tp);
296 } 420 }
297 421
298 void construct (pointer p, const Tp &val) 422 void construct (pointer p, const Tp &val)
304 { 428 {
305 p->~Tp (); 429 p->~Tp ();
306 } 430 }
307}; 431};
308 432
309// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 433// basically a memory area, but refcounted
310// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 434struct refcnt_buf
311// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
312struct tausworthe_random_generator
313{ 435{
314 // generator 436 char *data;
315 uint32_t state [4];
316 437
317 void operator =(const tausworthe_random_generator &src) 438 refcnt_buf (size_t size = 0);
318 { 439 refcnt_buf (void *data, size_t size);
319 state [0] = src.state [0];
320 state [1] = src.state [1];
321 state [2] = src.state [2];
322 state [3] = src.state [3];
323 }
324 440
325 void seed (uint32_t seed); 441 refcnt_buf (const refcnt_buf &src)
326 uint32_t next ();
327
328 // uniform distribution
329 uint32_t operator ()(uint32_t num)
330 { 442 {
331 return is_constant (num) 443 data = src.data;
332 ? (next () * (uint64_t)num) >> 32U 444 inc ();
333 : get_range (num);
334 } 445 }
335 446
336 // return a number within (min .. max) 447 ~refcnt_buf ();
337 int operator () (int r_min, int r_max)
338 {
339 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
340 ? r_min + operator ()(r_max - r_min + 1)
341 : get_range (r_min, r_max);
342 }
343 448
344 double operator ()() 449 refcnt_buf &operator =(const refcnt_buf &src);
450
451 operator char *()
345 { 452 {
346 return this->next () / (double)0xFFFFFFFFU; 453 return data;
454 }
455
456 size_t size () const
457 {
458 return _size ();
347 } 459 }
348 460
349protected: 461protected:
350 uint32_t get_range (uint32_t r_max); 462 enum {
351 int get_range (int r_min, int r_max); 463 overhead = sizeof (uint32_t) * 2
352}; 464 };
353 465
354typedef tausworthe_random_generator rand_gen; 466 uint32_t &_size () const
467 {
468 return ((unsigned int *)data)[-2];
469 }
355 470
356extern rand_gen rndm; 471 uint32_t &_refcnt () const
472 {
473 return ((unsigned int *)data)[-1];
474 }
475
476 void _alloc (uint32_t size)
477 {
478 data = ((char *)salloc<char> (size + overhead)) + overhead;
479 _size () = size;
480 _refcnt () = 1;
481 }
482
483 void _dealloc ();
484
485 void inc ()
486 {
487 ++_refcnt ();
488 }
489
490 void dec ()
491 {
492 if (!--_refcnt ())
493 _dealloc ();
494 }
495};
357 496
358INTERFACE_CLASS (attachable) 497INTERFACE_CLASS (attachable)
359struct refcnt_base 498struct refcnt_base
360{ 499{
361 typedef int refcnt_t; 500 typedef int refcnt_t;
376 // p if not null 515 // p if not null
377 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; } 516 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
378 517
379 void refcnt_dec () 518 void refcnt_dec ()
380 { 519 {
381 if (!is_constant (p)) 520 if (!ecb_is_constant (p))
382 --*refcnt_ref (); 521 --*refcnt_ref ();
383 else if (p) 522 else if (p)
384 --p->refcnt; 523 --p->refcnt;
385 } 524 }
386 525
387 void refcnt_inc () 526 void refcnt_inc ()
388 { 527 {
389 if (!is_constant (p)) 528 if (!ecb_is_constant (p))
390 ++*refcnt_ref (); 529 ++*refcnt_ref ();
391 else if (p) 530 else if (p)
392 ++p->refcnt; 531 ++p->refcnt;
393 } 532 }
394 533
423typedef refptr<maptile> maptile_ptr; 562typedef refptr<maptile> maptile_ptr;
424typedef refptr<object> object_ptr; 563typedef refptr<object> object_ptr;
425typedef refptr<archetype> arch_ptr; 564typedef refptr<archetype> arch_ptr;
426typedef refptr<client> client_ptr; 565typedef refptr<client> client_ptr;
427typedef refptr<player> player_ptr; 566typedef refptr<player> player_ptr;
567typedef refptr<region> region_ptr;
568
569#define STRHSH_NULL 2166136261
570
571static inline uint32_t
572strhsh (const char *s)
573{
574 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
575 // it is about twice as fast as the one-at-a-time one,
576 // with good distribution.
577 // FNV-1a is faster on many cpus because the multiplication
578 // runs concurrently with the looping logic.
579 // we modify the hash a bit to improve its distribution
580 uint32_t hash = STRHSH_NULL;
581
582 while (*s)
583 hash = (hash ^ *s++) * 16777619U;
584
585 return hash ^ (hash >> 16);
586}
587
588static inline uint32_t
589memhsh (const char *s, size_t len)
590{
591 uint32_t hash = STRHSH_NULL;
592
593 while (len--)
594 hash = (hash ^ *s++) * 16777619U;
595
596 return hash;
597}
428 598
429struct str_hash 599struct str_hash
430{ 600{
431 std::size_t operator ()(const char *s) const 601 std::size_t operator ()(const char *s) const
432 { 602 {
433 unsigned long hash = 0;
434
435 /* use the one-at-a-time hash function, which supposedly is
436 * better than the djb2-like one used by perl5.005, but
437 * certainly is better then the bug used here before.
438 * see http://burtleburtle.net/bob/hash/doobs.html
439 */
440 while (*s)
441 {
442 hash += *s++;
443 hash += hash << 10;
444 hash ^= hash >> 6;
445 }
446
447 hash += hash << 3;
448 hash ^= hash >> 11;
449 hash += hash << 15;
450
451 return hash; 603 return strhsh (s);
452 } 604 }
605
606 std::size_t operator ()(const shstr &s) const
607 {
608 return strhsh (s);
609 }
610
611 typedef ska::power_of_two_hash_policy hash_policy;
453}; 612};
454 613
455struct str_equal 614struct str_equal
456{ 615{
457 bool operator ()(const char *a, const char *b) const 616 bool operator ()(const char *a, const char *b) const
483 } 642 }
484}; 643};
485 644
486// This container blends advantages of linked lists 645// This container blends advantages of linked lists
487// (efficiency) with vectors (random access) by 646// (efficiency) with vectors (random access) by
488// by using an unordered vector and storing the vector 647// using an unordered vector and storing the vector
489// index inside the object. 648// index inside the object.
490// 649//
491// + memory-efficient on most 64 bit archs 650// + memory-efficient on most 64 bit archs
492// + O(1) insert/remove 651// + O(1) insert/remove
493// + free unique (but varying) id for inserted objects 652// + free unique (but varying) id for inserted objects
530 insert (&obj); 689 insert (&obj);
531 } 690 }
532 691
533 void erase (T *obj) 692 void erase (T *obj)
534 { 693 {
535 unsigned int pos = obj->*indexmember; 694 object_vector_index pos = obj->*indexmember;
536 obj->*indexmember = 0; 695 obj->*indexmember = 0;
537 696
538 if (pos < this->size ()) 697 if (pos < this->size ())
539 { 698 {
540 (*this)[pos - 1] = (*this)[this->size () - 1]; 699 (*this)[pos - 1] = (*this)[this->size () - 1];
548 { 707 {
549 erase (&obj); 708 erase (&obj);
550 } 709 }
551}; 710};
552 711
712/////////////////////////////////////////////////////////////////////////////
713
714// something like a vector or stack, but without
715// out of bounds checking
716template<typename T>
717struct fixed_stack
718{
719 T *data;
720 int size;
721 int max;
722
723 fixed_stack ()
724 : size (0), data (0)
725 {
726 }
727
728 fixed_stack (int max)
729 : size (0), max (max)
730 {
731 data = salloc<T> (max);
732 }
733
734 void reset (int new_max)
735 {
736 sfree (data, max);
737 size = 0;
738 max = new_max;
739 data = salloc<T> (max);
740 }
741
742 void free ()
743 {
744 sfree (data, max);
745 data = 0;
746 }
747
748 ~fixed_stack ()
749 {
750 sfree (data, max);
751 }
752
753 T &operator[](int idx)
754 {
755 return data [idx];
756 }
757
758 void push (T v)
759 {
760 data [size++] = v;
761 }
762
763 T &pop ()
764 {
765 return data [--size];
766 }
767
768 T remove (int idx)
769 {
770 T v = data [idx];
771
772 data [idx] = data [--size];
773
774 return v;
775 }
776};
777
778/////////////////////////////////////////////////////////////////////////////
779
553// basically does what strncpy should do, but appends "..." to strings exceeding length 780// basically does what strncpy should do, but appends "..." to strings exceeding length
781// returns the number of bytes actually used (including \0)
554void assign (char *dst, const char *src, int maxlen); 782int assign (char *dst, const char *src, int maxsize);
555 783
556// type-safe version of assign 784// type-safe version of assign
557template<int N> 785template<int N>
558inline void assign (char (&dst)[N], const char *src) 786inline int assign (char (&dst)[N], const char *src)
559{ 787{
560 assign ((char *)&dst, src, N); 788 return assign ((char *)&dst, src, N);
561} 789}
562 790
563typedef double tstamp; 791typedef double tstamp;
564 792
565// return current time as timestamp 793// return current time as timestamp
566tstamp now (); 794tstamp now ();
567 795
568int similar_direction (int a, int b); 796int similar_direction (int a, int b);
569 797
570// like sprintf, but returns a "static" buffer 798// like v?sprintf, but returns a "static" buffer
571const char *format (const char *format, ...); 799char *vformat (const char *format, va_list ap);
800char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
572 801
802// safety-check player input which will become object->msg
803bool msg_is_safe (const char *msg);
804
805/////////////////////////////////////////////////////////////////////////////
806// threads, very very thin wrappers around pthreads
807
808struct thread
809{
810 pthread_t id;
811
812 void start (void *(*start_routine)(void *), void *arg = 0);
813
814 void cancel ()
815 {
816 pthread_cancel (id);
817 }
818
819 void *join ()
820 {
821 void *ret;
822
823 if (pthread_join (id, &ret))
824 cleanup ("pthread_join failed", 1);
825
826 return ret;
827 }
828};
829
830// note that mutexes are not classes
831typedef pthread_mutex_t smutex;
832
833#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
834 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
835#else
836 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
573#endif 837#endif
574 838
839#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
840#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
841#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
842
843typedef pthread_cond_t scond;
844
845#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
846#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
847#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
848#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
849
850#endif
851

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines